Mesenchymal Stem Cells Primed With Valproate and Lithium Robustly Migrate to Infarcted Regions and Facilitate Recovery in a Stroke Model

Li-Kai Tsai, MD, PhD*; Zhifei Wang, PhD*; Jeeva Munasinghe, PhD; Yan Leng, MD; Peter Leeds, BS; De-Maw Chuang, PhD

Background and Purpose—The migratory efficiency of mesenchymal stem cells (MSC) toward cerebral infarct after transplantation is limited. Valproate (VPA) and lithium enhance in vitro migration of MSC by upregulating CXC chemokine receptor 4 and matrix metalloproteinase-9, respectively. Ability of VPA and lithium to promote MSC homing and to improve functional recovery was assessed in a rat model of cerebral ischemia.

Methods—MSC primed with VPA (2.5 mmol/L, 3 hours) and/or lithium chloride (2.5 mmol/L, 24 hours) were transplanted into rats 24 hours after transient middle cerebral artery occlusion (MCAO). Neurological function was assessed via rotarod test, Neurological Severity Score, and body asymmetry test for 2 weeks. Infarct volume was analyzed by MRI. The number of homing MSC and microvessel density in the infarcted regions were measured 15 days after MCAO using immunohistochemistry.

Results—Priming with VPA or lithium increased the number of MSC homing to the cerebral infarcted regions, and copriming with VPA and lithium further enhanced this effect. MCAO rats receiving VPA-primed and/or lithium-primed MSC showed improved functional recovery, reduced infarct volume, and enhanced angiogenesis in the infarcted penumbra regions. These beneficial effects of VPA or lithium priming were reversed by AMD3100, a CXC chemokine receptor 4 antagonist, and GM6001, a matrix metalloproteinase inhibitor, respectively.

Conclusions—Priming with VPA and/or lithium promoted the homing and migration ability of MSC, improved functional recovery, reduced brain infarct volume, and enhanced angiogenesis in a rat MCAO model. These effects were likely mediated by VPA-induced CX3 chemokine receptor 4 overexpression and lithium-induced matrix metalloproteinase-9 upregulation. (Stroke. 2011;42:2932-2939.)

Key Words: cerebral ischemia • lithium • mesenchymal stem cells • transplantation • valproate • MRI

For the past decade, stem cell therapy has been investigated as a potential treatment for stroke. Many studies have demonstrated the beneficial effects of stem cell therapy, particularly in rodent models. One major advantage of using mesenchymal stem cells (MSC) from bone marrow is that the preparation allows for autologous transplantation, thus avoiding tissue rejection responses. Recently, 2 small-scale clinical trials in ischemic stroke patients showed that intravenous autologous MSC transplantation improves functional recovery without adverse effects such as seizures or tumor formation. Nevertheless, MSC transplantation still requires extensive standardization and optimization before it can be deemed a feasible therapy for stroke and other central nervous system disorders.

One key feature of MSC-based therapy is that MSC must migrate to disease target sites after transplantation. However, the homing of MSC to brain infarcted sites is far from ideal. In cerebral ischemia, stromal cell-derived factor-1α, secreted by astrocytes and endothelial cells around the infarcted region, attracts stem cells. CXC chemokine receptor 4 (CXCR4) is an α2-chemokine receptor-specific for stromal cell-derived factor-1α; pretreatment of MSC with its antagonist inhibits MSC homing into the infarcted area. In addition, matrix metalloproteinase-9 (MMP-9) is involved in the motility of stem cells by degrading components of the extracellular matrix. It has been reported that MMP-9 suppression attenuated stem cells migration in the infarcted brain. Therefore, both stromal cell-derived factor-1α/
CXCR4 interaction and MMP-9 expression appear to be essential for the homing ability of stem cells.

For decades, the mood stabilizers valproate (VPA) and lithium have been used to treat bipolar disorder. VPA inhibits histone deacetylases, which play a prominent role in transcriptional regulation, and lithium activates the Wnt downstream signaling pathway by inhibiting glycogen synthase kinase-3. We recently demonstrated that treatment with VPA or lithium enhances MSC migration by increasing CXCR4 expression via histone deacetylase inhibition or by elevating MMP-9 levels through glycogen synthase kinase-3β inhibition, respectively. This current study investigated whether priming MSC with VPA and/or lithium would enhance the homing ability of MSC and improve functional recovery after transplantation into rats in an experimental stroke model.

Materials and Methods

Cells and Chemicals

Cryopreserved rat MSC were purchased from Cell Applications. MSC used in this study were from the fifth passage of cultivation. MSC were plated at a density of 20 cells/mm² and expanded in rat MSC culture medium (Cell Applications) at 37°C in a humidified atmosphere containing 95% air and 5% CO₂, according to the manufacturer’s instructions. Chemicals used in the experiments included sodium VPA, lithium chloride, AMD3100 (Sigma-Aldrich), and GM6001 (Millipore).

Animal Middle Cerebral Artery Occlusion Model

All animal experiments were performed according to protocols approved by the National Institute of Mental Health Animal Care and Use Committee. Male Sprague-Dawley rats (190 to 230 g; Charles River Laboratories, Wilmington, MA) underwent middle cerebral artery occlusion (MCAO) as previously described. Briefly, rats were anesthetized with isoflurane (1.5% in a mixture of 70% N₂O and 30% O₂). A 4-0 nylon suture with heat-produced round tip was inserted from the right common carotid artery into the right internal carotid artery and then to the circle of Willis to occlude the origin of the right middle cerebral artery. One hour after MCAO, the nylon suture was withdrawn. Sham-operated rats underwent the same procedure without the nylon suture.

Study Design

Rats were divided into 9 groups (Table; n=8 rats in each group except for group 1): (1) sham: sham-operated rats with (n=4) or without (n=8) MSC transplantation; (2) no treatment: rats received MCAO without MSC transplantation; (3) MSC: rats received naive MSC after MCAO; (4) MSC/VPA: rats received VPA-primed MSC after MCAO; (5) MSC/VPA/AMD: rats received VPA/AMD3100-primed MSC after MCAO; (6) MSC/Li-Li: rats received lithium-primed MSC after MCAO followed by 1 daily lithium injection for 14 days; (7) MSC/Li/GM-Li: rats received lithium/GM6001-primed MSC after MCAO followed by 1 daily lithium injection for 14 days; (8) Li: rats received 1 daily lithium injection for 14 days, beginning 24 hours after MCAO; and (9) MSC/VPA/Li-Li: rats received VPA/Li-primed MSC after MCAO followed by 1 daily lithium injection for 14 days.

Before transplantation, MSC were incubated with 100 µmol/L BrdU (Invitrogen) for 72 hours. MSC were primed with 2.5 mmol/L VPA for three hours, 20 µmol/L AMD3100 (a CXCR4 antagonist), or with 10 µmol/L GM6001 (an MMP inhibitor) for 24 hours before transplantation (Figure 1). At 24 hours after MCAO (Day 1), approximately 1×10⁶ MSC in 1 mL PBS were injected into a rat through the tail vein. Rats receiving continuous lithium received one daily subcutaneous injection (2 mEq/kg) for 14 days.

Immunohistochemistry

The number of BrdU-labeled homing MSC and microvessel density in the penumbra cortex and striatum were detected by immunohistochemistry using antibodies against BrdU and RECA-1 (a pan-endothelium marker, Abcam), respectively. Detailed procedures are available online (Supplemental Methods, http://stroke.ahajournals.org).

Behavioral Testing

The rotarod test was performed 3 consecutive days before and on days 1, 4, 7, 11, and 15 after MCAO. Neurological Severity Score, body asymmetry, and body weight were evaluated immediately before and every day after MCAO. Detailed procedures are available online (Supplemental Methods).

Table. Rat Grouping Information

<table>
<thead>
<tr>
<th>Group</th>
<th>MSC Priming</th>
<th>Rat Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Sham</td>
<td>-</td>
<td>LiCl</td>
</tr>
<tr>
<td>2 No treatment</td>
<td>-</td>
<td>AMD3100</td>
</tr>
<tr>
<td>3 MSC</td>
<td>-</td>
<td>VPA</td>
</tr>
<tr>
<td>4 MSC/VPA</td>
<td>-</td>
<td>GM6001</td>
</tr>
<tr>
<td>5 MSC/VPA/AMD</td>
<td>-</td>
<td>VPA</td>
</tr>
<tr>
<td>6 MSC/Li-Li</td>
<td>+</td>
<td>LiCl</td>
</tr>
<tr>
<td>7 MSC/Li/GM-Li</td>
<td>+</td>
<td>AMD3100</td>
</tr>
<tr>
<td>8 Li</td>
<td>-</td>
<td>VPA</td>
</tr>
<tr>
<td>9 MSC/VPA/Li-Li</td>
<td>+</td>
<td>GM6001</td>
</tr>
</tbody>
</table>

AMD indicates AMD3100; GM, GM6001; Li, lithium; MSC, mesenchymal stem cells; VPA, valproate.
MRI
All MRI experiments were performed on a 7-T (Bruker Avance), 210-mm horizontal scanner. The infarct volume on days 1, 8, and 15 after MCAO was evaluated using diffusion- or T2-weighted images. Detailed procedures are available online (Supplemental Methods).

Statistical Analyses
Values are expressed as mean±standard error of the mean. For behavioral data, 2-way repeated measures analysis of variance was performed to analyze the overall difference between treatment groups over time, and then Bonferroni-corrected post hoc comparisons were used to analyze the difference between treatment groups at each time point. MRI results were analyzed by 2-way analysis of variance, followed by Bonferroni post-tests. Other data were analyzed by 1-way analysis of variance, followed by Turkey post hoc comparisons. Two-tailed P<0.05 were considered statistically significant.

Results
Optimization of VPA-Priming and Lithium-Priming Conditions
MSC were primed with 2.5 mmol/L VPA for 3 hours, followed by drug washout. Western blotting showed that CXCR4 in MSC was increased at 3 hours, reaching a peak of 2.9-fold compared to control at 6 hours after VPA washout (Supplemental Figure I). Acetylated histone H3 elevations were observed 1 hour after washout, indicating rapid histone deacetylation inhibition. In contrast, MMP-9 levels remained unchanged. Therefore, VPA-primed MSC were transplanted 3 hours after drug washout to achieve the highest CXCR4 elevation.

MMP-9 protein levels in MSC were slightly increased after priming with 2.5 mmol/L lithium for 24 hours. However, continuous treatment with 1 mmol/L lithium after 24-hour lithium (2.5 mmol/L) priming markedly and time-dependently enhanced MMP-9 expression in MSC with a 2.4-fold increase after 2 days (Supplemental Figure IB). Glycogen synthase kinase-3β phosphorylation at Ser9 was elevated >2-fold 12 hours after continuous treatment, indicating glycogen synthase kinase-3β inhibition. These results are consistent with our recent report. Hence, MSC primed with 2.5 mmol/L lithium for 24 hours were transplanted to MCAO rats, followed by 1 daily injection of lithium (2 mEq/kg) for 14 days to maintain MMP-9 elevations.

Priming With VPA and/or Lithium Enhances MSC Homing Into the Infarcted Brain
To detect the homing efficiency of injected MSC, the numbers of BrdU-positive MSC were counted in ischemic brain regions. In the penumbra cortex, priming with VPA or lithium increased MSC homing efficiency >2-fold compared to the unprimed MSC group (from 58 to 122/mm² for VPA and to 130/mm² for lithium; Figure 2A, C). Copriming with the CXCR4 antagonist AMD3100 or the MMP-9 inhibitor GM6001 largely inhibited the effects of VPA or lithium, respectively. Moreover, copriming with VPA and lithium further enhanced the number of the BrdU-positive MSC to 175/mm². MSC primed with VPA and/or lithium had similar differentiating ability of MSC was similar between treatment groups. No BrdU-positive cells colocalized with the neuronal marker (NeuN, Supplemental Figure IIE) or microglial cell marker (Iba1, data not shown). Furthermore, there was no colocalization of BrdU and a proliferation marker KI67 in any of the treatment groups (Supplemental Figure IIF). Additionally, no positive staining of osteocalcin (an osteoblast marker) was detected in the ischemic brain (data not shown).

Transplantation of MSC Coprimed With VPA and Lithium Facilitates Functional Recovery
In all groups, the time that rats were able to stay on an accelerating rotarod declined sharply 1 day after MCAO and then gradually increased toward the control level (Figure 3A). Rats in the naive MSC transplantation group (group 3) did not improve their rotarod performance compared with untreated animals (group 2). However, compared with rats receiving no treatment, MCAO rats transplanted with either VPA-primed or lithium-primed MSC (groups 4 and 6) had notable increases in the amount of time that they stayed on the rotarod on day 15 after MCAO (see bar in Figure 3A). These beneficial effects of VPA or lithium priming were diminished by AMD3100 or GM6001, respectively. Furthermore, transplantation of MSC coprimed with VPA and lithium (group 9) robustly prolonged the time that MCAO rats remained on the rotarod compared with the groups of no treatment and naive MSC transplantation.

Similarly, neurological deficits, increased body tilting, and weight loss were observed 1 day after MCAO, but these changes gradually approached control conditions in all MCAO groups (Figure 3B-D). Transplantation of MSC coprimed with VPA and lithium markedly enhanced the recovery on neurological score, body tilting, and body weight loss starting from 11, 6, and 10 days after MCAO, respectively. Naive MSC transplantation did not show any benefits, whereas lithium-primed MSC significantly ameliorated the neurological severity score of MCAO rats on days 14 and 15. Functional performance was also significantly improved in the MSC/VPA/Li-Li group compared with the MSC group, as assessed by neurological score and body tilting (Figure 3B, C).

Transplantation of MSC Coprimed With VPA and Lithium Reduces Infarct Volume
MRI sequences of diffusion-weighted images were used to determine the size of acute cerebral infarct 1 day after MCAO, and T2-weighted imaging was applied to analyze the residual infarct volume on days 8 and 15 after MCAO. Before MSC transplantation, diffusion-weighted images showed that infarct size did not differ between the MCAO groups (Figure 4A, B). On day 8, infarct size as measured by T2-weighted imaging decreased to 60% to 70% of the initial day 1 infarct volume without significant differences between groups (Figure 4A, C). On day 15, the mean infarct volume was significantly reduced in MSC/VPA/Li-Li rats (group 9) com-

2934 Stroke October 2011
pared to MCAO rats (40% versus 63%; Figure 4A, C). To confirm this finding, we further measured the infarct area using hematoxylin and eosin staining in brain slices derived from untreated MCAO and MSC/VPA/Li-Li groups on day 15. There was a significant reduction in infarct area in MSC/VPA/Li-Li rats compared with untreated MCAO rats (5.2 versus 16.4 mm²; Supplemental Figure III).

Transplantation of MSC Coprimed With VPA and Lithium Increases Microvessel Density in Infarcted Brain

Microvessel density was analyzed in the penumbra cortex and striatum on day 15 after MCAO. In the cortex, naive MSC transplantation did not significantly affect cortical microvessel density in MCAO rats compared with the MCAO group.
(6.4%). Priming with VPA or lithium significantly increased microvessel density compared with the MCAO group (11.5% for VPA and 10.9% for lithium). Moreover, MCAO rats transplanted with MSC coprimed with VPA and lithium (group 9) had the highest microvessel density (13.7%). Copriming with AMD3100 or GM6001 partially eliminated the effects of VPA or lithium, respectively. Similar patterns were observed in the penumbra striatum (Figure 5B, D).

Discussion

MSC-based therapy has been shown to improve neurological outcome after ischemic stroke in rodent models and in some patients. Because the homing ability of MSC toward a brain infarcted region is restricted, enhancing the migration of MSC is key to optimize MSC therapy in stroke. Here, we demonstrated for the first time to our knowledge the utility of priming with mood stabilizers before MSC transplantation in an experimental ischemic model of stroke.

Specifically, this study demonstrated that priming with VPA or lithium before transplantation enhanced the migration of MSC toward brain infarcted areas in rats that underwent MCAO. Copriming with VPA and lithium further promoted this homing efficiency. MSC coprimed with VPA and/or lithium significantly reduced infarct volume and improved functional recovery and angiogenesis in the penumbra cortex and striatum. Notably, VPA and lithium copriming produced the most advantageous effects. These observations echo previous work showing that cotreatment with VPA and lithium synergistically protected against glutamate-induced excitotoxicity in cultured neurons, a mechanism that has been implicated in the pathophysiology of stroke. In contrast, naive MSC transplantation showed no beneficial effect compared with the MCAO rats. These results are consistent with those in previous reports showing that transplantation of the same amount (1×10^6) of MSC fails to produce protective effects after either intravenous or intracerebral injection in...
MCAO rats. Previous study from our laboratory demonstrated that lithium administration at 3 hours, but not 24 hours, after MCAO reduces brain damage and facilitates neurological recovery. In this study, daily lithium treatment starting at 24 hours after MCAO also did not improve performance on rotarod, tilting, and neurological tests. These findings strongly suggest that the beneficial effects observed in the MSC/Li-Li group were mainly attributable to lithium priming rather than direct injection of this drug into animals after MSC transplantation.

CXCR4 and MMP-9 are 2 major molecules known to facilitate MSC homing and migration in cerebral ischemia. A recent study found that upregulation of CXCR4 and MMP-9 promotes the mobility of transplanted MSC toward the cerebral infarcted site and improves functional outcome in a rodent stroke model. Our recent in vitro study showed that VPA and lithium enhance MSC migration by respective upregulation of the histone deacetylase-CXCR4 and glycogen synthase kinase-3beta/H9252/MMP-9 signaling pathways. Therefore, we optimized the priming conditions of VPA and lithium by detecting the ability of these drugs to upregulate CXCR4 and MMP-9 in MSC. Transient treatment of MSC with VPA for 3 hours followed by 3 hours of drug washout ensured high levels of CXCR4 protein expression. Hence, we used this VPA priming method to improve migration to the ischemia-injured brain sites. With regard to lithium, continuous treatment after priming robustly enhanced MMP-9 expression in MSC. Therefore, MCAO rats transplanted with lithium-primed MSC also received 1 daily subcutaneous lithium injection for 14 days to sustain MMP-9 upregulation and facilitate migration toward infarcted regions. We found that coprimering with AMD3100 for VPA or GM6001 for lithium largely suppressed the homing ability of MSC and diminished their beneficial effects on functional recovery and angiogenesis. Because GM6001 is not a specific MMP-9 inhibitor, other MMP could also be involved. However, our in vitro study demonstrated that lithium enhances the expression and activity of MMP-9 in MSC without affecting mRNA levels of MMP-2, MMP-3, and membrane-type MMP. Thus, the reverse effect of GM6001 here is most likely attributable to MMP-9 inhibition. Taken together, the results of the present study confirm and extend our previous in vitro work and suggest that CXCR4 and MMP-9 are key players in mediating the priming effects of VPA and lithium in MSC transplanted into ischemic rats. Accordingly, both CXCR4 and MMP-9 are rational targets for MSC-based therapy in future studies aimed at improving the clinical efficacy of MSC transplantation.

After transplantation, the majority of MSC continued to express MSC markers, CD54 and fibronectin, in the ischemic brain. A small number of MSC differentiated into astrocytes and endothelial cells. The differentiating ability was similar between naive and VPA-primed and/or lithium-primed MSC groups, suggesting that VPA and lithium priming does not affect MSC differentiating ability in the ischemic brain. We did not detect colocalization of BrdU with the neuronal or microglial cell marker. Thus, we tend to exclude the possibility of neuronal differentiation or microglial differentiation/phagocytosis. Long-term VPA treatment has been reported to enhance osteogenic differentiation in MSC cultured in osteogenic differentiation medium, but 1-day VPA exposure has no such effect. In our study, MSC were cultured in growth medium and were exposed to VPA for only 3 hours before transplantation. Therefore, short-term VPA priming and lack of osteogenic differentiation conditions may have excluded the possibility of osteogenic differentiation in VPA-primed MSC in the ischemic brain. It has been reported that lithium enhances MSC proliferation through the Wnt signaling path-
way, whereas VPA at high concentrations reduces human MSC proliferation. Our in vitro study found that treatment with 2.5 mmol/L lithium for 24 hours increases MSC proliferation from 33.4% to 46.9% (unpublished data), and 2.5 to 10 mmol/L VPA treatment for 3 hours followed by drug washout does not affect MSC proliferation. In the current study, we failed to detect colocalization of BrdU and Ki67, a proliferation marker, in the ischemic brain in either naive or drug-primed MSC groups on day 15 after MCAO, suggesting that VPA or lithium was largely suppressed by AMD3100 and GM6001, respectively, as determined by immunohistochemistry. Bar=50 μm. Quantitative data are shown in C and D. N=8 per group; *P<0.05; **P<0.01; ***P<0.001.

The potential effects of MSC in stroke therapy include immunomodulation, angiogenesis, neurogenesis, neurotrophism, and neuroprotection. There is a possibility that MSC integrate into the brain, differentiate into brain cells, and replace damaged tissue. However, our results showed that the majority of MSC still retained their undifferentiated character in the infarcted brain, and only a small number of MSC differentiated into astrocytes and endothelial cells with no neuronal or microglial differentiation detected. In addition, we did not find MSC proliferation in our experimental paradigm. Furthermore, MSC coprimed with VPA and lithium facilitated functional recovery as early as 6 to 11 days after MCAO, a time period that is likely too short for cell replacement to occur. Therefore, cell replacement may not be involved in the beneficial effects. Accumulating reports demonstrate that transplanted MSC produce neurotrophic factors and promote angiogenesis in the ischemic brain. In the present study, VPA and/or lithium priming significantly promoted angiogenesis in the infarcted brain. Moreover, the improvement in neurological performance and reduction in the infarct size were well-correlated with in-
creased microvessel density in penumbra regions. Hence, our findings suggest that production of neurotrophic factors and promotion of angiogenesis may underlie the beneficial effects of MSC primed with VPA and lithium.

It should be noted that intravascular injection of MSC poses a risk of flow disturbance in cerebral arteries, which might exacerbate infarct status. Previous clinical trials also found that to obtain sufficient MSC before transplantation, autologous MSC need to be cultured for >1 month. Because VPA/lithium priming robustly improved the homing efficacy of MSC, it is likely that fewer MSC would be required to achieve clinical efficacy, thus reducing the risk of cerebral flow interruption and curtailing the time necessary to cultivate MSC for transplantation.

Conclusions
MSC coprimed with VPA and lithium showed remarkable improvement in homing ability and contributed significantly to functional recovery after transplantation into MCAO rats. The underlying mechanisms likely involve CXCR4 overexpression by VPA and MMP-9 upregulation by lithium. Both VPA and lithium have long been used in the treatment of bipolar disorder, and their safety profile, clinical features, and potential adverse effects are well-characterized. Thus, future clinical trials using both of these drugs to prime MSC before transplantation into stroke patients are warranted.

Acknowledgments
The authors thank Dr Alan Koretsky of NINDS, NIH for his support and discussions in the MRI studies, Dave Lukenbaugh and Dr Chi-Tso Chiu for their assistance in statistical analysis, and Dr Fengshan Yu for his assistance in hematoxylin and eosin staining. The authors also thank Jolene Hunter, Emily Fessler, and Dr Joshua Hunsberger for their assistance in the preparation of this paper.

Sources of Funding
This research was supported by the Intramural Research Program of the National Institute of Mental Health, NIH, the Hsu family gift fund, and National Taiwan University Hospital (100-N1673).

Disclosures
None.

References
Mesenchymal Stem Cells Primed With Valproate and Lithium Robustly Migrate to Infarcted Regions and Facilitate Recovery in a Stroke Model

Li-Kai Tsai, Zhifei Wang, Jeeva Munasinghe, Yan Leng, Peter Leeds and De-Maw Chuang

Stroke. 2011;42:2932-2939; originally published online August 11, 2011;
doi: 10.1161/STROKEAHA.110.612788

Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2011 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/42/10/2932

Data Supplement (unedited) at:
http://stroke.ahajournals.org/content/suppl/2011/08/11/STROKEAHA.110.612788.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Stroke* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Stroke* is online at:
http://stroke.ahajournals.org//subscriptions/
Supplemental Methods Western

Blotting Analysis

MSCs cultured in 100-mm dishes were detached by scraping and sonicated for 35 seconds in ice-cold lysis buffer. Lysates were measured for protein concentrations as previously described. Equal amounts of protein from each sample were loaded into a 4-12% Nupage Bis-Tris gel (Invitrogen, Eugene, OR), and subjected to electrophoresis. After separation, proteins were transferred to a nitrocellulose membrane (Invitrogen), blocked with Odyssey blocking buffer (LI-COR, Lincoln, NE) for one hour at room temperature, and incubated overnight at 4°C with a primary antibody against CXCR4 (1:500; Abcam, Cambridge, MA), acetylated histoneH3 on Lys9 and Lys14 (1:2000; Upstate Biotechnology, Lake Placid, NY), MMP-9 (1:1000; Millipore, Billerica, MA), GSK-3β (1:2000; BD, Franklin Lakes, NJ), phospho-GSK-3βSer9 (1:1000; Cell Signaling, Beverly, MA), or GAPDH (1:4000; Sigma-Aldrich, St. Louis, MO), in 0.1% Tween 20/Odyssey blocking buffer and then with goat anti-rabbit 800 and goat anti-mouse 680 secondary antibodies (1:10000; LI-COR) at room temperature for two hours. After the final washes, the membranes were scanned and the signals of reactive bands were quantified using the Odyssey Infrared Imager (LI-COR).
Animals were anesthetized with a lethal dose of isoflurane and fixed by transcardial perfusion with saline, followed by 4% formaldehyde. The brains were submerged in 30% sucrose, and then frozen at -80°C. A series of 30 µm-thick sections were cryo-cut, acidified with 1 mol/L HCl for 10 minutes on ice and then 2 mol/L HCl for 30 minutes at 37°C, blocked with 5% normal goat/rabbit serum (Sigma-Aldrich) for one hour at room temperature, and then incubated overnight at 4°C with the following primary antibodies: anti-BrdU (1:130; Abcam), antipanendothelium (RECA1 for endothelium; 1:200; Abcam), anti-CD54 (for MSCs; 1:100; Millipore), anti-fibronectin (for MSCs; 1:1500; Millipore), anti-glial fibrillary acidic protein (GFAP for astrocytes; 1:200; Millipore), anti-NeuN (for neurons; 1:100; Millipore), anti-ionized calcium binding adaptor molecule 1 (Ibal for microglial cells; 1:200; Abcam), anti-osteocalcin (for osteoblasts; 1:200; Abcam), and anti-Ki67 (for cell proliferation; 1:200; Abcam). Samples were then washed and incubated for two hours at room temperature with the appropriate fluorescence dye-conjugated secondary antibodies (1:200; Invitrogen and Abcam). Nuclei were stained with 4', 6-diamidino-2-phenylindole (DAPI) included in the mounting medium. Fluorescent labeling was examined with a fluorescence microscope (BX61 Olympus, Center Valley, PA) or a LSM510 laser-scanning confocal microscope (Carl Zeiss, Göttingen, Germany).

Under fluorescence microscopy, the penumbra has higher background noise, moderately We analyzed the MSC homing efficacy and vessel density at the junction of infarcted and noninfarcted brain tissues with an area of approximately 1 mm² within the boxed areas shown in Figures 2 and 5. Five coronal sections at the penumbra cortex and striatum were evaluated for each rat. The microvessel density was analyzed using
ImageJ (Free download at http://rsbweb.nih.gov/ij/) and the results were shown as the ratio of microvessels versus whole picture in pixels.

Behavioral Testing

For the rotarod test, rats were placed on an accelerating rotarod cylinder (Rotor-rod, San Diego Instruments, San Diego, CA), in which the speed was slowly increased from 4 to 40 rpm within four minutes. The time that animals remained on the rotarod was measured. The animals were trained for three consecutive days before MCAO. Each test consisted of three independent measurements, and the longest time spent on the device was recorded.

The Neurological Severity Score test was modified based on a previous report. Twelve different tests for motor, sensation, and reflex abnormalities were performed by a blinded investigator. Six tests of motor performance (flexion of forelimb or hind limb, head movement 10° to the vertical axis, inability to walk straight, circling towards the paralytic side, falling down trunk. In sensation tests, visual and tactile placement and a proprioceptive test were adapted to evaluate sensory abnormalities of the body. In reflex tests, pinna, corneal, and startle reflex were evaluated. A score of 0 (normal) or 1 (abnormal) was given to each test.
Body asymmetry was quantitatively analyzed using the elevated body swing test as previously described. Briefly, rats were examined for lateral movements/turning when their bodies were suspended by the tail 200 mm above the testing table. The number of initial head or upper body turns was counted in 20 consecutive trials.

To validate these functional tests, we analyzed the above studies in 21 rats before and one day after MCAO. The correlation coefficients between infarct volume and changes in rotarod test, Neurological Severity Score, body asymmetry, and body weight were -0.72, 0.84, 0.75, and -0.9, respectively.

Magnetic Resonance Imaging (MRI)

Infarct volume on Days 1, 8, and 15 after MCAO was evaluated using MRI. Each group comprised five rats.

All MRI experiments were performed on a 7-T (Bruker Avance, Billerica, MA.), 21 cm horizontal scanner. The rats were anesthetized with 1.5% isoflurane and placed in a steriotaxic ensemble. Body core temperature was maintained at 37°C using a circulating water heater and monitored by means of a rectal temperature probe.
Three mutually perpendicular slices were acquired through the brain as scout images. A contiguous set of 1 mm thick T2 weighted axial slices, encompassing the ischemic region (15 slices), was acquired using a fast spin-echo sequence to delineate anatomical details (Field-of-view [FOV] = 32 mm, in-plane resolution of 125 µm, echo time [TE] = 12 ms, repetition time [TR] = 2500 ms, echo train length = 8 and number of averages [NA] = 8). Subsequently, diffusion-weighted images (in three orthogonal directions), based on Echo Planer Imaging (EPI) sequence (diffusion gradient duration = 4 ms, b values, = 1000 mT/m, TE/TR = 25.4/4500 ms, delay between diffusion gradients = 15 ms, in-plane resolution of 250 µm, NA =10) were acquired at the same slice positions as the T2. These images were used to calculate the extent of the lesions. Infarct volume was then calculated using ImageJ software.

Hematoxylin and Eosin Staining

Hematoxylin and eosin (H&E) staining was performed to detect the brain infarct area. Briefly, brain slices were washed in PBS and stained in hematoxylin solution (Sigma-Aldrich) for four minutes followed by washing in running tap water. After differentiation in 1% acid followed by washing, dehydrating and clearing. Stained slices were scanned with Epson scanner and infarct area was calculated using ImageJ software.
References

Supplemental Figure S1. Treatment of MSCs with VPA and lithium causes increases in CXCR4 and MMP-9, respectively. (A) MSCs were treated with 2.5 mmol/L sodium VPA for three hours and then cultured with fresh medium; cells were harvested at different time points after VPA washout. Levels of acetylated histone-H3 and CXCR4 protein peaked at one and six hours after VPA washout, respectively, as determined by Western blotting. (B) When MSCs were treated with 2.5 mmol/L lithium for 24 hours followed by drug washout, MMP-9 levels did not significantly increase. However, when MSCs were treated with 2.5 mmol/L lithium for 24 hours followed by continuous treatment with 1 mmol/L lithium, levels of MMP-9 gradually increased,
0.01.
Supplemental Figure S2. VPA and/or lithium priming does not affect the differentiation and proliferation of MSCs in the infarcted brain. (A and B) Most of BrdU-labeled MSCs (green) expressed MSC markers CD54 (red) and fibronectin (red). Enlarged colocalization is shown in the upper right insert. (C and D) A few BrdU-labeled MSCs (green) expressed the astrocyte marker GFAP (red) and endothelial cell marker RECA-1 (red). (E) No BrdU-labeled MSCs (green) colocalized with the neuronal marker NeuN (red). NeuN staining in the infarcted cortex is shown in the upper right insert as the positive control. (F) No BrdU-labeled MSCs (green) colocalized with a proliferation marker Ki67 (red). Ki67 staining in the infarcted cortex is shown in the upper right insert as the positive control. Blue, DAPI; arrow head, BrdU-positive cell; arrow, NeuN staining; Bar = 50 µm.
Supplemental Figure S3. Transplantation of MSCs primed with VPA and lithium reduces infarct area in MCAO rats. H&E staining was used to measure brain infarct area on Day 15 after MCAO. MCAO rats that received transplanted VPA-and lithium-primed MSCs had significantly smaller infarct area than rats in the untreated MCAO group. (A) Representative brain slices. (B) Quantified results. N = 4-6 per group; **p < 0.01.