Neurosurgical Advances in the Treatment of Moyamoya Disease

Paritosh Pandey, MD; Gary K. Steinberg, MD, PhD

Background and Purpose—Moyamoya disease is characterized by chronic stenoocclusive vasculopathy involving the distal supraclinoid internal carotid arteries and presents with ischemic or hemorrhagic symptoms. We review advances in the understanding and management of moyamoya disease.

Summary of Review—Cerebral revascularization, either direct or indirect, is the cornerstone of treatment for moyamoya disease. Recent advances have been made in understanding the molecular biology and pathophysiology of moyamoya disease, and new genetic mutations and deletions have been identified. Imaging for moyamoya disease is also rapidly improving with new sequences of MRI and better methods of assessing ischemia and cerebrovascular reserve. Positron emission tomography has emerged as an important tool to measure cerebrovascular reserve. Novel surgical techniques assess patency and ischemia during superficial temporal to middle cerebral artery bypass, including indocyanine green videoangiography to evaluate anastomosis patency, and various methods to monitor intraoperative blood flow. Newer methods of indirect revascularization have been described with placement of more tissues supplied by the external carotid artery on the brain surface. Postoperative hyperperfusion to the chronically ischemic brain tissue is a recently identified causative factor of complications. Interestingly, complications from hyperperfusion mimic those caused by ischemia, although they have different treatments, making the role of postoperative blood flow assessment important in distinguishing between the two. Awareness has also increased that even asymptomatic patients can experience significant cognitive decline attributable to chronic ischemia. Whether this reverts after successful revascularization requires investigation.

Conclusions—Surgical revascularization with direct, indirect, and combined methods remains the preferred procedure for patients with moyamoya disease. (Stroke. 2011;42:3304-3310.)

Key Words: moyamoya disease ■ revascularization ■ STA-MCA bypass

Moyamoya disease (MMD) is a chronic, progressive disease characterized by stenosis or occlusion of the bilateral supraclinoid internal carotid arteries along with development of leptomeningeal collaterals at the base of the brain. The classical presentation of MMD is transient ischemic attacks (TIAs), ischemic strokes, and intracranial hemorrhages. Its natural history is often progressive and includes recurrent ischemic episodes with neurological and cognitive deterioration. Unfortunately, the disease is unresponsive to any medical treatment. Surgery aimed at revascularization of the hemispheres either by direct or indirect bypass techniques is the treatment of choice. Over the past years, there has been major progress in understanding MMD, including its molecular biology, genetics, pathophysiology, radiology and blood flow, and surgical management. This article reviews the major neurosurgical advances in the treatment of MMD.

Genetics and Pathophysiology
The pathophysiology of MMD is poorly understood but genetic, acquired, and environmental factors have been implicated. Recent studies have focused on genetic factors in the pathogenesis of MMD. It is most prevalent in Japanese and Asian populations, and there is a 7% to 12% familial occurrence in the Japanese population as well.1 The disease is also associated with many genetically transmitted disorders, including neurofibromatosis, Down syndrome, sickle cell anemia, Fanconi anemia and other hemoglobinopathies, and collagen vascular diseases including Marfan syndrome, Ehler-Danlos syndrome, Algille syndrome, and Majewski osteodysplastic primordial dwarfism Type II.

Chromosomal analysis and genomewide sequencing have been performed to identify genes associated with MMD. Both 3p24-26 and 8q23 in genomewide analyses, in addition to both 6q24 and 17q25 in chromosomal level analyses, have

Received May 25, 2011; final revision received August 5, 2011; accepted August 15, 2011.
From the Department of Neurosurgery, Stanford Stroke Center and Stanford Institute for Neuro-Innovation and Translational Neurosciences, Stanford University School of Medicine, Stanford, CA.
Correspondence to Gary K. Steinberg, MD, PhD, R281, Department of Neurosurgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5327. E-mail gsteinberg@stanford.edu
© 2011 American Heart Association, Inc.
Stroke is available at http://stroke.ahajournals.org

DOI: 10.1161/STROKEAHA.110.598565
been identified in familial MMD. A recent genomewide association study of 785,720 single nucleotide polymorphisms comparing 72 Japanese patients with MMD with 45 control subjects revealed a strong association of chromosome 17q25-ter with MMD.\(^7\) Mutations in smooth muscle alpha actin (ACTA2) can predispose to developing MMD as well as premature coronary artery disease and thoracic aortic disease.\(^6\) A single haplotype consisting of 7 single nucleotide polymorphisms at the RNF213 locus was tightly associated with MMD. Mutational analysis of RNF213 revealed a founder mutation, p.R4859K, in 95% of MMD families, 73% of nonfamilial MMD cases, and 1.4% of the control subjects. Hence, RNF213 is identified as a susceptibility gene for MMD.\(^7\) Recently Xq28 deletions removing MTCP1/MTCP1NB and BRCC3 have been shown to cause a type of X-linked familial moyamoya syndrome.\(^8\)

A number of growth factors are thought to be associated with MMD. Because of the extensive collateral formation defining MMD, research has focused on vascular and angiogenic factors. Investigations regarding the role of vascular endothelial growth factor have been inconclusive.\(^9\) Other growth factors identified in cerebrospinal fluid, intracranial or temporal arteries associated with MMD are transforming growth factor-β, basic fibroblast growth factor,\(^10\) hepatocyte growth factor,\(^11\) and platelet-derived growth factor.\(^12\) Basic fibroblast growth factor was found to be specific to MMD and not to other forms of ischemia and hence may serve as a potential marker for MMD. Various adhesion molecules such as intercellular adhesion molecule 1 and vascular cell adhesion molecule 1 have been shown to be increased in the cerebrospinal fluid of patients with MMD.\(^13\) Other markers like lupus anticoagulant, prostaglandin E2, and interleukin-1β are also being investigated for their roles in smooth muscle proliferation and the pathogenesis of the disease\(^14\) and further studies are focusing on inflammation or infectious origin. Additional research is identifying novel biomarker candidates using proteomic analysis of cerebrospinal fluid from patients with MMD. A recent report recognized 2 important biomarkers in cerebrospinal fluid of patients with MMD.\(^15\) This was done using the surface-enhanced laser desorption/ionization-time of flight–mass spectroscopy technique, and although the exact target protein could not be identified, 6 proteins of the corresponding molecular weight (oxyntomodulin, urocortin-2, β-defensin 133, antibacterial protein LL-37, liver-expressed antimicrobial peptide-2, and proenkephalin-A) were inferred to be the exact protein. Smith et al reported in an abstract at the December 5, 2008, American Association of Neurological Surgeons Scientific meeting the identification of a panel of urinary biomarkers predicting MMD. There was significant elevation in the levels of matrix metalloproteinase-2, matrix metalloproteinase-9, matrix metalloproteinase-9/NGAL, and vascular endothelial growth factor in the urinary samples of patients with MMD as compared with normal subjects with sensitivity of 87.5%, specificity of 100%, and accuracy of 91.3% (www.aans.org/Media/Article.aspx?ArticleId=53823).

Epidemiology and Natural History

MMD occurs worldwide; however, it is most common in the Japanese population, in which the incidence is estimated to be 0.35 to 0.54 per 100,000 population.\(^1\) In contrast, the incidence in the European population was estimated to be one tenth of the incidence in the Japanese population,\(^16\) whereas the incidence in California and Washington states was estimated to be 0.086 per 100,000 population.\(^17\) MMD presents with various cerebrovascular events, including TIAs, ischemic stroke, intracranial hemorrhage, headache, or seizures. In the Japanese literature, the ischemic type predominates in children (<18 years), whereas the hemorrhagic type predominates in adults. However, in our experience, most of the adult patients also present with ischemic symptoms, and only 14.6% adult patients presented with hemorrhage. Hemorrhage was exceedingly uncommon in children.\(^18\)

The natural history of the disease is not well known, and few studies have been conducted on clinically asymptomatic patients. Kuroda et al\(^19\) conducted a nationwide survey of asymptomatic moyamoya patients, defined as patients who did not have ischemic or hemorrhagic symptoms. Of the 40 patients who participated, 34 were not operated and 7 patients developed TIA (3), ischemic stroke (1), or hemorrhage (3) during a follow-up period (mean, 43.7 months). The annual risk for any stroke was 3.2% per year. None of the 6 patients who were surgically treated had any ischemic or hemorrhagic symptoms during their follow-up period. Yamada et al\(^20\) reported that in the 28 patients with asymptomatic MMD who were conservatively treated, 2 patients died of hemorrhage, whereas 4 patients had TIAs. These findings suggest that asymptomatic MMD is not a silent disorder and may progress to cause ischemic or hemorrhagic stroke. However, there is no consensus on offering surgery to all patients with asymptomatic MMD. This is because majority of the poor outcomes in asymptomatic moyamoya patients were secondary to hemorrhage, and there is still no definite evidence that surgical revascularization reduces the risk of intracranial hemorrhage, although a randomized clinical trial is ongoing in Japan to assess the role of revascularization in reduction of subsequent hemorrhage. However, surgical revascularization maybe offered to patients with asymptomatic MMD if there is deranged cerebral hemodynamics and the surgical morbidity is low. However, in symptomatic patients, there is a high incidence of stroke in medically treated patients. Hallemeier et al reported a series of 34 patients with MMD, 22 bilateral and 12 unilateral. In medically treated hemispheres, the 5-year risk of recurrent ipsilateral stroke was 65% after the initial symptom, whereas in surgically treated hemispheres, the 5-year risk of perioperative and subsequent ipsilateral stroke was 17% (P=0.02).\(^21\)

Imaging

For >6 decades, cerebral angiography has been the gold standard in the diagnosis and management of MMD. MRI and MR angiography have also been used for diagnosis of MMD and its sequelae and for follow-up after revascularization. Present research in imaging for MMD focuses on evaluation of cerebrovascular reactivity, predictors of ischemic and hemorrhagic episodes, and predictors of postoperative ischemia and complications.

Single-photon emission computed tomography (SPECT) has long been used to measure cerebral blood flow (CBF) and
cerebrovascular reactivity, and positron emission tomography (PET) is being increasingly used. PET studies for hemodynamic assessment are usually performed with the following tracers: C15O PET for cerebral blood volume measurement, H215O for CBF, and 15O2 to measure oxygen extraction fraction and cerebral metabolic rate of oxygen. Nariai et al22 observed that the oxygen extraction fraction in the frontal, temporal, and parietal cortices was higher in patients with MMD compared with healthy patients. However, regional cerebral metabolic rate of oxygen tends to be decreased in most cerebral regions because of reduced regional CBF. These patients also have high cerebral blood volume owing to maximal compensatory vasodilatation. A paradoxical steal phenomenon is observed when the vascular bed is maximally dilated and autoregulation is impaired. Nariai et al22 also showed that the oxygen extraction fraction was high in patients presenting with TIA and ischemic symptoms; however, it was normal in patients presenting with fixed deficits or with hemorrhage. PET is now 1 of the most reliable assessment tools for MMD. In a study of 23 patients with MMD, Kuwabara et al noted that there was marked increase in CBF and TT measured by PET, especially in the striatum.14

The cerebrovascular response to hypercapnia was markedly impaired. All the parameters including CBF, TT, and cerebrovascular response to hypercapnia improved after surgery. Whether PET is more reliable than other methods of measurement of cerebrovascular reactivity remains to be seen. A prospective observational study is underway to test the hypothesis that increased oxygen extraction fraction in the cerebral hemispheres beyond the occlusive lesion is a predictor of subsequent risk for ipsilateral stroke in medically treated patients with MMD.23

Novel MRI techniques have been used for quantitative hemodynamic analyses, including dynamic susceptibility contrast-weighted bolus-tracking MRI, arterial spin labeling MRI, and blood oxygen level-dependent MRI. Arterial spin labeling MRI has been compared with SPECT imaging in MMD, and a strong correlation has been found between arterial spin labeling value and ACZ-IMP value with SPECT, suggesting that perfusion imaging with arterial spin labeling MRI could show potentially dangerous zones for ischemia.24 Cerebrovascular reactivity as measured by blood oxygen level-dependent MRI has also been shown to have a direct correlation with impaired vascular supply as measured by modified Suzuki score on angiography.25 Quantitative MR angiography with NOVA software can show actual blood flow across large intracranial vessels and also flow across the superficial temporal artery after revascularization.26 In our practice, xenon CT (without and with acetazolamide) has provided an excellent quantitative method of assessing CBF and hemodynamic reserve with good spatial resolution; however, it is not currently approved by the Food and Drug Administration and can only be used on an Institutional Review Board-approved protocol. The data regarding xenon CT is currently under analysis.

Surgery

Although there has not been any randomized controlled trial comparing surgical and medical treatment in patients with MMD, surgical revascularization has been accepted as the only effective form of treatment. Multiple case series, both retrospective and prospective, have shown the effectiveness of revascularization procedures in preventing future ischemic episodes in patients with MMD. Direct revascularization (superficial temporal to middle cerebral artery bypass [STA-MCA], high-flow bypasses), indirect bypasses (encephaloduroarteriosynangiosis, encephalo-duro-arterio-myo-synangiosis, pial synangiosis), and combined procedures (combination of direct and indirect procedures) have been used for many years. However, significant advances have been made in recent years in the techniques and intraoperative monitoring of blood flow during surgery.

STA-MCA bypass has been used for MMD since 1973, when it was used by Kikuchi and Karasawa. Since then, it has been the mainstay of direct revascularization with many authors showing excellent results. We published our results for 450 revascularization procedures, which included direct revascularization in 95.1% adults and 76.2% pediatric patients, in which the surgical morbidity rate was 3.5% and mortality was 0.7% per treated hemisphere.18 The cumulative 5-year risk of perioperative or subsequent stroke or death was 5.5%. Of the 171 patients presenting with a TIA, 91.8% were free of TIA at ≥1 year. There was a significant improvement in quality of life in the cohort as measured by modified Rankin Scale. Other authors have also reported excellent results with direct revascularization.27

The technique of STA-MCA bypass is fairly standard and has been described before.28,29 However, a new technique, excimer laser-associated nonocclusive anastomosis, has been developed.30 In this technique, there is no need for temporary vascular occlusion during the anastomosis. The conduit vessel is sewn to the recipient vessel along with the excimer laser-associated nonocclusive anastomosis platinum ring and then the laser catheter is used to make the arteriotomy. After the anastomosis is performed between the excimer laser-associated nonocclusive anastomosis platinum ring and the conduit, the ring/graf complex is sewn to the recipient vessel, and then the laser catheter, composed of a central suction portion and outer circular fiberoptic array, is passed through a side slit in the donor vessel and the arteriotomy is created. The advantage of this technique is that there is no need for temporary vascular occlusion. Unfortunately, at the present time, this technique can only be used for vessels ≥2.5 mm, so the bypass is applicable to the supraclinoid internal carotid artery or proximal middle cerebral artery vessels and not for STA-MCA anastomoses. However, progress is underway to improve the technology and extend excimer laser-associated nonocclusive anastomosis to smaller intracranial arteries. Newer advances have been made in intraoperative monitoring during direct bypass for MMD. Previously, intraoperative Doppler and visual assessment were used to verify the patency of the anastomosis. Two important developments have allowed evaluation of graft patency and flow during surgery. Indocyanine green (ICG) emits near-infrared fluorescence when excited by near-infrared light. After completion of the anastomosis, ICG is injected, excited by near-infrared light, and visualized. Woizik et al31 examined the role of ICG videoangiography after extracranial–intracranial bypass in 40 patients, of whom 18 had MMD. After the
anastomosis, ICG (0.3 mg/kg body weight) was given systemically through an intravenous bolus injection. The findings of ICG angiography were compared with those of postoperative digital subtraction angiography or CT angiography. In every case, excellent visualization of the cerebral arteries, bypass graft, and brain perfusion was noted. ICG videolangiography was used to identify 4 nonfunctioning STA-MCA bypasses, which could be revised successfully. In every case, the final findings of the ICG angiography could be positively validated by digital subtraction angiography or CT angiography. Awano et al.12 evaluated the bypass blood flow in 13 MMD and 21 non-MMD patients during STA-MCA bypass and monitored hemodynamic changes caused by bypass surgery for postoperative management. ICG perfusion was calculated when the ICG fluorescence reached the maximum. They compared the ICG perfusion area in MMD and non-MMD patients and found that the ICG perfusion area in patients with MMD was significantly larger than in non-MMD patients. Thus, ICG can provide useful information regarding the blood flow after anastomosis and possibly for postoperative management as well. We have used intraoperative ICG in hundreds of MMD direct revascularization anastomoses over the last few years, and we are analyzing our data to determine the value of ICG in assessing patency of direct anastomoses.

The second important advance is the intraoperative monitoring of flow using perivascular probes with various intraoperative blood flow or cerebral oxygenation monitoring methods. A flexible perivascular flow probe (Charbel Probe; Transonic Systems, Inc) can be positioned over the donor and recipient vessels and the flow monitored.26 The flowmeter uses an ultrasonic transit time principle to measure volumetric flow in mL/min. The direction of flow, whether antegrade or retrograde, can also be determined. This is a very important tool both to measure the patency of the graft and the flow through the graft and to appropriately modify blood pressure and hemodynamics in the postoperative period. We analyzed various hemodynamic factors in 292 patients with MMD using this perivascular flow probe.23 After anastomosis, middle cerebral artery flow increased on average 5-fold. Very high postanastomotic middle cerebral artery flow was associated with postoperative ischemic stroke and hemorrhage and transient neurological deficit. Hence, flow monitoring can be a predictor of complications, and in those patients at risk, a tighter control of blood pressure may be warranted. Other novel methods for measurement of CBF or cerebral oxygenation have been described in the literature.39,40 The principle behind indirect procedures is the placement of vascularized tissue supplied by the branches of external carotid artery on the brain to stimulate angiogenesis and collateral vessels in the brain. Although indirect revascularization procedures have been found to be very beneficial and safe in children,40 their efficacy in adult moyamoya patients has been more controversial. However, some recent reports suggest they have low perioperative risks and significantly decreased subsequent ischemic events.51,52 Multiple procedures have been described, including encephaloduroarteriosynangiosis, encephalo-duro-artério-myosynangiosis, emergency management of stroke, omental transplantation, and pial synangiosis. Newer procedures have been developed that use different combinations of tissues placed over the brain to provide additional revascularization. Ishii et al.34 described a STA-MCA bypass with encephalo-duro-myo-synangiosis to augment revascularization in 6 adult patients with effective neovascularization through the grafts in all patients. Kuroda et al described their 11-year experience with a novel bypass procedure, STA-MCA anastomosis with encephalo-duro-myo-artério-pericranio-synangiosis.44 They performed this surgery in 123 hemispheres in 75 patients. In addition to the STA-MCA bypass and indirect bypass for the middle cerebral artery territory, the medial frontal lobe was revascularized using the frontal pericranial flap through a medial frontal craniotomy. The overall incidence of mortality and morbidity was 0% and 5.7%, respectively, whereas the annual risk of cerebrovascular events was 0% in pediatric patients and 0.4% in adults. SPECT/PET studies revealed that CBF and its reactivity with acetazolamide markedly improved in both the middle cerebral artery and anterior cerebral artery territories. It is still not clear if the combined procedures improve outcome compared with direct or indirect bypasses alone.
There is increased understanding of the predictors for perioperative complications after revascularization surgery. Hyun et al analyzed the incidence and causes of perioperative ischemic complications in 165 patients with adult-onset MMD who underwent 246 revascularization procedures, mostly encephaloduroarteriosynangiosis. There were 19 (7.7%) perioperative ischemic complications, 4 with permanent neurological deficit and 15 with reversible deficits. Interestingly, 17 of the 19 complications occurred in the initially affected hemisphere regardless of the side of the surgery. Multiple ischemic episodes, presence of hypodensity on CT scan, and high signal intensity on diffusion-weighted MRI were significantly associated with perioperative ischemia complications. In our study, high postanastomotic middle cerebral artery flow significantly correlated with hemorrhage, transient neurological deficits, and perioperative ischemia.

An important consideration in the postoperative management of patients with MMD is the concept of hyperperfusion causing transient or permanent neurological deficits. This complication is well known in carotid endarterectomy and high-flow bypasses; however, it has been increasingly described in low-flow STA-MCA bypasses. Pathologically, it occurs due to a rapid increase in blood flow in chronically ischemic regions of the brain. In 1 study, the incidence of symptomatic hyperperfusion was estimated to be as high as 38.2% in patients with adult-onset MMD. In this syndrome, hemorrhage or infarct/diffusion lesions are not present in the MRI scan; however, patients have gross neurological deficits in form of aphasia, dysarthria, orofacial apraxia, or sensorimotor loss. It is important to recognize this syndrome because the treatment for it is the opposite of that of ischemia. A patient with postoperative ischemia despite a patent graft requires an increase in blood pressure and perfusion, whereas a patient with symptomatic hyperperfusion requires tight control and lowering of blood pressure. The diagnosis is usually made with SPECT scan following the STA-MCA bypass or sometimes with other perfusion studies such as CT perfusion and MR perfusion. Fukimura et al analyzed the incidence of symptomatic hyperperfusion in patients with MMD and performed SPECT 1 and 7 days after the bypass. Of 58 patients (80 hemispheres), 21 (22 sides [27.5%]) had symptomatic hyperperfusion and were subjected to intensive blood pressure control. Postoperative MRI showed patent bypass in every patient without infarct; however, SPECT showed increased perfusion in every patient. There were 17 patients with transient neurological deficits because of localized hyperperfusion mimicking ischemia, whereas 4 patients had severe headache with subarachnoid hemorrhage or intracerebral hemorrhage. The authors reported that tight control of blood pressure and use of a free radical scavenger relieved the symptoms in all patients. Adult-onset disease (P=0.013) and hemorrhagic-onset patients (P=0.027) had a significantly higher risk of hyperperfusion. Hayashi et al described their experience with postoperative worsening and the role of hyperperfusion in 22 pediatric patients. Frequent TIAs preoperatively were significantly associated with postoperative hyperperfusion and watershed shift. Hyperperfusion has also been correlated with delayed intracerebral hemorrhage. Kohama et al described the temporal changes of 3-T MRI/MR angiography during symptomatic hyperperfusion after STA-MCA bypass. The time-sequential 3-T MR angiography showed an intense high signal of the donor superficial temporal artery and dilated branches of the middle cerebral artery around the anastomosis during hyperperfusion. Thus, the recognition, diagnosis, and management of this important complication after STA-MCA bypass for MMD is important for achieving good patient outcomes. Although there is no definite proof regarding hyperperfusion causing neurological deficits, there is some Level 3 data supporting this hypothesis. It is important to note that these studies did not have a control arm, and hence additional studies are required to establish the role of hyperperfusion in MMD. Interestingly, some of the patients in our Stanford series who developed postoperative neurological deficits (transient or permanent) actually showed decreased perfusion on MR or xenon CT in some areas (ipsilateral or contralateral to the direct bypass), raising the possibility of competing flows between native collaterals and the bypass.

Angioplasty and/or stenting have been proposed as an alternative treatment for MMD. However, reported failure of these endovascular techniques suggests surgical revascularization is the preferred procedure. In rare cases when initial surgical revascularization is ineffective, repeat revascularization may achieve excellent outcomes.

Most of the outcome assessments after revascularization procedures have focused on cerebrovascular events, especially TIAs or strokes. However, there is increasing awareness about cognitive impairment related to MMD in both adult and pediatric patients. We analyzed the effect of MMD on neuropsychological functioning in 36 patients with MMD who were given presurgical neuropsychological assessments. Mean group performance was within normal limits for all measures assessed; however, executive functioning was highly impaired. Of the 36 patients, cognitive impairment was present in 11 (31%) and was moderate to severe in 4 (11%). Calviere et al analyzed the relationship between cognitive impairment and cerebral hemodynamic disturbances on perfusion MRI in 10 adults with MMD. Dysexecutive cognitive syndrome was found in 6 of the 10 patients and was related to impairment of blood flow in the frontal region as seen on perfusion imaging. Intellectual decline has also been seen in pediatric patients. Few studies have compared the neuropsychological outcomes before and after revascularization. Jefferson et al reported a case of adult-onset MMD in which the patient had normalization of dysexecutive functions after revascularization surgery. Larger studies will be required to determine if an STA-MCA or indirect bypass is able to improve the global CBF and the cognitive impairment due to chronic cerebrovascular ischemia.

Conclusions

Recent advances have been made in elucidating the genetics and pathophysiology, applying novel imaging modalities, innovative CBF measurements, surgical techniques, and outcome assessments of MMD. Further advances understanding the molecular pathways underlying development of the disease will likely lead to novel therapies. For now, surgical revascularization with direct, indirect, and combined methods remains the procedure of choice in patients with MMD.
Acknowledgments

We thank Cindy H. Samos for assistance with the manuscript.

Sources of Funding

This work was supported in part with funding from the Huber Family Moyamoya Fund, the William Randolph Hearst Foundation, and Bernard and Ronni Lacroute.

Disclosures

None.

References

Neurosurgical Advances in the Treatment of Moyamoya Disease
Paritosh Pandey and Gary K. Steinberg

Stroke. 2011;42:3304-3310; originally published online October 6, 2011;
doi: 10.1161/STROKEAHA.110.598565
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2011 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://stroke.ahajournals.org/content/42/11/3304

Data Supplement (unedited) at:
http://stroke.ahajournals.org/content/suppl/2012/08/08/STROKEAHA.110.598565.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/
Moyamoya disease is a rare disorder characterized by occlusion of the internal carotid arteries, resulting in an abnormal network of vessels (moyamoya). The pathogenesis of moyamoya disease is complex and involves various risk factors such as genetic predisposition, inflammation, and structural abnormalities.

Keywords: moyamoya disease, revascularization, STA-MCA bypass.
유전 및 면역생리

MMD의 병태생리는 잘 알려져 있지 않으나, 유전적, 후천적, 환경적 요인이 연관되어 있다. 최근의 연구에서는 MMD의 발병에서 유전적 측면에 초점을 맞추었다. MMD는 일본인과 아시아인에서 가장 많이 발생하며, 일본 연구에서는 7~12%의 가족 내 발생을 보인다. 또한 MMD는 다른 유전 질환과 관련되어 있기도 하여, 여기에는 신경섬유증(neurofibromatosis), 다운증후군(Down syndrome), 낙혈구혈관염(sickle cell anemia), 판코니혈관(Fanconi anemia) 및 그 외 혈소포

병증(hemoglobinoopathiy), 마르판증후군(Marfan syndrome), Ehler–Danlos증후군(Ehler–Danlos syndrome), Algillo syndrome, Majewski osteodystrophic primordial dwarfism Type II 등을 포함하는 교반질환군 등이 있다.

염색체 분석과 전장유전자 시편검(genomewide sequenc-

ing)에서 MMD와 연관된 유전자를 분석하였다. 3q24–26와 8q23가 전장유전자 분석을 통해, 6q24와 17q25가 염색체 분석을 통해 가정성 MMD에서 규명되었다. 최근 72억의 일본 인 MMD 환자 45만명의 대조군의 785,720 단일유전자 다양성(single nucleotide polymorphism)을 비교 분석한 전

장유전자 관련 연구에서 17q25–ter가 MMD와 강한 연관 관계를 보였다. 평균근 암프 엑센트(smooth muscle alpha actin, ACTA2)의 변이는 MMD의 발생과 초기 간장도말혈관(coronary artery disease)의 발병, 흉부도말혈관(thoracic aortic disease) 발생의 상황을 나타내게 됐다. RNF213 locus에서는 7개의 단일유전자 다양성을 포함하는 단일 단

상형 유전자(haplotype)가 MMD와 강하게 연관되어 있다. RNF213의 돌연변이 분석에서는 선조 돌연변이(founder mutation), p.R4859K를 보였으며, 가족성 MMD의 95%, 비가족성

MMD 증례의 73%, 대조군의 1.4%에서 나타났다. 그러므로, RNF213

는 MMD의 감수성 유전자(susceptibility gene)로 확인되었

다. 최근에 MTCP1/MTCP1IN에 BRC3를 제거하는 Xq28

결손이 X유전자 연관 가족성 모야모야증후군의 한 유형을 유발하는 것으로 보고되었다.

많은 성장 인자가 MMD와 연관이 있을 것으로 생각되고 있

다. 광범위한 결손환의 존재로 MMD가 정의되기 때문에, 많은 연구들이 혈관관 및 혈관형성인자에 초점을 맞추어 왔다. 혈

관내피성장인자(vascular endothelial growth factor)의 역

할에 대한 연구는 아직 결론이 내려지지 않았다. 뇌세척수, 두

개내 또는 축두동맥에서 동정된, MMD와 연관된 다른 성장인

자들은 혈관성장인자(transforming growth factor)-β, 염

기성 섬유포세포성장인자(basic fibroblast growth factor

-α, 간세포성장인자(hepatocyte growth factor), 혈소판

유래성장인자(platelet-derived growth factor)가 있다. 염

기성 섬유포세포성장인자에는 MMD에 특이적이거나 하나, 혈병의

다른 형태에는 특징적이지 않아서 MMD의 잠재적 표지자로 생

각될 수 있을 것 같다. 세포간부착분자(intercellular adhe-

sion molecule) 1, 혈관세포부착분자(vascular cell adhe-

sion molecule) 1과 같은 다양한 부착분자들도 MMD 환자의

뇌세척수에서 증가한 것으로 보고되었다. 루푸스항응고인자

(lupus anticoagulant), 프로스타글단신(prostaglandin) E2, 인터루킨(interleukin)–1b와 같은 다른 표지자들도 또한 폐관

근의 증상 또는 질병의 발생에서 그 역할에 대해 연구되어 있으

며, 염증 반응이나 감염에 대해서도 연구가 진행되어 왔다.

그리고 MMD 환자의 뇌세척수의 단백질(proteomic) 분

석을 사용한 새로운 생명과학 지표의 후보 물질을 규명하는 연

구들도 있다. 최근의 보고에서 MMD 환자의 뇌세척수에서 동정

된 두 가지의 중요한 생명과학 지표가 발표되었다. Surface-

enhanced laser desorption/ionization–time of flight–mass

spectroscopy technique를 이용하여 연구가 이루어졌으며, 정확한 대상 단백질은 동정되지 않았지만 연관된 분자량을 가진 6개의 단백질(oxytymodulin, urocrtin-2, β-defensin

133, antibacterial protein LL-37, liver–expressed antimici-

drobial peptide–2, proenkephalin–A)이 그 단백질이 될 것

으로 추정된다. Smith 등이 American Association of Neurologists Surgeons Scientific meeting에서 2008년에 MMD를 예측하는 소변 내 생물학적 지표의 폐암에 관한 초고

을 발표하였다. MMD 환자의 소변 표준에서 matrix metal-

loproteinase–2, matrix metalloproteinase–9, matrix

metalloproteinase–9/NGAL, vascular endothelial growth

factor가 대조군에 비해 유의하게 증가한 것이 관찰되었으며, 민감도 87.5%, 특이도 100%, 정확도 91.3%였다.(www.aans.

org/Media/Article.aspx?ArticleID=53823).

역학 및 자연 경과

MMD는 세계적으로 발생하나 일본인에서 가장 호발하며, 일

본인 인구 10만 명당 0.35~0.54만에 이르는 발생률을 보인

다. 반면, 유럽인에서는 일본인 발생률의 1/10에 해당하는 발

생률을 보이며, 캐나다의 몬타나주와 위성단주의 발생률은 인구 10

만 명당 0.086명이다. MMD는 다양한 저혈관관관로 발생

하는데, TIA, 혈관뇌졸증, 두개내출혈, 두통, 발작 등이 포함

된다. 일본 문헌에 따르면 소아(18세 미만)에서는 혈압 유형이

주로 나타나고 성인에서는 출혈 유형이 주로 나타난다고 한다.

그러나 본 연구자들의 경험으로는 성인 환자의 대부분은 혈

관성 증상으로 발현하였으며, 14.6%의 성인 환자만이 출혈로 인

한 증상을 보였다. 출혈은 소아에서는 극히 드물게 나타났다. 이

질병의 자연 경과는 잘 알려져 있지 않으며, 임상적으로

무중상 환자를 대상으로 한 연구는 거의 없다. Kuroda 등의

무중상성 모야모야 환자를 대상으로 국가적 조사를 시행하였

는데, 무중상 환자는 출혈성이나 혈관성 증상이 없었던 환자로

정의하였다. 40명의 환자가 참여하였으며, 추적 관찰 기간 동
안(평균 43.7개월) 34명은 수술을 받지 않았고 7명에서 증상이 발생하였는데, 3명은 TIA, 1명은 혈혈뇌증, 3명은 뇌출혈이었다. 뇌출혈의 위험률은 연간 3.2%였다. 수술적 치료를 받은 환자 6명에서는 주기적인 혈행성이 증상이 발생하지 않았다. Yamada 등은 보존적 치료를 받은 무증상 MMD 환자 28명을 보고하였는데, 이 중 2명은 출혈로 사망하였고 4명의 환자는 TIA를 경험하였다. 이와 같은 결과들에서, 무증상 MMD 환자 중 약 50%가 TIA를 경험하고 그 중 20%가 출혈의 위험을 감소시키는 위해 대기두형성 선행을 고려해야 한다. 그러나, 무증상 MMD 환자 모두 수술을 받어야 한다는 데 대해 합의된 바는 없다. 무증상 MMD 환자의 나쁜 예후와 주된 원인은 출혈에 대한 것인데, 지금 일본에서 수술적 혈관개선법이 증증 위험을 감소시키는 위해 대기두형성 선행을 고려해야 한다. Hallemeyer 등은 MMD 환자 34명에 대해 보고하였는데, 22명이 양측성, 12명이 일측성이었다. 내과적으로 치료된 환자에서는 처음 증상이 발생한 이후 동반의 뇌졸중 발생 위험률이 5년간 65%였는데, 수술적 치료를 받은 환자에서 수술 전후와 그 이후의 동반 뇌졸중 발생 위험률이 5년간 17%였다(P=0.02).30]

영상
60년 이상의 기간 동안, 혈행관조영술은 MMD의 진단 및 치료에 있어서 최고의 방법이다. MRI와 MR 혈행관조영술 또한 MMD의 진단 및 혈행관조영술은 이를 위해 사용하기에, MMD의 연구에 대한 현대의 연구들은 혈관박상성, 허혈 및 출혈성 질환 발생에 대한 예측 인자, 수술 후 혈행 및 합병증의 예측 인자에 대한 연구 중이 두고 있다.

단일방사능방출카류다단층촬영(single-phonem emission computed tomography, SPECT)은 오랫동안 뇌혈류(cerebral blood flow, CBF), 뇌혈관 반응성능의 측정에 사용되어 왔으며, 양전자방출다단층촬영(positron emission tomography, PET)의 사용이 증가하고 있다. PET는 다음과 같은 특정자(tracer)를 이용하여 혈행역학적 측정을 하기 때문에, C'O PET 는 뇌 혈행역학적 측정, H2O CBF, 18O는 산소주출(oxygen extraction fraction)과 대뇌의 산소 대사량의 측정에 사용한다. Narvaez 등은 전두엽과 두두엽, 두두엽 피질의 산소주출율이 MMD 환자에서 급격한 대조군에 비해 높다는 것을 관찰하였다. 그러나 국소 CBF의 감소 때문에 대부분의 대뇌 영역에서 국소적 대뇌 산소 대사량은 증가하는 경향을 보였다. 이들 환자에서는 또한 보통 적용하여 최대하므로 혈관이 확장되어 있어서 높은 혈행역학을 보였다. 혈관내의 최대한 확장되어 있고 자동 조절능이 손상되어 있을 때 역설적 도로 현상(steal phenomenon)이 관찰된다. Nariai 등은 TIA와 혈행성 증상을 보인 환자에서 산소주출량이 높다고 보고하였는데, 경련적인 손상을 보이거나 출혈이 있는 환자에서의 정상이었다. PET는 TIA를 보고 MMD에서 가장 신뢰할 만한 평가 도구 중 하나이다. MMD 환자 23명을 대상으로 한 연구에서 20개의 환자에서 MMD는 PET 점검시 CBF와 혈류 동력 시간 (transit time, TT)이 현저하게 증가한 것으로 보고하였으며, 이는 특히 신경계(intumia)에서 관찰되었다.45 고관절형상(higher-" capnia)에 대한 혈관원은 현저하게 손상되어 있었다. CBF, TT, 고관절형상에 대한 혈관원은 포함한 모든 단계가 수술 후에 호전되었다. 50이 되었기 때문에, 보존적인 성공적 수술 후에는 환자에게 적용할 수 있다. 50이 되었기 때문에, 보존적인 성공적 수술 후에는 환자에게 적용할 수 있다.

역동혈행물대조강지 억제기 MRI (dynamic susceptibility contrast-weighted bolus-tracking MRI), 동맥 스폰 표시 MRI (arterial spin labeling MRI), 혈행 산소 수치 의존 MRI (blood oxygen level-dependent MRI) 등 최근 MRI 기법이 혈행역학의 정량 분석을 위해 사용하고 있다. 동맥 스폰 표시 MRI는 MMD에서 SPECT 영상과 비교하였을 때 동맥 스폰 표시와 SPECT의 ACZ-IMP 수치가 강한 연구결과를 보여, 동맥 스폰 표시 MRI를 이용한 관동영상이 혈행 변화의 잠재적 위험 지역을 보여 주을 수 있을 것이라 생각된다. 혈행 산소 수치 의존 MRI를 이용하여 혈행박상성도 측정한 것의 혈행조영술에서 수상 Suzuki 점수(modified Suzuki score)로 혈행 공급의 장애 정도를 측정한 것과 직접적인 관계를 보였다. NOVA software를 이용한 정량적 MRI 혈행조영술은 두개 내 혈관을 통과하는 혈류를 보여 줄 수 있으며, 혈행조영술은 산소주출단막(subcortical superficial arterial)을 통과하는 혈류를 통과하는 혈류를 보여 줄 수 있다. 본 연구자의 임상 결과, xenon CT (acetazolamide 사용 또는 비용)이 CBF와 혈행학적 예상치를 평가하는 데 있어 과학적 해석을 가장 정확한 정량 방법이었다. 그러나, 아직 EDP의 허용범위를 해석하지 못하였고, 임상시험 실험자 근원의 승인을 받은 프로토콜에서도 사용 불가능하다. Xenon CT의 결과는 현재 분석 중이다.

수술
MMD 환자에서 내과적 치료와 외과적 치료를 비교한 미무하던 실험은 없지만, 외과적 혈관개선형이 유의한 효과적 치료법으로 받아들여지고 있다. 여러 전방적, 후방적 혈관군 연구에서, MMD 환자에서 혈관개선형성이 그 이후의 혈행상 증
상 발전을 예방할 수 있음을 보고하였다. 직접적 혈관재형성(반응촉두방란-대뇌뇌혈관 혈관재형성(STA-MCA 우회로 조직물), 혈관류 우회로조직물) 간접적 우회로조직물(뇌경질 맥동맥간접등화(STA-MCA 우회로 조직물, 경질맥동맥근육간접등화), 경질맥동맥근육간접등화, 경질맥동맥근육간접등화 및 경질맥동맥근육간접등화)은 혈관재형성에 contributive role을 한 연구가 있었고, 이를基础上에서, 특히 경질맥 동맥, 우회로, 대뇌 경질맥 순서대로 생각한 투여도 이 연구의 한 연구가 있었다.

STA-MCA 우회로조직물은 Kikuchi와 Karasawa에 의해 시행된 1973년 이후 MMD 환자에서 시행되었으며, 그 이후로 STA-MCA 우회로조직물은 직접 혈관재형성의 주요한 역할로, 많은 환자에서 ICG 비디오 혈관조영으로의 최종 결과는 더불어혈관조영이나 CT 혈관조영에 의해 입증될 수 있었다. Awano 등42는 13명의 MMD 환자 중 21명의 비MMD 환자에서 STA-MCA 우회로조직물의 우회로의 혈류를 평가하고 수술 후 치료를 위해 우회로조영에 의해 야기하는 혈류역학적 변화를 모니터링하였다. ICG 관류는 영향 발생은 최소한의 변환을 통해 평가하였으며, MMD 환 자에서의 ICG 관류 영역의 ICG 관류 영역은 비교하였으며, MMD 환자에서 ICG 관류 영역은 유의하게 높 었다. 즉, ICG는 관류 발생이 최소한의 변환을 통해 평가하였다. MMD 환자에서의 ICG 관류 영역 비MMD 환자와의 ICG 관류 영역이 비교되었다가, MMD 환자에서 ICG 관류 영역은 유의하게 높 었다. 수술 후 치료를 위해 ICG와 동일한 영역을 평가하였으며, MMD 환자에서의 ICG 관류 영역 비MMD 환자와의 ICG 관류 영역이 비교되었다가, MMD 환자에서 ICG 관류 영역은 유의하게 높 었다. 수술 후 치료를 위해 ICG와 동일한 영역을 평가하였으며, MMD 환자에서의 ICG 관류 영역 비MMD 환자와의 ICG 관류 영역이 비교되었다가, MMD 환자에서 ICG 관류 영역은 유의하게 높 었다. 수술 후 치료를 위해 ICG와 동일한 영역을 평가하였으며, MMD 환자에서의 ICG 관류 영역 비MMD 환자와의 ICG 관류 영역이 비교되었다가, MMD 환자에서 ICG 관류 영역은 유의하게 높 었다. 수술 후 치료를 위해 ICG와 동일한 영역을 평가하였으며, MMD 환자에서의 ICG 관류 영역 비MMD 환자와의 ICG 관류 영역이 비교되었다가, MMD 환자에서 ICG 관류 영역은 유의하게 높 었다. 수술 후 치료를 위해 ICG와 동일한 영역을 평가하였으며, MMD 환자에서의 ICG 관류 영역 비MMD 환자와의 ICG 관류 영역이 비교되었다가, MMD 환자에서 ICG 관류 영역은 유의하게 높 었다. 수술 후 치료를 위해 ICG와 동일한 영역을 평가하였으며, MMD 환자에서의 ICG 관류 영역 비MMD 환자와의 ICG 관류 영역이 비교되었다가, MMD 환자에서 ICG 관류 영역은 유의하게 높 었다. 수술 후 치료를 위해 ICG와 동일한 영역을 평가하였으며, MMD 환자에서의 ICG 관류 영역 비MMD 환자와의 ICG 관류 영역이 비교되었다가, MMD 환자에서 ICG 관류 영역은 유의하게 높 었다. 수술 후 치료를 위해 ICG와 동일한 영역을 평가하였으며, MMD 환자에서의 ICG 관류 영역 비MMD 환자와의 ICG 관류 영역이 비교하였다.
(thermal diffusion flow probe)를 이용하여 12명의 젊은 MMD 환자에서 우회로조직을 전후로 14개소의 대뇌피질 영역의 국소적 CBF를 측정하였다. 일시적으로 혈관을 폐쇄시켰을 때, 대뇌피질의 관류는 한 환자에서도 멈겨지지 않았다. 우회로 시행 직후 국소적 CBF가 증가하였고 8개 반구 중 4개소에서 증가한 상태가 유지되었다. 평균적으로 혈관을 일시적이고 2~5분간 폐쇄한 후에는 유의하게 증가하였다. 혈관 폐쇄 부위의 개통 정도의 대립표시자로 직접적 우회로조직을 중의 사용할 수 있다.

Nakagawa 등은 ST-DMCA 우회로조직 중의 뇌혈류 산소화를 감지하기 위한 visible light spectroscopy system을 개발하였다. 이 시스템은 수술 중에 뇌혈류 산소화를 연속적으로 모니터링할 수 있다. 만성 혈류가 17명의 환자에서, 대뇌 피질 동맥의 일시적인 폐쇄는 뇌혈류 산소화에 영향을 미치지 않았다. 5명의 환자에서 양전자단층활영과 뇌혈류혈색소(oxymyoglobin)와 대뇌피질 산소 포화도를 측정하였고, 알산소혈색소(deoxygenyhemoglobin) 포화도를 감지하였다. 이는 대뇌피질 혈류의 증가를 시사한다.

 많은 저자들이 안정적요, 그리고 침습성을 최소화하여 ST-DMCA 우회로조직을 시행하기 위해 가장 수술 계획 시스템(virtual surgical planning system)을 사용해 왔다. Nakagawa 등은 양전자단층활영과 뇌혈류 혈색소 뇌혈류혈색소의 측정을 위해 제작한 디자인된혈관혈관조영을 사용하였다. 이 방법을 이용하여 6명의 MMD 환자에 뇌혈류 혈색소를 측정하였다. 모든 환자에서 수술 전 계획 및 계획을 통해 수술이 시행되었다. 비슷한 방법으로 CT 혈관조영술과 MR 혈관조영술을 시도하였는데, 이 방법이 조금 더 낮은 잠재 손실을 덜지는 것과 더해져야 한다.

문헌상에 다양한 급격한 혈관정형성 방법이 기술되어 왔다. 급격한 속도의 뇌기능의 신경생물학적 이상과 같은 정상성과 이학적 이상을 유발하는 조직학적 및 뇌혈류학적 변화를 위해, 뇌혈류학적 조정이 필요하다는 기초 연구가 있었고, 이를 위해 이론적인 연구가 진행되어 왔다. 이들 방법들이 각각의 구조적인 문제를 해결할 수 있는 것이며, 이는 대뇌의 안정적 혈류 유지를 위해 중요하다. 이로써 다양한 방법들이 개발되어 왔다. Ishii 등은 혈관정형성을 증가시키기 위해 6명의 성인 환자에서 뇌혈류학적 급격한 조영술을 사용한 ST-DMCA 우회로조직을 기술하였고, 이 시험을 통해 효과적으로 신경생물학적 이상이 일어나는 것을 모든 환자에서 확인하였다. Kuroda 등은 뇌혈류학 적급격한 조영술을 사용한 ST-DMCA 우회로조직을 기술하였다. 이는 ST-DMCA 우회로조직의 11년간의 경험을 발표하였다. 그들은 환자 75명의 123개 반구에서 이 수술을 시행하였다. 중대뇌동맥 영역에 대한 ST-DMCA 우회로와 간접적 우회로에 대하여, 내측 전두 대뇌동맥(medial frontal craniotomy)을 통해 전두 두개막 피막을 사용하여 내측 전두혈관정형성을 시행하였다. 소아 환자에서 뇌혈류학적 방한의 연간 위험률은 0%, 성인은 0.4%였다. 전반적인 사망률과 위험률은 0%와 5.6%였다. SPECT/PEPT 검사는 CBF와 aceta-zolamide에 대한 반응이 중대뇌동맥 및 전두대뇌동맥 영역에 대해 구분할 수 있었다. 혈관정형성 및 간접적 방안을 통해, 뇌혈류학적 조영술을 이용하여 뇌혈류학적 이상을 진단하는 데 유용할 수 있다.
줄을 따라 설명 매번 58
화자(2개의 대뇌반구) 중 21명(22개(27.5%)의 반구)에
서 증상을 유발하는 과관류를 임시하였고, 집중적인 혈압 조절을
요하는 대상이 되었다. 수술 후 MRI에서 모든 화자에서 경색
없이 이행 확인을 통해 혈류가 잘 통화되었으나, SPECT 실험
결과 모든 화자에서 관류가 증가한 것이 확인되었다. 17명의
화자에서 국소적인 과관류로 혈압 증상과 유사한 일시적인 신
경학적 이상 증상을 보였으며, 4명의 화자에서 가미하흡출
(1) 또는 뇌내출혈과 함께 극단적 두통을 보였다. 저작자는 혈
압의 저하를 조절자 자유리간단계제(free radical scav-
enger)의 사용으로 모든 화자에서 증상이 소실되었다고 보고
하였다. 성인에서 발생한 MMD 화자(P<0.013)와 출혈로 발생한
화자(P<0.027)에서 과관류의 위험률이 유의하게 높았다.
Hayashi 등(9)은 22명의 소아 화자에서 수술 후의 약화 및 이
에 대한 과관류의 역할에 대한 그들의 경험을 기술하였다. 수
술 전에 TIA가 자주 발생했던 경우 수술 후 과관류나 본수명
의 이동(watershed shift)과 유의한 연관 관계를 보였다. 과
관류는 또한 지연성 뇌내출혈과 관련되어 있었다. Kohama 등
(10)은 STA-MCA 우회로조석술 이후 증상을 유발하는 과관류
중에 3-T MRI/MR 혈관조직학의 시간적 변화를 보고하였다.
Time—sequential 3-T MR 혈관조직학에서 과관류 동안 문
합 부위 주변으로 이식된 막수두동맥과 중두뇌동맥의 확장
된 분지들의 경화 고통이 관찰되었다. 그리하여, MMD 화자
의 STA-MCA 우회로조소실 이후, 이 중요한 항병증에 대한
인지, 진단, 처치가 화자의 예후를 좋게 하는 데 매우 중요
다. 아직 과관류가 신경학적 손상을 유발하는지에 대한 명확한
증거는 없지만, 이 가설을 뒷받침하는 Level 3 자료가 있다.
이들 연구들은 대조군이 없어서, MMD에서 과관류의 역할을
규명하는 데 추가 연구가 필요하다. 흔히피즘, 식욕, 수술 후에 일
시적이나, 연구적인 신경학적 손상을 나타내었던 Stanford
series의 일부 화자에서 MR이나 xenon CT에서 일부 영역(직
접적 우회로조소술을 시행한 부위의 동축이거나 반대측)에서
관류가 감소한 결과를 보이며, 이는 원래 가지고 있는 종수관계
시술에 의한 우회로 간의 경쟁적 혈류의 가능성을 제기한다.

스텐트 삽입을 포함하기도 하는 관협관성형술(angioplasty)은
MMD의 대안적 치료 방법으로 제안되어 왔다. 그러나, 혈관
중재적 치료의 실패 사례가 보고되기도 하여(11) 수술적 혈관재
형성술이 치료법으로 선호되고 있다. 초기 수술적 혈관재형성
에 효과가 없었던 일부 증례에서, 반복적인 혈관재형성술로 좋
은 결과를 얻는 경우도 있다.(12)

혈관재형성술 이후의 예후 측정의 대부분은 뇌혈관질환의
발생, 특히 TIA나 뇌졸중에 초점이 맞추어져 있다. 그러나, 성
인이나 소아 화자 모두에서 MMD와 연관된 인지장애에 대한
인식이 증가하고 있다.(13,14) 본 연구에서는 수술 전에 신경심리
검사를 시행한 36명의 MMD 화자에서 신경심리 기능에 대한
MMD의 영향을 분석하였다. 평균 45주 수행은 모든 측정 항
목에서 정상 범위 내였다. 그러나 실험 능력은 매우 손상되어
있었다. 36명의 화자에서 인지장애는 11명(31%)에서 나타났
고, 중등도에서 중증인 경우는 4명(11%)이었다. Calviere 등
(15)은 10명의 MMD 화자에서 인지장애와 뇌혈관질환의 관
계를 분석하였다. 집행기능저하증후군(executive cogni-
tive syndrome)이 10명 중 6명에서 발견되었으며, 관류영상
에서 보이는 전두엽 양엽의 혈류량 등에 연관되어 있었다. 지능
저하 또한 소아 화자에서 관찰되었다. 혈관재형성술 전후의 신
경심리검사 결과를 비교한 연구는 거의 없다.(16) Jefferson 등
은 혈관재형성술 이후 집행기능저하증은 성인 MMD
화자 증례를 보고한 바 있다. STA-MCA 또는 간접적 우회로
조소술이 전반적인 CFV와 만성 뇌혈관 혈류로 인한 인지장애
를 호전시킬 수 있는지를 결정하기 위해서는 조금 더 규모가
큰 연구가 필요하다.

결론

최근 MMD에 대해 유전학적, 병태생물학적 정보와 새로
운 영상 기법의 적용, 확장적인 CBV 측정법, 수술 기법의 발
달, 결과 분석 등에서 많은 발전이 이루어져 왔다. 질병의 발병
율을 의미하는 분자 이동 경로에 대한 이해가 이루어지면 새로
운 치료 방법이 제기될 수 있을 것이다. 지금까지는 직접적, 간
접적, 복합적 혈관재형성술이 MMD 화자의 최선의 치료 방법
이다.

Acknowledgments
We thank Cindy H. Samos for assistance with the manuscript.

Sources of Funding
This work was supported in part with funding from the Huber Family
Moyanoa Fund, the William Randolph Hearst Foundation, and
Bernard and Ronni Lacroute.

Disclosures
None.

