30-Day Mortality and Readmission After Hemorrhagic Stroke Among Medicare Beneficiaries in Joint Commission Primary Stroke Center-Certified and Noncertified Hospitals

Judith H. Lichtman, PhD; Sara B. Jones, MPH; Erica C. Leifheit-Limson, PhD; Yun Wang, PhD; Larry B. Goldstein, MD

Background and Purpose—Ischemic stroke patients treated at Joint Commission Primary Stroke Center (JC-PSC)-certified hospitals have better outcomes. Data reflecting the impact of JC-PSC status on outcomes after hemorrhagic stroke are limited. We determined whether 30-day mortality and readmission rates after hemorrhagic stroke differed for patients treated at JC-PSC–certified versus noncertified hospitals.

Methods—The study included all fee-for-service Medicare beneficiaries aged 65 years or older with a primary discharge diagnosis of subarachnoid hemorrhage (SAH) or intracerebral hemorrhage (ICH) in 2006. Covariate-adjusted logistic and Cox proportional hazards regression assessed the effect of care at a JC-PSC–certified hospital on 30-day mortality and readmission.

Results—There were 2305 SAH and 8708 ICH discharges from JC-PSC–certified hospitals and 3892 SAH and 22 564 ICH discharges from noncertified hospitals. Unadjusted in-hospital mortality (SAH: 27.5% versus 33.2%, \(P < 0.0001\); ICH: 27.9% versus 29.6%, \(P = 0.003\)) and 30-day mortality (SAH: 35.1% versus 44.0%, \(P < 0.0001\); ICH: 39.8% versus 42.4%, \(P < 0.0001\)) were lower in JC-PSC hospitals, but 30-day readmission rates were similar (SAH: 17.0% versus 17.0%, \(P = 0.97\); ICH: 16.0% versus 15.5%, \(P = 0.29\)). Risk-adjusted 30-day mortality was 34% lower (odds ratio, 0.66; 95% confidence interval, 0.58–0.76) after SAH and 14% lower (odds ratio, 0.86; 95% confidence interval, 0.80–0.92) after ICH for patients discharged from JC-PSC–certified hospitals. There was no difference in 30-day risk-adjusted readmission rates for SAH or ICH based on JC-PSC status.

Conclusions—Patients treated at JC-PSC–certified hospitals had lower risk-adjusted mortality rates for both SAH and ICH but similar 30-day readmission rates as compared with noncertified hospitals. (Stroke. 2011;42:3387-3391.)

Key Words: certified stroke center ■ hemorrhagic stroke ■ outcomes

The Joint Commission (JC) began certifying Primary Stroke Centers (PSC) in November 2003 based on the recommendations from the Brain Attack Coalition and the American Stroke Association,1–4 and hospital certification to optimize cardiovascular disease and stroke quality of care and outcomes was the focus of an American Heart Association Presidential Advisory statement.5 Studies assessing the impact of certification have generally focused on process of care measures for ischemic stroke patients.6–9 Only a few studies have evaluated the association between certification status and postdischarge outcomes, but they have been limited to patients hospitalized with ischemic stroke.10–13 Patients with hemorrhagic stroke (ie, subarachnoid hemorrhage [SAH] and parenchymal intracerebral hemorrhage [ICH]) may also benefit from care at a JC-PSC–certified hospital, but they have not been included in these studies. Differences in outcomes between JC-PSC–certified and noncertified hospitals may reflect variation in hospital-based quality of care. Based on evidence derived from ischemic stroke populations, we hypothesized that hemorrhagic stroke patients treated at JC-PSC–certified hospitals would have better short-term outcomes than patients treated at noncertified hospitals. To test this hypothesis, we compared the unadjusted and risk-adjusted 30-day mortality and readmission rates between elderly hemorrhagic stroke patients treated at JC-PSC–certified hospitals and patients treated at noncertified hospitals.

Subjects and Methods

Study Sample
The study population included all fee-for-service (FFS) Medicare beneficiaries 65 years of age or older hospitalized with a primary discharge diagnosis of SAH (International Classification of Dis-
Outcomes

Primary outcomes included 30-day all-cause mortality from the date of the index hemorrhagic stroke admission and 30-day all-cause hospital readmission, defined as hospital readmission within 30 days of the index hospital discharge. Mortality data were determined using the Medicare Enrollment Database. The accuracy of ascertainment of vital status using these data resources is high for this age group.14 Patients who were transferred from the admitting hospital to another acute care hospital and those who died during the index hospitalization were excluded from the readmission analyses.

Covariates

Patient comorbidities were identified using the primary and 9 secondary codes from claims submitted in the 12 months before the index stroke hospitalization to avoid misclassifying preexisting conditions as complications. A total of 29 independent candidate variables, including 2 demographic variables (age and sex), 8 cardiovascular and stroke history variables, and 19 other variables that identify additional comorbid conditions, were included from inpatient administrative claims data. Because there are >15 000 International Classification of Diseases, Ninth Revision, Clinical Modification codes, we used the hierarchical condition categories to group clinically coherent categories.15 The Hierarchical Condition Categories system was developed by physician and statistical consultants under a contract to the Centers for Medicare and Medicaid Services. The Hierarchical Condition Categories candidate variables for these analyses were derived from the secondary diagnosis and procedure codes from the index hospitalization and from hospitalizations over the previous 12 months (Supplemental Appendix; https://stroke.ahajournals.org). The majority of these variables were also included in the validated Centers for Medicare and Medicaid Services acute myocardial infarction and heart failure 30-day all-cause hospital-specific mortality and readmission measures.16–19

Statistical Analysis

Bivariate analyses were conducted to compare patient characteristics by JC-PSC certification status using t tests for continuous variables and χ² statistics for categorical variables. Hierarchical random effects logistic models were used to assess the difference in odds of mortality between patients admitted to JC-PSC–certified and noncertified hospitals while adjusting for patient clustering within...
hospitals. Random-effects Cox proportional hazards models with censoring for deaths were used to compare readmission rates by JC-PSC certification status while adjusting for patient clustering within hospitals. Models were also adjusted for patient characteristics and medical history. All analyses were conducted using SAS version 9.2 (SAS Institute). Hierarchical random-effects logistic models and random-effects Cox proportional hazards models were fitted using the PROC GLIMMIX and PROC NLMIXED procedures, respectively.

Results

A total of 6197 SAH and 31,272 ICH stroke discharges were identified in 2006. Thirty-seven percent of SAH discharges (N=2305) and 28% of ICH discharges (N=8708) were from JC-PSC–certified hospitals (Table). SAH and ICH patients treated at JC-PSC–certified hospitals were younger; a higher percentage of women than men were discharged with ICH from JC-PSC–certified hospitals (P<0.0001 for all comparisons).

Unadjusted in-hospital mortality was lower in JC-PSC–certified hospitals as compared with noncertified hospitals both for SAH (27.5% versus 33.2%; P<0.0001) and ICH (27.9% versus 29.6%; P=0.003; Figure 1). The unadjusted 30-day mortality outcomes were also lower for patients treated at JC-PSC–certified hospitals than those treated at noncertified hospitals (SAH: 35.1% versus 44.0%, P<0.0001; ICH: 39.8% versus 42.4%, P<0.0001), but the unadjusted risk of 30-day hospital readmission was similar for patients treated at centers with and without certification (SAH: 17.0% versus 17.0%, P=0.97; ICH: 16.0% versus 15.5%, P=0.29).

In risk-adjusted analyses (Figure 2), the relative risk of death within 30 days of hospital admission was 34% lower after SAH (odds ratio, 0.66; 95% confidence interval, 0.58–0.76) and 14% lower after ICH (odds ratio, 0.86; 95% confidence interval, 0.80–0.92) for patients discharged from JC-PSC–certified hospitals compared with those discharged from noncertified hospitals. There was no difference in 30-day risk-adjusted readmission rates for SAH (hazard ratio, 0.97; 95% confidence interval, 0.80–1.17) or ICH (hazard ratio, 1.02; 95% confidence interval, 0.93–1.12) based on JC-PSC certification status.

Discussion

In this study of elderly FFS Medicare beneficiaries, more than one-third of SAH and one-quarter of ICH patients were discharged from JC-PSC–certified hospitals. Patients treated at JC-PSC–certified hospitals had lower risk-adjusted 30-day mortality than patients treated at noncertified hospitals, but there was no difference in 30-day readmission rates between JC-PSC–certified and noncertified hospitals.

Hospital certification is recognized as an important strategy for optimizing cardiovascular disease and stroke quality of care to help meet the goal of the American Heart Association/American Stroke Association to improve the cardiovascular health of all Americans by 20% by the year 2020.5,20 Certification programs such as the JC-PSC program, which is based on the recommendations of the Brain Attack Coalition and American Stroke Association, have the potential to set evidence-based standards and identify hospitals delivering appropriate high-quality care to their stroke patients.

Few studies have examined the association between stroke center certification and patient outcomes, and these have focused on ischemic stroke patients. A Finnish study reported that ischemic stroke patients treated in stroke centers had lower 1-year case fatality and reduced institutional care compared with patients treated at general hospitals.12 A study in New York reported a modestly lower 30-day all-cause mortality rate for ischemic stroke patients treated at designated stroke centers as compared with patients treated at other hospitals.10 Neither study adjusted for hospital performance prior to certification.

Although JC-PSC certification primarily focuses on the care of ischemic stroke patients, many of the ischemic stroke care measures are also applicable to patients with hemorrhagic stroke, and Joint Commission surveyors review the records of patients with hemorrhagic stroke as part of their on-site visits. The effect seen in the current analyses for hemorrhagic patients may reflect this overlap and review, or indicate that JC-PSC certification is a marker of hospitals that are dedicated to giving high-quality stroke care irrespective of stroke subtype.

The current analyses provide evidence that elderly hemorrhagic stroke patients cared for at JC-PSC-certified hospitals have lower 30-day mortality as compared with patients at noncertified hospitals, but it is unclear whether the certification itself led to these better outcomes or if the certification program identified hospitals that had already been following...
best practices. For example, a study of Medicare beneficiaries with ischemic stroke found hospitals that received certification within the first few years of the program had better patient outcomes well before the certification program began.11 A second study found substantial overlap of hospital-level outcomes after ischemic stroke for JC-PSC–certified and noncertified hospitals.13 The former study found that JC-PSC–certified hospitals were larger, more likely to be teaching hospitals, and were generally located in more populous areas than noncertified hospitals.11 Similarly, a study from Finland also reported that stroke centers were larger and treated more patients each year than general hospitals.12 Participation in quality-improvement efforts and registries that focus on health care practices improve adherence with recommended therapies.21–24 Studies evaluating the impact of the American Heart Association Get With The Guidelines–Stroke found that the duration of participation in the program was associated with better adherence to stroke performance measures for both ischemic and hemorrhagic stroke patients.25–26 Participating hospitals with larger bed capacity, higher annual stroke volume, and teaching status had greater improvements. Because JC-PSC–certified and noncertified hospitals systematically differ, and because the former are more likely to participate in other stroke-related quality-improvement programs, it may be challenging to establish a causal relationship between JC-PSC certification and improvement in patient outcomes.27

The present study has a number of limitations. The index hemorrhagic stroke cases and complications were ascertained using International Classification of Diseases, Ninth Revision, Clinical Modification codes and were restricted to hospitalized events. Positive predictive values for selected primary discharge codes for SAH and ICH, however, are high,28,29 and there is no reason to expect differences in data coding across institutions by JC-PSC certification status. Medicare inpatient data do not contain information on medication utilization or decisions to provide palliative care or to withdraw care; therefore, we were unable to determine whether potential differences in the receipt or termination of recommended therapies in hospitals influenced patient outcomes. Additional factors affecting hemorrhagic stroke outcomes, including stroke severity, are not reflected in administrative records.30 Future studies should include an assessment of stroke severity to adjust for potential differences in patient populations. Although studies show that the benefits of organized stroke care do not differ by age group or stroke severity,31 there may be variations in referral patterns to facilities, potentially leading to more severe patients being diverted to a JC-PSC. Because our analyses are limited to FFS Medicare beneficiaries aged 65 years or older, the results may not be applicable to those without FFS Medicare coverage or to stroke patients younger than age 65 years treated at these hospitals. Our results, however, do reflect the experiences of all elderly FFS SAH and ICH stroke patients hospitalized within the United States. Finally, our study focused on short-term mortality and readmission outcomes and could not consider other important dimensions of patient outcomes such as functional status or quality of life.

Elderly patients with SAH and ICH treated at JC-PSC–certified hospitals had better short-term mortality outcomes than patients treated at noncertified hospitals, but there was no difference in 30-day hospital readmission rates. It is uncertain whether the certification itself led to improved outcomes or whether other factors, such as self-selection to become a JC-PSC, may play a role. Future studies examining the relationship of JC-PSC certification on outcomes should adjust for differences in patient outcomes that may have existed before certification.

Sources of Funding

The Centers for Medicare and Medicaid Services reviewed and approved the use of its data for this work. This approval is based on data use only and does not represent a Centers for Medicare and Medicaid Services endorsement of or comment on the manuscript content. The project described was supported by grant number...
R01NS043322 from the National Institute of Neurological Disorders and Stroke. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Neurological Disorders and Stroke or the National Institutes of Health.

Disclosures

None.

References

30-Day Mortality and Readmission After Hemorrhagic Stroke Among Medicare Beneficiaries in Joint Commission Primary Stroke Center-Certified and Noncertified Hospitals
Judith H. Lichtman, Sara B. Jones, Erica C. Leifheit-Limson, Yun Wang and Larry B. Goldstein

Stroke. 2011;42:3387-3391; originally published online October 27, 2011;
doi: 10.1161/STROKEAHA.111.622613

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/42/12/3387

Data Supplement (unedited) at:
http://stroke.ahajournals.org/content/suppl/2011/11/01/STROKEAHA.111.622613.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org/subscriptions/
ONLINE SUPPLEMENT
Supplementary Tables
S 1. Definition of Risk-Adjustment Variables Used in Statistical Models
S1. Definition of Risk-Adjustment Variables Used in Statistical Models

<table>
<thead>
<tr>
<th>Risk-Adjustment Variable</th>
<th>HCC Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>History of heart failure</td>
<td>HCC 80</td>
</tr>
<tr>
<td>History of acute myocardial infarction</td>
<td>HCC 81</td>
</tr>
<tr>
<td>Unstable angina</td>
<td>HCC 82</td>
</tr>
<tr>
<td>Chronic atherosclerosis</td>
<td>HCC 83-84</td>
</tr>
<tr>
<td>Cardiopulmonary-respiratory failure and shock</td>
<td>HCC 79</td>
</tr>
<tr>
<td>Hypertension</td>
<td>HCC 89, 91</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>HCC 97-99, 103</td>
</tr>
<tr>
<td>Renal failure</td>
<td>HCC 131</td>
</tr>
<tr>
<td>Chronic obstructive pulmonary disease</td>
<td>HCC 108</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>HCC 111-113</td>
</tr>
<tr>
<td>Diabetes</td>
<td>HCC 15-20, 120</td>
</tr>
<tr>
<td>Protein-calorie malnutrition</td>
<td>HCC 21</td>
</tr>
<tr>
<td>Dementia</td>
<td>HCC 49-50</td>
</tr>
<tr>
<td>Hemiplegia, paraplegia, paralysis, functional disability</td>
<td>HCC 100-102, 68-69, 177-178</td>
</tr>
<tr>
<td>Peripheral vascular disease</td>
<td>HCC 104-105</td>
</tr>
<tr>
<td>Metastatic cancer</td>
<td>HCC 7-8</td>
</tr>
<tr>
<td>Trauma in last year</td>
<td>HCC 154-156, 158-162</td>
</tr>
<tr>
<td>Major psychiatric disorders</td>
<td>HCC 54-56</td>
</tr>
<tr>
<td>Chronic liver disease</td>
<td>HCC 25-27</td>
</tr>
<tr>
<td>Severe hematological</td>
<td>HCC 44</td>
</tr>
<tr>
<td>Depression</td>
<td>HCC 58</td>
</tr>
<tr>
<td>Parkinson's or Huntington's disease</td>
<td>HCC 73</td>
</tr>
<tr>
<td>Anemia</td>
<td>HCC 47</td>
</tr>
<tr>
<td>Seizure disorder</td>
<td>HCC 74</td>
</tr>
<tr>
<td>Asthma</td>
<td>HCC 110</td>
</tr>
<tr>
<td>Chronic fibrosis</td>
<td>HCC 109</td>
</tr>
<tr>
<td>Vertebral fractures</td>
<td>HCC 157</td>
</tr>
</tbody>
</table>

Abbreviations: HCC = hierarchical condition categories