Adverse Effects of Bone Marrow Stromal Cell Treatment of Stroke in Diabetic Rats

Jieli Chen, MD; Xinchun Ye, MD; Tao Yan, MD; Chunling Zhang, BS; Xiao-Ping Yang, MD, PhD; Xu Cui, PhD; Yishen Cui, BS; Alex Zacharek, MS; Cynthia Roberts, BS; Xinfeng Liu, MD, PhD; Xiangguo Dai, PhD; Mei Lu, PhD; Michael Chopp, PhD

Background and Purpose—Cell therapy with bone marrow stromal cells (BMSCs) improves functional recovery after stroke in nondiabetic rats. However, its effect on diabetics with stroke is unknown. This study investigated the effect of BMSCs on stroke outcome in Type 1 diabetic (T1DM) rats.

Methods—T1DM was induced in adult male Wistar rats by injecting streptozotocin. Nondiabetic and T1DM rats were subjected to 2 hours of middle cerebral artery occlusion (MCAO), treated with or without BMSCs (3×10^6) at 24 hours after MCAO, and monitored for 14 days.

Results—Functional benefit was not detected in T1DM-MCAO treated with BMSC rats compared with corresponding T1DM-MCAO controls. BMSC treatment in T1DM-MCAO rats had increased mortality, blood–brain barrier leakage, brain hemorrhage, and angiogenesis. Internal carotid artery neointimal formation and cerebral arteriole narrowing/occlusion were also observed in T1DM-MCAO+BMSCs rats compared with T1DM-MCAO controls (P<0.05), but not in nondiabetic stroke rats. We further studied the underlying mechanisms responsible for BMSC-induced blood–brain barrier leakage and accelerated vascular damage in T1DM-MCAO rats. We found that the expression of angiogenin (an angiogenic factor) and ED1 (a marker for macrophages) was significantly increased in the T1DM-MCAO+BMSC rats in the ischemic brain and internal carotid artery compared with nontreated T1DM-MCAO rats, but not in nondiabetic stroke rats.

Conclusions—BMSC therapy in T1DM-MCAO rats does not improve functional outcome. On the contrary, it increases blood–brain barrier leakage and cerebral artery neointimal formation, and arteriosclerosis, which possibly is due to increased expression of angiogenin. Thus, BMSC treatment starting 24 hours after MCAO may not be beneficial for diabetic subjects with stroke. (Stroke. 2011;42:3551-3558.)

Key Words: angiogenin ▪ arteriosclerosis ▪ bone marrow stromal cell ▪ stroke ▪ Type 1 diabetic

Diabetes instigates a cascade of events leading to vascular endothelial cell dysfunction, increased vascular permeability, and poor recovery after ischemic stroke. Tissue plasminogen activator treatment of stroke attenuates infarct growth in nondiabetics but not in diabetics and induces an increased incidence of intracerebral hemorrhage and unfavorable outcomes. Therefore, response to treatment of stroke in patients with diabetes may differ from that in the nondiabetic population.

Bone marrow stromal cell (BMSC) therapy is a promising approach to facilitate regeneration and functional recovery after stroke in nondiabetics. BMSC treatment stimulates angiogenesis, vascular stabilization, and promotes functional outcome after stroke in nondiabetic rats. BMSCs exhibit a strong adhesive capacity and contribute to vascular remodeling of diseased vessels, but also induce intimal hyperplasia. Diabetic animals have vascular injury and are prone to arteriosclerosis. The effect of BMSC on stroke outcome and vascular lesions in diabetic subjects has not been investigated.

Angiogenin is a member of the ribonuclease superfamily and promotes degradation of basement membrane and extracellular matrix, allowing endothelial cells to proliferate, penetrate, and migrate into the perivascular tissue. Plasma angiogenin levels are related to heart failure severity and have been implicated in the pathogenesis myocardial ischemia and associated with inflammation and atherosclerosis. However, the role of angiogenin is not clear in angiogenic response to ischemic stroke, particularly in animals with...
diabetes subjected to stroke. We address the clinically relevant question whether BMSC treatment of stroke in streptozotocin-induced Type 1 diabetes (T1DM) rats affects functional outcome and angiogenin expression.

Materials and Methods

Adult male Wistar rats (225–250 g; Jackson Laboratory, Wilmington, MA) were used to induce T1DM by a single intraperitoneal injection of streptozotocin (Sigma Chemical Co, St Louis, MO; 60 mg/kg).1 The fasting blood glucose was tested by using a glucose analyzer (Accu-Chek Compact System; Roche Diagnostics, Indianapolis, IN). Diabetes was defined by fasting blood glucose >300 mg/dL. Animals were used 2 weeks after diabetes induction.

BMSC Culture

Normal male Wistar rat (n=6/group) bone marrow was isolated and cultured in α-Dulbecco’s modified Eagle’s medium with 20% fetal bovine serum and 1% penicillin streptomycin. Cells were excluded if modified neurological severity score was 13 before treatment.

Animal Middle Cerebral Artery Occlusion Model and Experiment Group

Nondiabetic wild-type (WT; Jackson Laboratory, Wilmington, MA) rats and T1DM rats were initially anesthetized with 3.5% halothane (Carpinteria, CA), α-smooth muscle actin (a SMC marker, mouse monoclonal IgG 1:800; Dako), angiogenin (monoclonal, 1:500; Abcam, Cambridge, MA), a mouse mAb against rat microglia/macrophages (ED1, monoclonal, 1:30; AbD Serotec Raleigh, NC). Control experiments consisted of staining brain coronal tissue sections as outlined previously, but nonimmune serum was substituted for the primary antibody. The immunostaining analysis was performed by an investigator blinded to the experimental groups.

Angiogenin and ED1 Expression Quantification

Each slide containing 8 fields of view from the ischemic border zone were digitized (Olympus BX40) interfaced with a MCID image analysis system (Imaging Research, St Catharines, Canada). The ischemic border zone is defined as the area surrounding the lesion. The data from 5 sections and 8 regions within each section were averaged to obtain a single value for 1 animal and presented as percentage of positive area of immunoreactive cells, respectively. Angiogenin and ED1 expression in the internal carotid artery was measured and presented as percent of total artery wall area.

Vascular Density Measurement

The vascular density of the von Willebrand factor-immunostained coronal section was digitized and counted in the ischemic border zone through the MCID computer imaging analysis system.

Alpha-Smooth Muscle Actin-Positive Coated Vessel Density, Artery Wall Thickness, and Occlusion Measurement

The density of α-smooth muscle actin-stained vessels was analyzed with regard to small and large vessels (>10 μm diameter) in the ischemic border zone. The 10 largest arterial wall thicknesses were measured. The numbers of α-smooth muscle actin-immunoreactive vessels were counted. The total number of α-smooth muscle actin-positive vessels per millimeter squared is presented. In addition, the total number of occluded arteries in the ipsilateral hemisphere was counted.

Trichrome Immunostaining and Measurement

Using Gomori One-Step Trichrome Stain (Sigma, St Louis, MO), brain sections were postfixed in Bouin fixative. Nuclei are stained with Weigert hematoxylin and then stained in Gomori trichrome stain followed by a 0.5% acetic water rinse. Connective tissue and collagen are stained blue, nuclei are stained dark red/purple, and cytoplasm is stained red/pink. Artery intima, media, and artery diameter (minimum diameter) were measured in the ipsilateral and contralateral internal carotid artery.

Blood–Brain Barrier Leakage Measurement

WT-MCAO rats and T1DM-MCAO rats (n=5/group) were treated with or without BMSCs (3×10⁶). Five days after MCAO, 2% Evans blue dye was injected intravenously at 2 hours before euthanasia. Evans blue dye fluorescence intensity was measured using a microplate fluorescence reader (excitation 620 nm and emission 680 nm).12
Collagen Deposition
Using a modified picrosirius red staining, sections were postfixed in Bouins fluid, followed by iron hematoxylin stain, then stained with 0.1% picrosirius red. Collagen deposition was expressed as ratio of interstitial and perivascular collagen area to luminal area of the internal carotid artery.

Double Immunohistochemical Staining
Fluorescein isothiocyanate (Calbiochem) and cyanine-5.18 (Jackson Immunoresearch) were used for double-label immunoreactivity. Each coronal section was first treated with the primary antiangiogenin antibody with cyanine-5.18 and then followed by ED1 with fluorescein isothiocyanate. Control experiments consisted of staining brain coronal tissue sections as outlined previously but use nonimmune serum for the primary antibody.

Statistical Analysis
One-way analysis of variance was used for the evaluation of functional outcome and histology, respectively. A “contract/estimate” statement was used to test the group difference. Spearman partial correlation coefficient analysis was used for the correlation between functional tests and histology evaluations at Day 14 after MCAO. If an overall treatment group effect was detected at $P<0.05$, pairwise comparisons were made. All data are presented as mean±SE.

Results
BMSC Increased Early Mortality Without Improvement in Lesion Volume and Functional Outcome in T1DM-MCAO Rats
There were no significant differences in blood glucose level between T1DM-MCAO control (before MCAO: 409.1±46.9 mg/dL; before euthanasia: 413.3±51.4 mg/dL) and the BMSC treatment group (before MCAO: 441.7±34.5 mg/dL; before euthanasia: 417.7±41.2 mg/dL; $P>0.05$).

The mortality rate was increased in (1 WT-MCAO control, 1 WT-MCAO+BMSC-treatment, 4 T1DM-MCAO control, and 6 T1DM-MCAO+BMSC treatment) the T1DM-MCAO+BMSC treatment group (6 of 12 [50%]) compared with T1DM-MCAO controls (4 of 13 [31%]). Previous studies have found that BMSC treatment of stroke significantly improved functional outcome in nondiabetic rats. However, BMSC treatment of stroke in T1DM rats did not improve functional outcome (Figure 1A–C) and lesion volume (Figure 1D).

BMSC Treatment Increases Blood–Brain Barrier Leakage, Brain Hemorrhage, and Vascular Density in T1DM Rats
T1DM-MCAO significantly increased blood–brain barrier (BBB) leakage (Figure 2A), brain hemorrhage (Figure 2B), and vascular density (Figure 2C) compared with WT-MCAO rats ($P<0.05$). BMSC treatment in WT-MCAO rats did not increase brain hemorrhage but significantly decreased BBB leakage (Figure 2A) and increased vascular density (Figure 2C, $P<0.05$) compared with WT-MCAO rats. However, BMSC treatment in T1DM-MCAO rats significantly increased BBB leakage (Figure 2A), brain hemorrhage (Figure 2B), and increased vascular density (Figure 2C, $P<0.05$) compared with T1DM-MCAO rats.

BMSC Treatment Increases Cerebral Artery Wall Thickening and Occlusion in T1DM-MCAO Rats
Both of T1DM-MCAO and T1DM-MCAO+BMSCs groups significantly increased arterial density (Figure 3B), cerebral artery wall thickening (Figure 3C), and arterial occlusion (Figure 3D) compared with WT-MCAO rats ($P<0.05$). BMSC treatment in T1DM-MCAO rats also significantly
increased cerebral artery wall thickening (Figure 3C) compared with T1DM-MCAO controls.

BMSC Treatment Accelerates Intracranial Artery Intimae Thickness and Collagen Deposition in T1DM-MCAO Rats

To test whether BMSC treatment induces arteriosclerosis in T1DM rats, trichrome staining was used. BMSC treatment in T1DM-MCAO rats significantly increased intimae thickness (Figure 4A) and collagen deposition (Figure 4C, \(P=0.05 \)) and decreased artery diameter (Figure 4B) compared with T1DM-MCAO or WT-MCAO rats (\(P<0.05 \)) in the ipsilateral internal carotid artery (ICA; Figure 4A–B).

BMSC Treatment Increases Angiogenin and ED1 Expression in the T1DM-MCAO Rats

To obtain insight into the possible underlying mechanisms of BMSC-induced BBB leakage, brain hemorrhage and intimae

Figure 2. BMSC treatment in T1DM-MCAO rats significantly increases BBB leakage, brain hemorrhage volume, and vascular density in the ischemic brain. A, Evans blue dye assay for BBB leakage (n=5/group). B–C, Brain hemorrhage (B) and vascular density (C) measurement. Scale bar in B and C=0.1 mm. BMSC indicates bone marrow stromal cell; T1DM, Type 1 diabetes mellitus; MCAO, middle cerebral artery occlusion; BBB, blood–brain barrier.

Figure 3. BMSC treatment in T1DM-MCAO rats significantly increases cerebral artery wall thickness and occlusion artery number. A, \(\alpha \)-SMA staining. B–D, Quantitative data for artery density (B), cerebral artery wall thickness (C), and cerebral artery occlusion (D) in the ischemic brain. Scale bar in A=0.1 mm. BMSC indicates bone marrow stromal cell; T1DM, Type 1 diabetes mellitus; MCAO, middle cerebral artery occlusion; \(\alpha \)-SMA, \(\alpha \)-smooth muscle actin.
thickness in T1DM-MCAO rats, angiogenin, and ED1 expression was measured. T1DM-MCAO+BMSCs significantly increased angiogenin expression in the ischemic border zone \((P<0.05, \text{Figure 5A})\) and was marginally increased angiogenin \((P=0.07, \text{Figure 5B})\) and ED1 \((P<0.05, \text{Figure 5C})\) expression in the ICA compared with T1DM-MCAO controls.

However, WT-MCAO+BMSC rats did not increase intima thickness, artery diameter, collagen deposition, and ED1 and angiogenin expression in the ischemic brain and in the ICA compared with WT-MCAO control \((P>0.05)\).

There were no significant differences between WT sham and T1DM sham controls in vascular density, arterial density, angiogenin, and ED1 expression and ICA intima thickness (Supplemental Figure I; http://stroke.ahajournals.org). However, the numbers of occluded cerebral arterioles were marginally increased \((P=0.06)\) in T1DM sham rats compared with WT sham rats.

Angiogenin Is Correlated With ED1 and Arteriosclerosis in the T1DM-MCAO Rats

The expression of angiogenin colocalized with ED1 expression in the ischemic brain (Figure 6A). The increased angiogenin was significantly correlated with ED1 expression (Figure 6B) and cerebral artery thickness (Figure 6C).

Discussion

BMSC Treatment Increases BBB Leakage, Brain Hemorrhage, and Fails to Improve Functional Outcome After Stroke in T1DM-MCAO Rats

The vascular changes after stroke in nondiabetic and T1DM-MCAO rats may differ. Diabetic stroke animals exhibit...
increased angiogenic responses and BBB leakage and decreased tight-junction protein expression. Early BBB disruption contributes to intracerebral hemorrhage. Intracerebral hemorrhagic transformation is a multifactorial phenomenon in which ischemic brain tissue converts into a hemorrhagic lesion with blood-vessel leakage and extravasation, thereby exacerbating brain injury. These characteristics of vascular response to stroke may be responsible for the adverse effect of BMSC treatment observed in T1DM-MCAO rats. We found that BMSC treatment of stroke in T1DM-MCAO upregulated vascular and artery density and also increased brain hemorrhage, BBB leakage, but did not improve functional outcome. Increased BBB leakage and brain hemorrhage may contribute to the early and increased mortality in T1DM-MCAO animals. T1DM-MCAO/BMSCs also induced arteriosclerosis, marked by cerebral arterial intimae thickening and arteriole occlusion, which may negatively impact the functional recovery after stroke. Whereas in

Figure 5. T1DM-MCAO rats increases angiogenin expression and BMSC treatment in T1DM-MCAO rats significantly enhances angiogenin and ED1 expression. A–B, Angiogenin immunostaining and quantitative data in IBZ (A) and in the ICA (B). C, ED1 immunostaining and quantitative data in ICA. Scale bar in A–C = 0.1 mm. T1DM indicates Type 1 diabetes mellitus; MCAO, middle cerebral artery occlusion; BMSC, bone marrow stromal cell; IBZ, ischemic border zone; ICA, internal carotid artery.

Figure 6. Angiogenin expression is colocalized with ED1. Angiogenin expression significantly correlated with ED1 expression and cerebral artery thickness in the ischemic brain. A, Angiogenin and ED1 double immunostaining in the ischemic brain. B, Correlation analysis of angiogenin and ED1. C, Correlation analysis of angiogenin and cerebral artery thickness.
nondiabetic rats, treatment of stroke with BMSCs not only increased vascular density and vascular stabilization and decreased BBB leakage, but also improved functional outcome after stroke.5,15 This is the first report demonstrating that BMSC therapy has an adverse effect on vascular remodeling and functional outcome in T1DM-MCAO rats. Therefore, the beneficial effect of BMSCs administered at 24 hours after stroke in the nondiabetic population does not translate to the diabetic population.

BMSC Treatment Increases Cerebral Arteriosclerosis After Stroke in T1DM-MCAO Rats

The mechanism responsible for the adverse vascular response or arteriosclerosis to BMSC therapy in T1DM-MCAO is not known. Carotid intima-media thickness is the early sign of atherosclerosis and macrovascular diseases.16 BMSC treatment in T1DM-MCAO rats significantly increased intima-media thickness and intracerebral arteriole occlusion and decreased the diameter of the ICA compared with T1DM-MCAO control. ED1 expression significantly increased in the ICA in T1DM-MCAO rats treated with BMSCs. Subendothelial invasion by leukocytes is a characteristic of neointimal thickening in arteriosclerosis and in the response of a vessel to mechanical damage, and neutrophils also contribute to neointimal thickening in an arterial autograft model.17 Thus, the enhanced inflammatory response to stroke may promote the development of arteriosclerosis in T1DM-MCAO+BMSC treatment.

Arteriosclerosis and arterial stiffness are both risk factors associated with the occurrence of stroke.18 Abnormal collagen turnover and increased fibrosis are the common pathophysiological link with increased arterial stiffness. Diabetes induces artery stiffness and is associated with the changes in collagen biochemistry of the blood vessel.19 Collagen deposition was marginally increased in T1DM-MCAO+BMSC rats. BMSC-enhanced fibrotic response may accelerate arteriosclerosis and intracerebral artery damage in T1DM-MCAO rats.

Angiogenin May Contribute to BMSC-Induced Angiogenesis, BBB Leakage, and Arteriosclerosis in T1DM-MCAO Rats

Angiogenin is a potent angiogenic growth factor, which degrades the basement membrane, thereby facilitating cell invasion and migration.20 Severity of microvascular complications is associated with markedly increased serum of angiogenin levels.21 Angiogenin levels are increased in nondiabetic youngsters.22 BMSCs behave as small biochemical and molecular “factories,” producing many cytokines and large amounts of angiogenic, antiapoptotic, and mitogenic factors.24 T1DM-MCAO rats had significantly increased angiogenin levels compared with WT-MCAO control and T1DM-MCAO+BMSC rats significantly enhanced angiogenin expression in the ischemic brain. The increased angiogenin expression is significantly correlated with ED1 expression and cerebral artery thickness, which is in agreement with data that angiogenin expression is significantly correlated with microvessel counts and focal macrophage infiltration.25

Limitations and Caveats

There are a number of limitations and caveats in the present study. In this initial study, we treated rats 2 weeks postinduction of diabetes with BMSC. For enhanced clinical relevance, additional studies are warranted in rats with long-term diabetes with control and regulation of blood glucose and with BMSCs administered at later times poststroke than 24 hours. In addition, many factors, and not only angiogenin, may contribute to the adverse effect of BMSC treatment of stroke in T1DM rats. Matrix metalloproteinase-9, vascular endothelial growth factor, and immunoresponse may also, at least partially, be responsible for the BMSC-induced adverse effects in T1DM rats after stroke. Further investigation of the mechanism underlying BMSC-induced adverse effects in T1DM rats is warranted.

Conclusions

BMSC treatment initiated 24 hours after MCAO in T1DM increases brain hemorrhage, BBB leakage, and accelerates cerebral arteriosclerosis and does not improve functional outcome. Increased angiogenin expression may contribute to the adverse effects of BMSC treatment in T1DM-MCAO rats. These data suggest that caution must be exercised in translating the therapeutic benefit of BMSC therapy in nondiabetics to diabetics, with diabetes potentially an exclusion factor for early BMSC therapy after stroke.

Acknowledgments

We thank Qinge Lu and Sutapa Santra for technical assistance.

Sources of Funding

This work was supported by National Institute on Aging RO1-AG031811 (J.C.), RO1-AG037506 (M.C.) and 1R41NS064708 (J.C.), and American Heart Association grant 09GRNT2300151 (J.C.).

Disclosures

None.

References

Adverse Effects of Bone Marrow Stromal Cell Treatment of Stroke in Diabetic Rats

Jieli Chen, Xinchun Ye, Tao Yan, Chunling Zhang, Xiao-Ping Yang, Xu Cui, Yishen Cui, Alex Zacharek, Cynthia Roberts, Xinfeng Liu, Xiangguo Dai, Mei Lu and Michael Chopp

Stroke. 2011;42:3551-3558; originally published online September 22, 2011;
doi: 10.1161/STROKEAHA.111.627174

Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2011 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/42/12/3551

Data Supplement (unedited) at:
http://stroke.ahajournals.org/content/suppl/2011/09/22/STROKEAHA.111.627174.DC1
http://stroke.ahajournals.org/content/suppl/2013/10/07/STROKEAHA.111.627174.DC2

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/
SUPPLEMENTAL MATERIAL

We found that there are no significant differences between WT-sham and T1DM-sham controls in vascular density, arterial density, angiogenin and ED1 expression and ICA intimae thickness. However, the numbers of cerebral arteriole occlusions are marginally increased (p=0.06) in T1DM-sham rats compared to WT-sham rats (Please see the Figure).
Побочные эффекты лечения инсульта у крыс с сахарным диабетом стромальными клетками костного мозга

Preпосылки и цель исследования. Клеточная терапия стромальными клетками костного мозга (СККМ) улучшает функциональное восстановление после инсульта у крыс без диабета. Тем не менее ее эффективность при инсульте у крыс с сахарным диабетом неизвестна. В настоящем исследовании изучали влияние лечения СККМ на исходы после инсульта у крыс с сахарным диабетом 1 типа (СД1).

Методы. Развитие СД1 у взрослых самцов крыс линии Wistar индуцирували путем введения стрептозотоцина. Крысам без сахарного диабета и с СД1 окклюзировали среднюю мозговую артерию (ОСМА) в течение 2 часов, затем, через 24 часа после ОСМА одной группе крыс ввели СККМ (3х10^6 клеток), другой (контрольной) СККМ не вводили. Наблюдение вели в течение 14 дней. Результаты. У СД1-ОСМА крыс после лечения СККМ не зарегистрировали улучшения функциональных исходов по сравнению с соответствующей контрольной группой СД1-ОСМА крыс на фоне лечения СККМ у СД1-ОСМА крыс произошло повышение уровня легатильности, появление проницаемости гематоэнцефалического барьера (ГЭБ), объем кровоизлияний в головном мозге был большим, усилился ангиогенез.

Терапия СККМ у СД1-ОСМА крыс также наблюдало формирование неоптимы внутренней сонной артерии и сужение церебральных артериол по сравнению с СД1-ОСМА крысами контрольной группы (p<0.05), но не с группой крыс без диабета. Кроме того, изучали основные механизмы, лежащие в основе развития СККМ-индуктированного повышения проницаемости ГЭБ и ускоренного повреждения сосудов у СД1-ОСМА крыс. Обнаружили, что экспрессия ангиогенина (фактора ангиогенеза) и ED1 (маркера макрофагов) была значительно повышена у СД1-ОСМА-СККМ крыс в иннемизированном мозге и внутренней сонной артерии по сравнению с СД1-ОСМА крысами, которые не вводили СККМ, но не у крыс без сахарного диабета. Выводы. Терапия СККМ у СД1-ОСМА крыс не приводит к улучшению функциональных исходов. Напротив, на ее фоне происходит повышение проницаемости ГЭБ и формирование неоптимы в церебральных артериях, развивается артериосклероз. Кроме того, возможно, связано с повышенной экспрессией ангиогенина. Таким образом, СККМ неэффективны у крыс с сахарным диабетом 1 типа.

Ключевые слова: ангиогенин (angiogenin), артериосклероз (arteriosclerosis), стромальные клетки костного мозга (bone marrow stromal cell), инсульт (stroke), сахарный диабет 1 типа (Type 1 diabetic)

Ангиогенин является членом суперсемейства рибо-нуклеаз и способствует разрушению базальной мембраны и внеклеточного матрикса, позволяя эндотелиальным клеткам пролиферировать, мигрировать и мигрировать в периаскаплярные ткани [8]. Уровень ангиогенина в плазме ассоциирован с тяжестью сердечной недостаточности [9], он участвует в патогенезе ишемии миокарда [10] и связан с воспалением и артериосклерозом. Тем не менее роль ангиогенина в ангиогенной реакции при ишемическом инсульте неизвестна, особенно у животных с сахарным диабетом. Сахарный диабет индуцирован стрептозотоцином может не вызывать гипергликемию, но вызывает гипергликемию интимы [7]. У животных с сахарным диабетом часто развиваются поражения сосудов, и они предрасположены к развитию артериосклероза. До настоящего времени влияние лечения СККМ на исходы после инсульта и поражения сосудов у животных с сахарным диабетом не изучали.
Материалы и методы

У взрослых самцов крыс линии Wistar (225–250 г; Jackson Laboratory, Уилмингтон, Миннесота) индуцировали развитие СД1 путем однократного внутрибрюшного введения стероидозоцина (Sigma Chemical Co., Сент-Луис, штат Миссури, 60 мг/кг) [11]. Уровень глюкозы на тот момент определяли с помощью глюкометра (Accu-Chek Compact System, Roche Diagnostics, Indianapolis, IN). Критерием наличия СД было содержание глюкозы в крови на тот момент >300 мг/дл. Проведение исследований на животных начинали через 2 недели после индукции СД.

Культуры СККМ

У нормальных самцов крыс линии Wistar (n=6/группа) выделяли костный мозг и культивировали в модифицированной Иглом среде α-Дульбекко с 20% эмбриональной телейчей сывороткой и 1% стрептомицином. Клетки выдерживали при температуре 37 °С в 5% CO2.

Модель окклюзии средней мозговой артерии и экспериментальная группа животных

Крысам дикого типа без СД (DT; Jackson Laboratory, Уилмингтон, Массачусетс) и крысам с СД1 сначала провели нарыв при температуре 37 °С в 5% CO2, а затем поддерживали концентрацию глюкозы на уровне от 1,0 до 2,0%. Для временной (2 часа) окклюзии правой средней мозговой артерии (ОСМА) использовали модель с наложением жгутика, как было описано ранее [5]. Через 2 часа ОСМА, после удаления жгутика восстанавливали кровоток. Ложно-оперированным животным проводили аналогичное хирургическое вмешательство, с исключением наложения жгутика.

Крыс рандомизировали и разделили на различные группы, через 24 часа после вмешательства путем внутрибрюшного введения через хвостовую вену им проводили различное лечение. Контрольной группе (n=8), крысам DT-ОСМА крысам (n=8) вводили 3×106 клеток СККМ. Через пять дней после выполнения ОСМА, за 2 часа до эвтаназии внутривенно ввели 2% синий краситель Эванса. В каждом экспериментальном срезе имели и суммировали доли зон петехиальных и крупных кровоизлияний.

Определение объема внутримозговой гематомы

Объем внутримозговой гематомы измеряли с помощью окрашивания мазков гематоксилином и эозином для расчета объема поражения к общей площади поражения (брегма от -1 мм до +1 мм). Каждый десятый корональный срез использовали для иммуногистохимического окрашивания. Использовали антитела к фактору Виллебранда (маркеры эндотелиальной клетки, 1:400, Dako, Carpinteria, Калифорния), α-актину гладких мускулов (маркеры ГМК, мышьный монооклозальный IgG 1:800; Dako), ангиогенину (моноклональный, 1:500; Abcam, Кембридж, Массачусетс), мышьиному микроальбумину против миорганов/макрофагов крыс (ED1,
моноклональный, 1:30; AbD Serotec Raleigh, Северная Каролина). Контрольные эксперименты состояли из окрашивания корональных срезов тканей мозга, как указано ранее, но неиммунную сыворотку заменили на первичные антитела. Иммунные анализы проводил эксперт, ослепленный относительно данных об экспериментальных группах.

Количественное определение экспрессии ангиогена и ED1

Каждый слайд, содержащий 8 полей зрения пограничной зоны ишемии, оценивали (Olympus BX40) совместно с системой анализа изображений MCID (Imaging Research, St. Catharines, Канада). Пограничной зоной ишемии считали область, окружающую очаг поражения. Данные 5 срезов и 8 областей в каждом срезе усреднили для получения единого значения для 1 животного и представили в виде процентного отношения к общим площадям исследованных областей стенки артерии.

Измерение плотности сосудов

Плотность сосудов в корональном срезе, окрашенном антителами к α-актину гладких мышц, определение толщины стенок артерий и окклюзии

В пограничной зоне ишемии проанализировали плотность сосудов, окрашенных антителами к α-актину гладких мышц для визуализации мелких и крупных сосудов (>10 мкм в диаметре) [10]. Определили максимальную толщину стенок 10 артерий. Подсчитали число сосудов, иммунореактивных к α-актину гладких мышц. Представили общее число сосудов, иммунореактивных к α-актину гладких мышц, на миллиметр в квадрате. Кроме того, подсчитали общее число окклюзированных артерий в инсультальном полушарии.

Трехцветное окрашивание и измерение

Используя систему одноэтапного трехцветного окрашивания по Гомори (Sigma, Сент-Луис, Миссури), срезы мозга постфиксировали в фиксаторе Вузена. Ядра окрашивали гематоксилином Вейгера, затем окрашивали трехцветной окраской по Гомори с последующим промыванием 0,5% уксусной кислоты. При этом соединительная ткань и коллаген окрасились в синий цвет, ядра — в темно-красный/фиолетовый цвет, а цитоплазма — в красный/розовый цвет. В инсультальной и контралатеральной внутренних сонных артериях измеряли толщину комплекса интима-медиа, а также диаметр сосуда (минимальный диаметр).

Отложение коллагена

С помощью модифицированного окрашивания пикросироусом красным [13], срезы постфиксировали в жидкости Вузена, затем окрашивали желтым гематоксилином, а потом — 0,1% пикросироусом красным. Отложение коллагена выразили в виде отношения площадей интерстициального и пери васкулярного отложений коллагена к площади просвета внутренней сонной артерии.

Двухцветное иммунофлюоресцентное окрашивание

Для проведения двухмаркерного иммунофлюоресцентного анализа использовали флуоресцеин изотиоцианат (Calbiochem) и цианин-5.18 (Jackson Immunoresearch). Каждый коронарный срез сначала обрабатывали первичными антителами к ангиогению с цианином 5.18, а затем антителами к ED1 с флуоресцеином изотиоцианатом. Условные эксперименты проводили с помощью окрашивания коронарных срезов тканей мозга, как описано ранее, но использовали неиммунную сыворотку для первичных антител.

Статистический анализ

Односторонний дисперсионный анализ использовали для оценки функциональных исходов и данных гистологии. Положение “контраст/оценка” использовали для проверки групповых различий. Для изучения корреляции между результатами функциональных тестов и данными гистологического исследования на 14-й день после ОСМА рассчитывали коэффициент корреляции Спирмена. Если общий эффект группы лечения достигал р<0,05, проводили парные сравнения. Все данные представлены в виде среднее значение±СО.

■ РЕЗУЛЬТАТЫ

Введение СККМ приводит к повышению показателей ранней летальности без уменьшения размера очага поражения и улучшения функциональных исходов у СД1-ОСМА крыс

Не было существенных различий в уровне глюкозы в крови между контрольной группой СД1-ОСМА (до ОСМА — 409,1±46,9 мг/дл; перед эвтаназией — 413,3±51,4 мг/дл) и группой лечения СККМ (до ОСМА — 441,7±34,5 мг/дл; перед эвтаназией 417,7±41,2 мг/дл; р>0,05).

Летальность была выше в группе СД1-ОСМА+СККМ — 6 (50%) из 12 крыс (1 крыса контрольной ДТ-ОСМА группы, 1 крыса из группы лечения ДТ-ОСМА+СККМ, 4 крысы контрольной группы СД1-ОСМА и 6 крыс группы лечения СД1-ОСМА+СККМ) по сравнению с группой крыс контрольной СД1-ОСМА группы — 4 (31%) из 13. В ранее проведенных исследованиях показали, что лечение СККМ при инсульте приводит к значительному улучшению функциональных исходов у крыс без СД [5]. Тем не менее лечение инсульта СККМ у крыс с СД1 не привело к улучшению функциональных исходов (рис. 1А—В) и уменьшению объема очага поражения (рис. 1Г).
Введение СККМ приводит к повышению проницаемости гематоэнцефалического барьера, увеличению объема кровоизлияний в мозг и увеличению плотности сосудов у крыс с СД1

У СД1-ОСМА крыс произошло значительно повышение проницаемости гематоэнцефалического барьера – ГЭБ (рис. 2А, см. на цв. вклейке), увеличение объема кровоизлияний в мозг (рис. 2Б, см. на цв. вклейке), и повышение плотности сосудов (рис. 2В, см. на цв. вклейке) по сравнению с ДТ-ОСМА крысами (р < 0,05). Лечение СККМ у ДТ-ОСМА крыс не привело к увеличению объема кровоизлияний в мозг, но существенно снизило проницаемость ГЭБ (рис. 2А, см. на цв. вклейке) и повысило плотность сосудов (рис. 2В, см. на цв. вклейке; р < 0,05) по сравнению с ДТ-ОСМА крысами. Тем не менее введение СККМ крышам группы СД1-ОСМА привело к значительному повышению утолщения стенок церебральных артерий (рис. 3В, см. на цв. вклейке) и отложению коллагена (рис. 3Г, см. на цв. вклейке; р < 0,05) и снижение диаметра артерий (рис. 3В; см. на цв. вклейке) по сравнению с крышами контрольной группы СД1-ОСМА. Введение СККМ крысам СД1-ОСМА также привело к значительному утолщению стенок церебральных артерий (рис. 3В, см. на цв. вклейке) по сравнению с крышами контрольной группы СД1-ОСМА.

Введение СККМ способствует утолщению интимы внутричерепных артерий и отложению коллагена у крыс группы СД1-ОСМА

Трехцветное окрашивание использовали для определения влияния лечения СККМ на развитие атеросклероза у крыс с СД1. Введение СККМ у СД1-ОСМА крыс привело к значительному повышению толщины интимы (рис. 4А) и отложению коллагена (рис. 4В, р < 0,05) и снижение диаметра артерий (рис. 4Б) в инсилатеральной внутренней сонной артерии (ВСА) по сравнению с СД1-ОСМА или ДТ-ОСМА крысами (р < 0,05) (рис. 4А–Б).

Введение СККМ приводит к повышению уровня экспрессии ангиогенина и ED1 у крыс группы СД1-ОСМА

Для получения представления о возможных основных механизмах, лежащих в основе развития СККМ-индуктированного повышения проницаемости ГЭБ,
кровоизлияний в мозг и утолщения интимы у СД1-ОСМА крыс, определили уровень экспрессии ангиогенина и ED1. У СД1-ОСМА+СККМ крыс значительно повысился уровень экспрессии ангиогенина в пограничной зоне ишемии \((p<0.05, \text{рис. 5A, см. на цв. вклейке}) \) и незначительно повысился уровень экспрессии ангиогенина \((p=0.07, \text{рис. 5В, см. на цв. вклейке}) \) и ED1 \((p<0.05, \text{рис. 5В, см. на цв. вклейке}) \) в ВСА по сравнению с контрольной группой СД1-ОСМА крыс.

Тем не менее у ДТ-ОСМА+СККМ крыс не произошло увеличения толщины интимы, диаметра артерий, отложения коллагена и уровня экспрессии ED1 и ангиогенина в ишемированном мозге и ВСА по сравнению с контрольной группой ДТ-ОСМА крыс \((p>0.05) \).

Существенных различий в плотности сосудов, плотности артерий, уровне экспрессии ангиогенина и ED1 и толщина интимы в ВСА между ложно-оперированными животными ДТ и СД1 контрольных групп не
было (дополнительный рис. 1 см. on-line). Тем не менее число окклюзионных церебральных артериол было незначительно выше (р=0,06) у ложно-оперированных крыс с СД1 по сравнению с ложно-оперированными крысами группы ДТ.

Уровень экспрессии ангиогенина коррелирует с уровнем экспрессии ED1 и выраженностью артериосклероза у СД1-ОСМА крыс

Экспрессия ангиогенина находилась в прямой зависимости от экспрессии ED1 в ишемизированном мозге (рис. 6А, см. на цв. вклейке). Повышение экспрессии ангиогенина достоверно коррелировало с экспрессией ED1 (рис. 6Б, см. на цв. вклейке) и утолщением церебральных артерий (рис. 6В, см. на цв. вклейке).

ОБСУЖДЕНИЕ

Лечение СККМ приводит к повышению проницаемости ГЭБ, увеличению объема кровоизлияний в мозг и не влияет на улучшение функциональных исходов после инсульта у крыс группы СД1-ОСМА

Изменения сосудов после инсульта у крыс без диабета и крыс группы СД1-ОСМА могут отличаться. После инсульта у животных с СД произошло усиление ангиогенных реакций, повышение проницаемости ГЭБ и снижение уровня экспрессии белков плотных контактов [14]. Ранние нарушения ГЭБ способствуют развитию внутримозговых кровоизлияний. Внутримозговая геморрагическая трансформация является многофакторным явлением, при котором в ишемизированной ткани мозга развивается геморрагическое пропитывание с повышением проницаемости кровеносных сосудов и развитием кровоизлияния, тем самым усугубляется повреждение головного мозга. Эти особенности реакции сосудов на инсульт могут быть причиной развития побочных эффектов терапии СККМ, наблюдающихся у СД1-ОСМА крыс. Обнаружили, что лечение СККМ при инсульте у СД1-ОСМА крыс способствует повышению плотности сосудов и артерий, а также приводит к повышению частоты развития кровоизлияний в мозг, повышению проницаемости ГЭБ, но не улучшает функциональных исходов. Повышение проницаемости ГЭБ и увеличение объема внутримозговых кровоизлияний могут способствовать росту уровня ранней смертности животных СД1-ОСМА. Уровень экспрессии ангиогенина в СД1-ОСМА крыс также индуцировало развитие артериосклероза, проявляющееся в утолщении интимы церебральных артерий и окклюзии артериол, что может негативно влиять на восстановление функций после инсульта. В то же время у крыс без диабета СККМ-терапия инсульта привела не только к повышению плотности сосудов, стабилизации сосудов и снижению проницаемости ГЭБ, но и к улучшению функциональных исходов после инсульта [5, 15]. Это первое исследование, в котором продемонстрировали, что терапия СККМ оказывает негативное влияние на ремоделирование сосудов и функциональные исходы у СД1-ОСМА крыс. Таким образом, благоприятный эффект введения СККМ через 24 часа от начала инсульта нельзя транслировать на страдающих сахарным диабетом.

Лечение СККМ усугубляет церебральный артериосклероз после инсульта у крыс группы СД1-ОСМА

Механизмы, лежащие в основе развития неблагоприятных сосудистых реакций или артериосклероза при проведении терапии СККМ у СД1-ОСМА крыс, неизвестны. Толщина комплекса интима-медиа в сонной артерии является ранним признаком атеросклероза и макрососудистых заболеваний [16]. Лечение СККМ у СД1-ОСМА крыс привело к значительному увеличению толщины комплекса интима-медиа и окклюзии внутримозговых артериол и снижению диаметра ВСА по сравнению с контрольной группой СД1-ОСМА крыс. Уровень экспрессии ED1 в ВСА был значительно выше у СД1-ОСМА крыс, получавших СККМ. Субэндотелиальная инфильтрация лейкоцитами является характерным признаком утолщения неоинтимы при атеросклерозе и реакции сосудов на механическое повреждение, а нейтрофильы также способствуют утолщению неоинтимы в модели с использованием аутотрансплантата артерии [17]. Таким образом, выраженная воспалительная реакция при инсульте может способствовать развитию артериосклероза у СД1-ОСМА крыс на фоне лечения СККМ.

Артериосклероз и ригидность артериальных стенок являются факторами риска развития инсульта [18]. Аномальный обмен коллагена и усиленный фиброз имеют общую патофизиологическую связь с повышением ригидности стенок артерий. При СД повышается ригидность артериальной стенки, и его наличие ассоциировано с изменениями биохимической трансформации коллагена в кровеносных сосудах [19]. У СД1-ОСМА крыс, получавших СККМ, отложение коллагена было незначительно повышено. Усиление фиброза на фоне применения СККМ может ускорить развитие артериосклероза и повреждений внутримозговых артерий у СД1-ОСМА крыс.

Ангиогенин может способствовать СККМ-индукированному ангиогенезу, повышению проницаемости ГЭБ и развитию артериосклероза у крыс группы СД1-ОСМА

Ангиогенин является мощным фактором роста кровеносных сосудов, разрушающим базальную мембрану, тем самым способствуя инфильтрации и миграции клеток [20]. Тяжесть макрососудистых осложнений ассоциирована с заметным повышением уровня ангиогенина в сыворотке крови [21]. Уровень ангиогенина повышается у пациентов с окклюзию периферических артерий [22] и у молодых лиц с СД [23]. СККМ ведут себя как маленькие биохимические и молекулярные "фабрики" по производству множества цитокинов и большого количества ангиоген-нов, антиапоптотических и митогенных факторов [24]. У СД1-ОСМА крыс после сравнению с крышами
контрольной ДТ-ОСМА группы отметили значительное повышение уровня ангиогенина, а у СД1-ОСМА крыс, получавших СККМ, была повышена экспрессия ангиогенина в имплантированном мозге. Повышение экспрессии ангиогенина достоверно коррелировало с экспрессией ЭД1 и толщиной стенки церебральных артерий, что согласуется с данными о достоверной корреляции экспрессии ангиогенина с количеством микрососудов и очаговой инфильтрацией макрофагами [25].

Ограничения и предостережения

В настоящем исследовании существует целый ряд ограничений и предостережений. В этом первичном исследовании проводили лечение СККМ крыс через 2 недели после индукции развития СД. Для улучшения клинической значимости результатов оправдано проведение дополнительных исследований у крыс с более длительным течением СД на фоне контроля и коррекции уровня глюкозы крови и введения СККМ в более поздние сроки, чем через 24 часа после развития инсульта. Кроме того, многие другие факторы, а не только повышение уровня ангиогенина, могут способствовать развитию неблагоприятных последствий лечения СККМ у крыс с СД1. Матриксная металлопротеиназа-9, фактор роста эндотелия сосудов и иммунореактивность также могут, по крайней мере частично, быть причиной развития СККМ-индуктированных неблагоприятных эффектов после инсульта у крыс с СД1. Необходимо дальнейшее изучение механизмов, лежащих в основе развития СККМ-индуктированных неблагоприятных эффектов у крыс с СД1.

Выводы

Проведение лечения СККМ через 24 часа после ОСМА на фоне СД1 приводит к увеличению объема кровоизлияний в мозг, повышению проницаемости ГЭБ, ускоряет развитие церебрального артериосклероза и не влияет на улучшение функциональных исходов. Повышение уровня экспрессии ангиогенина может способствовать развитию неблагоприятных последствий лечения СККМ у СД1-ОСМА крыс. Эти данные свидетельствуют о том, что необходимо проявлять осторожность при трансляции терапевтической эффективности лечения СККМ у лиц без СД на лиц с СД, считая наличие СД возможным критерием исключения для раннего начала терапии СККМ после инсульта.

Литература

