The concept of decompressive surgery for treatment of elevated intracranial pressure has been developed already in the beginning of the 20th century.1 The rationale of this treatment modality consists of opening of the skull and removal of a bone flap to allow the edematous brain to swell outward, thereby preventing intracranial tissue shifts and life-threatening downward herniation. The use of decompressive hemicraniectomy (DHC) in the context of ischemic brain edema had been reported already in 1956.2 Since that time, DHC has been increasingly studied in the setting of different conditions, including traumatic brain injury, subarachnoid hemorrhage, and malignant middle cerebral artery (MCA) infarction.

Depending on the location of the affected area, different surgical decompression techniques have been developed. In the presence of diffuse brain edema without a midline shift, as commonly seen in traumatic brain injury, bilateral (eg, bifrontal) craniectomy has been advocated. Hemicraniectomy, or removal of a frontotemporoparietal bone flap, is suitable in patients with unilateral hemisphere swelling as seen after ischemic stroke.3 Accumulating experience with DHC over the years has led to increasing refinement of the surgical technique. The size of the removed bone fragment has been recognized as a factor of crucial importance for generation of a sufficient decompressive effect.4 Hemicraniectomy with a diameter of ≤10 cm, especially in combination with sharp trepanation edges, has been associated with an increased incidence of shearing injury to the herniated brain.4 Furthermore, dural opening, usually followed by insertion of a dural graft (duraplasty), has meanwhile become an integral part of the decompressive surgery technique.3

Predictors of Malignant Cerebral Edema

Early identification of patients who are most likely to develop malignant edema after MCA infarction based on clinical, radiographic, anatomic, and laboratory values can aid the clinician in offering DHC early. Previously published predictors of a National Institutes of Health Stroke Scale score of >20, thrombus at the carotid terminus location, presence of nausea and vomiting, elevations of the white blood cell count, early involvement of >50% of the MCA territory on CT, and additional involvement of the anterior cerebral artery territory and/or posterior cerebral artery territory may be clinical tools to identify high-risk patients.5,6 Involvement of the anterior choroidal artery can be subtle in the setting of a large infarct, but involvement of the uncus of the temporal lobe may lead to more rapid herniation.7 Although clinically easy to use, the positive predictive value of these variables is low.

Serum S100B is an astroglial protein that is released during neuronal injury and enters the peripheral bloodstream through an incompetent blood–brain barrier. Thresholds of S100B levels can be monitored at time points in the acute period to determine patients most likely to develop malignant edema. Single measurements obtained in the 12- to 24-hour time period may be a useful tool to identify high-risk patients. At 24 hours, a value of 1.03 µg/L has 94% sensitivity and 83% specificity for detection of malignant cerebral edema.8

The availability of MRI in the acute period may allow for more precise volumetric analysis of the infarct. A MRI diffusion-weighted imaging volume of >82 cm³ when performed <6 hours has a high specificity (98%) but low sensitivity (52%).9 A MRI diffusion-weighted imaging volume of >145 cm³ obtained before 14 hours was associated with 100% sensitivity and 94% specificity in a small cohort of patients.10 The differences in the sensitivities are likely due to the timing of obtaining the MRI. Such volumetric analysis can be complicated by the presence of an arterial occlusion that is yet to be reperfused through intravenous thrombolysis or intra-arterial treatment. Moreover, when such treatments are used and successful reperfusion occurs, there may be concerns of reperfusion injury that may potentially lead to exacerbation of the edema.11 Nonetheless, MRI volumetric analysis appears to have a high specificity to detect patients at highest risk but must be considered in the context of treatment strategies being used.

Such analyses have allowed for better determination of patients who would most benefit from DHC. Randomized controlled studies have used such predictors as inclusion criteria in trial design.
Hemicraniectomy for Malignant MCA Infarction: Randomized Controlled Trials

Based on the promising results of experimental research and nonrandomized studies on hemicraniectomy in malignant MCA infarction, 5 randomized controlled trials (RCTs) have been initiated in the past decade (Table), and meanwhile, the results of the 3 European RCTs (DECIMAL [DEcompressive Craniectomy In MALignant middle cerebral artery infarcts]12; DESTINY [DEcompressive Surgery for the Treatment of malignant Infarction of the middle cerebral artery]13; HAMLET [Hemicraniectomy After Malignant middle cerebral artery infarction with Life-threatening Edema Trial]14) and 2 pooled meta-analyses14,15 have been published. The North American HeADDFIRST study (Hemicraniectomy And Durotomy on Deterioration From Infarction Related Swelling Trial) has been completed but data have not been published yet and the Philippine HeMMI trial (Hemicraniectomy for Malignant Middle cerebral artery Infarcts) is still recruiting patients.

All 3 European trials showed a significant reduction in mortality in surgically treated patients as compared with the conservatively treated groups. In DECIMAL, the absolute risk reduction for mortality at 6 months was 53% with hemicraniectomy.12 DESTINY reached significance for 30-day mortality (12% with surgery versus 53% with conservative management) after enrollment of 32 patients.13 In HAMLET, surgical treatment also led to improved survival with an absolute risk reduction of 38%.14 However, none of the 3 RCTs could demonstrate a significant benefit of hemicraniectomy considering functional outcome as defined in the primary outcome measures (Table). The most recent meta-analysis of DECIMAL, DESTINY, and HAMLET, published after the completion of the HAMLET trial in 2009, included all patients from the 3 trials who were randomized within 48 hours from symptom onset (n=109) and focused on mortality and functional outcome after 1 year.14 Of 109 patients, 58 had been assigned to hemicraniectomy and 51 to conservative treatment. With surgical treatment, the absolute risk reduction for mortality in this analysis comprised 49.9% (95% CI, 33.9 to 65.9), corresponding to a number needed to treat of 2 for prevention of death. There was also a significant absolute risk reduction of 41.9% (95% CI, 25.2 to 58.6) with hemicraniectomy for a modified Rankin scale (mRS) >4 with a number needed to treat=2. Surgery, however, did not lead to a significant benefit in functional outcome when dichotomization between a mRS of 0 to 3 and 4 to 6 after 12 months was chosen (absolute risk reduction, 16.3%; 95% CI, −0.1 to 33.1). Reduction in mortality with surgical treatment was accompanied by an increase in moderate severe disability (mRS of 4) in survivors.

Complications Associated With Hemicraniectomy

Surgical and medical complications associated with DHC may impact the clinical outcomes of patients. Immediate surgical complications include: insufficient decompression,4 surgical site infections,16 hemorrhagic complications, and contralateral subdural effusions.17 Delayed complications include the sinking flap syndrome,18 extra-axial fluid collections, hydrocephalus,19 and development of subdural hematomas.

The rates of infections at the time of DHC or replacement of the bone flap range from 5% to 10%. Infection rates at the time of cranioplasty may be related to the type of bone flap used.16 Synthetic materials used as flaps may lead to a foreign body reaction, whereas autologous bone flaps may be associated with higher rates of infection.16,20 Unfortunately there is no consensus as to which approach is associated with a higher likelihood of infections.

The sinking flap syndrome is felt to occur as a result of the pressure gradient between the atmospheric pressure and intracranial vault. This leads to severe headaches, changes in mentation, and seizures.18 Focal neurological deficits may result due to reductions in cerebral blood flow in the infarcted region that may be viable21 or due to a mass effect on the contralateral hemisphere. Rarely, this can lead to death from “paradoxical herniation.” In a recent prospective cohort, 11% of patients developed symptomatic sinking flap syndrome that was associated with delays in replacement of the bone flap, older age, and larger initial infarct volume.22 Placing patients supine often relieves the clinical symptoms with replacement of the bone flap being curative.

The development of communicating hydrocephalus as a result of DHC may be a common occurrence.19 The distinction between radiographic ventriculomegaly and clinically symptomatic hydrocephalus may account for the varied experiences among institutions.23 This phenomenon may occur due to the
altered hydrodynamics of the intracranial vault that has been disrupted after DHC. Extracranial fluid collections are frequently noted and are a result of overaccumulation of cerebrospinal fluid either due to poor reabsorption or space availability for fluid accumulation. These collections often signify the presence of hydrocephalus and are associated with neurological decline in mentation. The treatment for this includes cerebrospinal fluid diversion with an external ventricular catheter or repeated lumbar punctures. Delays in replacing the bone flap appear to be the most significant predictor of the development of hydrodynamic complications but are complicated by the fact that delays in replacement may be due to the degree of swelling initially noted.19

In-hospital medical complications due to patient immobility and survival from the DHC can impact the clinical outcomes of the patient. A National Inpatient Sample database over a 6-year period in the United States found the rates of pneumonia to be 11.1%, gastrointestinal bleeding 2.4%, and sepsis 4.76% in 252 patients studied. Each of these complications was associated with an increased rate of mortality and were significantly higher compared with patients with a similar comorbidity index.24

Unanswered Questions and Future Directions

Functional Outcome and Quality of Life

Early hemicraniectomy significantly reduces mortality after malignant MCA infarction; however, it also increases the probability of survival with moderately severe disability (mRS of 4). With approximately 40% of survivors becoming disabled after decompressive surgery, the question arises if a mRS of 4 (unable to walk without assistance and unable to attend to own bodily needs without assistance) can be considered a favorable outcome. Looking at motor function, the benefit of surviving malignant MCA infarction after hemicraniectomy seems to be largely outweighed by the high incidence of moderately severe or severe disability in survivors.25 However, the more important question is if the mRS is an adequate outcome measure in those patients. From the patients’ perspective, neuropsychological deficits, aphasia, or depression may have an equally strong impact on quality of life as compared with motor function. Other factors such as psychosocial environment, caregiver burden, familial support, and financial support should be additionally considered in this context. The prospective trials and pooled analyses published to date12–15 do not provide conclusive results on quality of life and depression in patients who survived malignant MCA infarction after surgery, and those aspects certainly deserve further investigation.

Timing of Surgery

From the pathophysiological point of view, earlier decompression should prevent brain tissue damage by avoiding or reducing exposition to increased intracranial pressure in the course of development of ischemic brain edema. On the other hand, poststroke edema often peaks later than 48 hours after symptom onset. Therefore, there might be a wider time window within which decompressive surgery may be beneficial for such patients. This aspect has not been sufficiently addressed in the 3 European RCTs. The pooled analysis from 2007 could not demonstrate any difference in functional outcome, comparing patients treated earlier versus later than 24 hours after symptom onset15; however, all patients included in that analysis were treated within 48 hours. The HAMLET study allowed delayed surgery up to 96 hours after stroke onset, and secondary outcome analyses showed that surgery within 48 hours significantly reduced the probability of severe disability or death (mRS 5 or 6), whereas delayed hemicraniectomy did not influence outcome.14 However, considering the small number of patients who received surgery beyond 48 hours (n = 11), no final conclusion can be drawn. Further data on timing of decompressive surgery are derived from observational studies, which have brought up contradictory results. Although some studies report reduced mortality and improved outcome with early treatment, as compared with treatment after clinical deterioration,26–28 a systematic review published in 2004, including all data reported up to that date, could not confirm this finding.29 This issue certainly deserves further investigation to identify the optimal time window for decompressive surgery after malignant MCA infarction. In the absence of other conclusive data and considering the findings reported from RCTs as well as the pathophysiological background, at present, early decompression (<48 hours after symptom onset) seems to be beneficial.

Age Limit for Surgery

None of the RCTs investigating hemicraniectomy in malignant MCA infarction included patients >60 years. Because a considerable proportion of the patients experiencing this type of stroke belong to this age cohort,30 it still remains unclear if those patients would benefit from surgical treatment. Data from observational studies indicate that hemicraniectomy may lead to improved survival, however, at the cost of poor outcome and functional dependency in patients >60 years of age.30,31 Moreover, age was identified as a major factor influencing outcome in a systematic review of 138 patients treated with hemicraniectomy.29 This finding could not be confirmed in the pooled meta-analysis of the 3 European RCTs published in 2007.14 The HAMLET trial even found a trend toward better outcome in the upper age range (51 to 60 years) as compared with younger patients treated with hemicraniectomy.14 In light of those data, the results of the ongoing DESTINY 2 trial, studying hemicraniectomy in patients >60 years, are awaited and will hopefully provide more information on this issue.

Treatment of Dominant Hemisphere Infarction

The debate whether to perform decompressive craniectomy in patients with malignant MCA infarction on the speech-dominant hemisphere is based on the assumption that in the presence of aphasia, functional outcome and quality of life may be worse as compared with patients with nondominant infarction. This assumption, however, is currently not supported by data available in the literature, because mortality, functional outcome, and quality of life do not seem to depend on whether the dominant hemisphere is involved.15,29 On the contrary, neuropsychological deficits seen in patients with infarcts on the nondominant hemisphere, as attention deficits or depression, may be as disabling as aphasia.32 However, this question has not been sufficiently elucidated yet and certainly deserves further study.
Conclusions
Predictive models of patients who may require DHC are improving through volumetric analysis based on MRI and serum markers to assess for neuronal injury. Although several RCTs have not been completed, DHC is a life-saving surgery that appears to benefit younger patients the most. Further study is required to better elucidate quality-of-life outcome measures, timing of surgery, and treatment of the dominant hemisphere.

Disclosures
R.G. is a consultant/scientific advisory board for Concentric Medical, Rapid Medical, NeuroInterventions, and CoAxia Inc.

References

KEY WORDS: decompressive craniectomy edema middle cerebral artery infarction stroke
Hemicraniectomy in Malignant Middle Cerebral Artery Infarction
Dimitre Staykov and Rishi Gupta

Stroke. 2011;42:513-516; originally published online January 6, 2011;
doi: 10.1161/STROKEAHA.110.605642

Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2011 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://stroke.ahajournals.org/content/42/2/513

Data Supplement (unedited) at:
http://stroke.ahajournals.org/content/suppl/2012/03/12/STROKEAHA.110.605642.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/
Hemicraniectomy in Malignant Middle Cerebral Artery Infarction

Dimitre Staykov, MD; Rishi Gupta, MD

Akson 중대뇌동맥 영역 뇌경색에서의 편개두술

이 미 20세기 초에 두개내압 증가에 대한 치료로 갑압 수술 (decompressive surgery)에 대한 개념이 제시되었다. 이 치료 방법의 근거는, 두개골을 열고 뼈판(bone flap)을 베어내어 부은 뇌 조직을 바깥쪽으로 부어오르게 하여, 두개내 조직이 이동하여 생명을 위협하는 하방 뇌탈출(hemiation)을 예방한다는 것이다. 갑압 편개두술(decompressive hemicraniectomy, DHO)을 허혈성 뇌부종의 복극에서 사용하는 것은 이미 1956년에 보고되었다. 11 그 이후 DHC는 여러 상황, 즉 외상성 뇌손상, 기타로 인한, 악성 중대뇌동맥(middle cerebral artery, MCA) 영역 뇌경색 등을 포함한 여러 다른 상황에서 점차 연구되어 왔다.

함정된 영역의 위계에 따라, 각각 다른 수술적 갑압 기술이 개발되었다. 외상성 뇌손상에서 흔히 관찰되는 중앙선의 이동이 없는 미만성 뇌부종에서는 천천히, 양측, 전두부의 개두술이 지지되어 왔다. 편개두술이나 전두-측두-두정부의 뼈판의 제거는 허혈성 뇌부종 이후에 관찰되는 것과 같은 편측성 뇌수종을 보이는 환자에서 적합하다. 11 DHC의 경험이 수년간 쌓임으로써 수술 방법의 개선이 이루어졌다. 제외되는 뼈 조각의 크기와 적절한 갑압 효과의 유도에 아주 결정적으로 중요한 역할을 한다는 것을 알게 되었다. 11 10 cm 이하의 직경으로 편개두술이, 특히 뇌실전후 뇌수종, 뇌실전후 뇌수종, 뇌실전후 뇌수종을 정확히 면역을 해주며, 탈출된 뇌 조직의 점단 손상(sharing injury) 발생 빈도를 증가시켰다. 11 그러나, 뇌실전후 뇌수종, 뇌실전후 뇌수종, 뇌실전후 뇌수종을 정확히 면역을 해주며, 탈출된 뇌 조직의 점단 손상(sharing injury) 발생 빈도를 증가시켰다. 11

약성 뇌부종의 예측 변수

임상적, 방사선학적, 해부학적, 실험실적 값으로 MCA 영역의 뇌경색 이후에 약성 뇌부종이 발생할 것 같은 환자를 빌리 동정하는 것은, 임상의가 빌리 DHC를 시행하도록 할 수 있다. 지금까지 보고된 바에 따르면, National Institutes of Health Stroke Scale score가 20점을 초과하는 경우, 정도의 뇌졸중 부위에 혈관이 위치한 경우, 또한과 구토 증세를 보이는 경우, 백혈구 수치가 증가한 경우, CT상에서 MCA 영역의 50%를 초과하는 조기 침범이 관찰되는 경우, 전두뇌동맥이나 후두뇌 동맥 영역에 함께 침범된 경우 등이 고위험 환자군을 규정하는 임상적 방법이 될 수 있다. 11 전두뇌동맥(anterior choroidal artery)의 침범은 크기가 큰 뇌경색에서 감지하기 어려울 수 있으나, 측두엽의 갈고리뼈(uncus)를 침범한 경우는 아마도 조금 더 빌리 뇌탈출이 일어나는 듯 하다. 11 암상적으로는 사용 하기 쉬우나, 이들 변수의 양성 예측도는 낮다.

혈청 내 S100B는 성상아세포체(astroglial) 단백질로 신 경세포손상 때 분비되고, 손상된 혈관뇌경색을 반영하여 발초 혈액으로 들어간다. S100B 수치의 증가는 약성 뇌부종이 발생한 것과 같은 환자들 확인하기 위해 급성기에 모니터 할 수 있다. 24시간 이내에 음식을 섭취한 후 고위험 환자들로 구분하는 데 아마도 유용한 방법이 될 것이다. 24시간내에는 1.03 µg/L의 값이 약성 뇌부종을 밝히는 데 94%의 민감도와 83%의 특이도를 보였다. 7

급성기에 MRI를 사용할 수 있다면 이 또한 정확한 부위의 조급 더 정확한 부위 분석에 도움이 될 수 있을 것이다. 6시간 미 만의 시기에 시행한 MRI 확장강조영상에서 82 cm²를 넘는 크 기일 경우 98%의 높은 특이도를 보였으나 민감도는 낮았던 (52%). 5 안 소규모 요약 연구에서 14시간이 경과하기 전에 시행한 MRI 확장강조영상에서 145 cm²를 초과하는 경우 100%의 민감도와 94%의 특이도를 보였다. 5 민감도의 차이는 MRI를 촬영 시기와 연관된 듯 하다. 이러한 부위 분석 방법은

From the Department of Neurology (D.S.), University of Erlangen, Erlangen, Germany; and the Departments of Neurology, Neurosurgery, and Radiology (R.G.), Emory University School of Medicine, Marcus Stroke and Neuroscience Center, Grady Memorial Hospital, 80 Jesse Hill Jr Drive, SE, Faculty Office Building 393, Atlanta, GA.

Correspondence to Rishi Gupta, MD, Departments of Neurology, Neurosurgery and Radiology, Emory University School of Medicine, Marcus Stroke and Neuroscience Center, Grady Memorial Hospital, 80 Jesse Hill Jr Drive, SE, Faculty Office Building 393, Atlanta, GA 30303. E-mail Rishi.gupta@emory.edu

(Stroke. 2011;42:513-516.)
© 2011 American Heart Association, Inc.
정맥내 혈전류해술이나 동맥내 혈전류해술 이후에 아직 재관류가 이루어지지 않은 동맥 폐색의 존재에 의하여 복잡해질 수 있다. 예가가, 그러한 치료가 행해지고 성공적인 재관류가 일 어났을 때, 잔재적으로 부종의 약화를 유도할 수 있는 재관류 손상 가능성에 대한 우려가 있을 수 있다. MRI를 이용한 부 푼 분석 방법이 고위험 환자를 감지하는 데 높은 특이도를 가 지는 것으로 나타났으나, 사용된 치료 방법의 정복 관계를 고려하여야 한다.

DHC를 통해 가장 이득을 볼 수 있는 환자를 조금 더 잘 확인하기 위한 여러 분석 방법들이 사용되어 왔다. 무작위 선정 임상 연구에서 연구 설계의 대상 선정 기준으로 이러한 예측 변수들을 사용하였다.

약성 MCA 영역 뇌경색의 편계두술: 무작위 선정 임상 연구

약성 MCA 영역 뇌경색의 편계두술에 대한 실험 연구와 비교 무작위 선정 연구에 기초하여, 5개의 무작위 선정 임상 연구 (randomized controlled trial, RCT)가 지난 10년간 게시되 었다(Table). 그리고 그동안, 유럽의 3개 RCT (DECIMAL [Décompressive Cranietomy In MALignant middle cerebral artery infarcts]؛ DESTINY [Décompressive Surgery for the Treatment of Malignant Infarction of the middle cerebral artery]؛ HAMLET [Hemicraniectomy After Middle cerebral artery infarction with Life-threatening Edema Trial])와 2개의 통합 예측 분석 결과가 발표되었다. 폐미의 HeADDFIRST study (Hemicraniectomy And Durotomy on Deterioration From Infarction Related Swelling Trial) 또한 완료되었는데 아직 결과가 발표되지 않았으며, 필리핀의 HeMMI trial (Hemicraniectomy for Malignant Middle cerebral artery Infarcts)은 아직 환자 모집 중이다.

유럽의 3개 연구 모두 보존적인 치료를 받은 환자보다 수술 치료를 받은 환자에서 사망률이 의미 있게 감소하였다. DECIMAL 연구에서 6개월 사망률의 절대 위험 감소율은 편계두술을 받은 경우에서는 53%였다. DESTINY 연구는 환자 32명을 포함시킨 후 30일 사망률에서 유의한 결과를 얻었다(수술 시 12%, 보존적 치료 시 53%). HAMLET에서도, 수술 치료가 절대 위험 감소 38%로 생존율을 개선시켰다. 그러나, 3개의 RCT 모두 일부 결과 지표로 결정했던 기능적 예후에 있어서는 편계두술의 이득을 입증하지 못하였다(Table). 2009년 HAMLET 연구 결과가 발표된 DECIMAL, DESTINY, HAMLET의 최근 메타 분석에서는, 증상 발생 후 48시간 이내에 연구에 포함된 3개 RCT의 모든 대상 환자를 포함시켰고 (n=109). 1년째의 사망률과 기능적 예후에 초점을 맞추었다. 환자 109명 중 58명이 편계두술로 배정되었고, 51명이 보존적 치료군에 배정되었다. 수술 치료를 통해, 사망률의 절대 위험 감소율은 이 분석에서 49.9% (95% CI, 33.9–65.9)였고, 사망을 예방하는 치료 효과 확인에 필요한 환자 수 (number needed to treat)는 2명이었다. 또한 mRS (modified Rankin Scale)가 4점이 초과하는 것에 대한 절대 위험 감소율은 41.9% (95% CI, 25.2–58.6)로 유의하였으며, 이 경우 치료 효과 확인에 필요한 환자 수는 2명이었다. 그러나 mRS를 0–3점, 4–6점의 두 군으로 나누었을 때에는 기능적 예후에 대하여 수술이 더 좋은 결과를 보이는 않았다(절대 위험 감소율, 16.3%: 95% CI, -0.1~33.1). 수술 치료와 사망률의 감소는 생존자의 중등도 이상의 장애(mRS 4점)를 동반하였다.

편계두술과 연관된 합병증

DHC와 연관된 이학적, 내과학적 합병증은 환자의 임상적 예후에 영향을 줄 것이다. 즉각적인 이학적 합병증은 부작용한 감압, 수술 부위 감염, 출혈성 합병증, 반대측 정맥하산출이 다. 지연성 합병증에는 함몰 판 중추근(sinking flap syn-
2. 수술 시기

병태생리학적 관점에서, 조기 항암 수술은 혈심성 뇌부종의 발생 과정에서의 중간은 두개내압 증가를 줄이기 위하여 뇌 조직 손상을 예방한다. 다른 관점에서, 뇌종증 이후 부종은 혈심성 중상 발생 48시간 이후에 정점에 달한다. 그러므로, 이런 환자에서 항암 수술은 이두지의 여유로 안전한 수술 방법이다. 이런 유럽의 3개 RCT에서는 충분히 입증되지 않았다. 2007년의 중심 분석에서는 중상 발생 24시간 이전에 치료를 한 경우와 이후에 치료를 한 간의 차이가 있는 기능적 예후의 차이는 보이지 않았다. 그러나 이 때 분석에 포함된 모든 환자 48시간 이내에 치료를 받았다. HAMLET 연구에서 뇌종증 발생 96시간 이후에 치료시작하였으며, 이에 이전 분석에서 48시간 이내의 수술이 심한 장애나 사망(mRS 5 혹은 6)의 가능성을 의미 있게 줄이면, 지연된 환자들은 예후를 호전시키지 못하였다. 그러므로, 48시간이 지나서 수술을 받은 환자의 수가 적었다는 점을 고려하면, 최종적으로 결론을 내리기 어렵다.

1. 가능성 예후와 삶의 질

조기 항암수술은 약성 MCA 영역 뇌경색 이후의 사망률을 의미 있게 감소시킨다. 그러나 이는 또한 중등도 이상으로 심각한 장애(mRS 4 절)를 가진 생존 가능성을 증가시킨다. 40% 가까운 생존자는 감압 수술 후에 장애로 가지게 되는 사망률, mRS 4점인 경우(도움 없이 걷고 자신을 돌볼 수 없음)가 약간의 예후로 생각될 수 있는 지문을 가지게 한다. 운동 기능을 보면, 번개투출 이후 삶의 영적은 양성 MCA 영역 뇌경색의 이득은 생존자에서 중등도의 또는 심한 장애의 발생 비도로 인하여 대부분 상쇄된다. 그러나 이러한 점은 mRS가 그 환자의 적절한 예후 판정 방법이 아닌 것이다. 환자의 관점에서 신경심리학적 속성, 삶의 질, 또는 우울증 운동 기능과 비교하였을 때 삶의 질에 등장하는 중요한 영향을 가진다. 심리사회적인 환경, 돌보는 사람의 부담, 가족의 지지, 정제적 지원 등의 다른 요인들 또한 이관점에서 추가로 고려되어야 한다. 임시적으로 발생한 전향적 연구와 병태 분석에서는 수술 이후 생존한 환자의 삶의 질과 우울증에 대하여는 결정적인 결과를 제공하지 않았다. 이러한 관점은 확실히 추후에 연구되어야 할 것이다.
이내)이 유의한 것으로 보인다.

3. 수술의 연령 제한

판계두술을 연구한 그 어떤 RCT도 60세를 넘는 환자를 포함 시키지 않았다. 이러한 종류의 뇌종증을 경험하는 상당한 수의 환자가 이 연령에 포함되므로,7,9 이들 환자가 수술적 치료로 이 득을 얻을지는 불분명하다. 임상 연구에서의 결과에 따르면 60
세를 넘는 환자에서의 판계두술은 아마도 생존율을 증가시키지
지만, 낮은 예후와 가능성을 의존도 또한 증가할 것이다.7,9,11 또한,
판계두술을 받은 환자 138명을 개체적으로 분석한 연구에서,
연령은 예후에 영향을 미치는 주요 인자였다.9 이 결과는 2007
년에 발표된 3개의 유럽 RCT를 통한 푸타 분석한 연구에서는
확인되지 않았다.9,11 HAMLET 연구에서는 오히려 높은 연령의
환자(61~60세)에서 낮은 연령의 환자와 비교하였을 때 더 좋은
예후를 나타내는 결과를 보였다.12 그러한 결과를 고려하여 현
재 진행 중인, 60세를 넘는 환자에서의 판계두술을 연구하는
DESTINY 2의 결과가 기대되며, 이는 이 문제에서 조금 더 정
보를 제공할 것이다.

4. 우세대뇌반구 경색의 치료

어떤 우세대뇌반구(dominant hemisphere)에 발생한 악성
MCA 영역 뇌경색 환자에서 갑상 두부술을 시행할 것인가에 대
한 논쟁은, 심화증이 있는 경우 기능적 예후나 삶의 질이 비수
세대뇌반구(nondominant hemisphere)의 뇌경색 환자와 비
교하였을 때 더 나쁠 것이라는 가정에 기초한다. 그러나 이러한
가정은 지금까지 발표된 문헌의 결과에 의하여 완전히 지치지
없는, 이는 사람들은 기능적 예후, 삶의 질이 우세대뇌반구가
참여하였느냐에 따라 다르지 않는 것으로 보이기 때문이다.11,12 반대
로, 집중증에(attention deficit)나 우울증과 같은 비수세대뇌
반구의 뇌경색이 생긴 환자에서 보이는 신경인지학적 손상이
심화증과 마찬가지로 장애를 유발할 수 있다.12 그러나 이 질문
은 아직 적절히 설명되지 않았으며 추후 연구되어야 할 것이다.

결론

어떤 환자가 DHC를 필요로 하는지의 예측 모델은 MRI를
기반으로 한 부피적 분석과 신경세포손상을 측정하는 혈청 인
자를 통하에 개발된다. 여러 RCT가 완결되지 않은 방
안 DHC는 조금 더 적은 환자에서 최대한의 효과를 나타내는 인명
구조 수술이다. 삶의 질과 관련된 예후 측정, 수술 시기, 우세대
뇌반구의 치료에 대한 결론을 내릴 수 있는 추가 연구가 필요할
것이다.

Disclosures

R.G. is a consultant/scientific advisory board for Concentric Medici-
Fcal, Rapid Medical, Neurointerventions, and CoAxia Inc.

References

1. Cushing H. The establishment of cerebral hernia as a decompressive
measure for inaccessible brain tumors; with the description of inter-
muscular methods of making the bone defect in temporal and occipital
2. Scarcella G. Encephalomalacia simulating the clinical and radiological
Suboptimum hemisecotomy as a cause of additional cerebral lesions in
patients with malignant infarction of the middle cerebral artery. J Neu-
5. Krieger DW, Drenschuk AM, Kassner SE, Jauw M, Hantsont L. Early
clinical and radiological predictors of fatal brain swelling in ischemic
6. Kassner SE, Drenschuk AM, Beersouschot J, Schmutzych E, Harms L.
Viro P, Chalaia JA, Abbur R, McGrade H, Christos I, Krieger DW.
Predictors of fatal brain edema in massive hemispheric ischemic stroke.
7. Maranomato BV, Bahn MM, Wijlicks EF. Which patient fares worse
after early deterioration due to swelling from hemispheric stroke? Neuro-
Steinmetz H, Sitter M. Serum S100B predicts a malignant course
of infarction in patients with acute middle cerebral artery occlusion.
9. Thomalla G, Hartmann F, Jaergett E, Singer OC, Lehnhardt FG,
Kohrmann M, Kersten JF, Krutzellmann A, Humpich MC, Sobesky J,
Gerloff C, Villerling A, Fichler J, Neumann-Haelen T, Schellinger PD.
Rother J. Prediction of malignant middle cerebral artery infarction by
magnetic resonance imaging within 6 hours of symptom onset: a pro-
Srou S, Corna P, Dornout D, Runcurel G, Martsel C. Prediction of malig-
nant middle cerebral artery infarction by diffusion-weighted imaging.
11. Molina CA, Alvarez-Sabini J. Recanalization and rerpfusion therapies
Couvreur G, Rouzet F, Teoue E, Guillon B, Cartpentier A, Yelnick A,
George B, Payen D, Bousser MG. Sequential-design, multicenter, ran-
domized, controlled trial of early decompressive craniectomy in
malignant middle cerebral artery infarction (DECMICAL trial). Stroke.
Witte S, Jenetszy E, Hacke W. Decompressive surgery for the treatment
of malignant infarction of the middle cerebral artery (DESTINY): a
HB. Surgical decompression for space-occupying cerebral infarction
(the hemicraniectomy after middle cerebral artery infarction with life-
threatening edema trial [HAMELET]): a multicentre, open, randomised
GJ, Schmiedek P, Schwab S, Rothwell PM, Bousser MG, van der Worp
HB. Hacke W. Early decompressive surgery in malignant infarction of
the middle cerebral artery: a pooled analysis of three randomised controlled
Contralesional subdural effusion after aneurysm surgery and decom-
pressive craniectomy: case report and review of the literature. Clin Neurol
20 Stroke 한국어판 Vol. 4, No. 2

KEY WORDS: decompressive craniectomy ■ edema ■ middle cerebral artery infarction ■ stroke