Diagnosis and Management of Cerebral Venous Thrombosis

A Statement for Healthcare Professionals From the American Heart Association/American Stroke Association

The American Academy of Neurology affirms the value of this statement as an educational tool for neurologists.

The American Association of Neurological Surgeons and Congress of Neurological Surgeons have reviewed this document and affirm its educational content.

The Ibero-American Stroke Society (Sociedad Iberoamericana de Enfermedad Cerebrovascular) endorses the recommendations contained in this report.

Endorsed by the Society of NeuroInterventional Surgery

Gustavo Saposnik, MD, MSc, FAHA, Chair; Fernando Barinagarrementeria, MD, FAHA, FAAN; Robert D. Brown, Jr, MD, MPH, FAHA, FAAN; Cheryl D. Bushnell, MD, MHS, FAHA; Brett Cucchiara, MD, FAHA; Mary Cushman, MD, MSc, FAHA; Gabrielle deVeber, MD; Jose M. Ferro, MD, PhD; Fong Y. Tsai, MD; on behalf of the American Heart Association Stroke Council and the Council on Epidemiology and Prevention

Background—The purpose of this statement is to provide an overview of cerebral venous sinus thrombosis and to provide recommendations for its diagnosis, management, and treatment. The intended audience is physicians and other healthcare providers who are responsible for the diagnosis and management of patients with cerebral venous sinus thrombosis.

Methods and Results—Members of the panel were appointed by the American Heart Association Stroke Council’s Scientific Statement Oversight Committee and represent different areas of expertise. The panel reviewed the relevant literature with an emphasis on reports published since 1966 and used the American Heart Association levels-of-evidence grading algorithm to rate the evidence and to make recommendations. After approval of the statement by the panel, it underwent peer review and approval by the American Heart Association Science Advisory and Coordinating Committee.

Conclusions—Evidence-based recommendations are provided for the diagnosis, management, and prevention of recurrence of cerebral venous sinus thrombosis. Recommendations on the evaluation and management of cerebral venous thrombosis during pregnancy and in the pediatric population are provided. Considerations for the management of clinical complications (seizures, hydrocephalus, intracranial hypertension, and neurological deterioration) are also summarized. An algorithm for diagnosis and management of patients with cerebral venous sinus thrombosis is described. (Stroke. 2011;42:1158-1192.)

Key Words: AHA Scientific Statements • venous thrombosis • sinus thrombosis, intracranial • brain infarction, venous • stroke • disease management • prognosis • outcome assessment • anticoagulants • pregnancy • children
Thrombosis of the dural sinus and/or cerebral veins (CVT) is an uncommon form of stroke, usually affecting young individuals. Despite advances in the recognition of CVT in recent years, diagnosis and management can be difficult because of the diversity of underlying risk factors and the absence of a uniform treatment approach. CVT represents 0.5% to 1% of all strokes. Multiple factors have been associated with CVT, but only some of them are reversible. Prior medical conditions (eg, thrombophilies, inflammatory bowel disease), transient situations (eg, pregnancy, dehydration, infection), selected medications (eg, oral contraceptives, substance abuse), and unpredictable events (eg, head trauma) are some predisposing conditions.

Given the diversity of causes and presenting scenarios, CVT may commonly be encountered not only by neurologists and neurosurgeons but also by emergency physicians, internists, oncologists, hematologists, obstetricians, pediatricians, and family practitioners. Our purpose in the present scientific statement is to review the literature on CVT and to provide recommendations for its diagnosis and management. Writing group members were appointed by the American Heart Association (AHA) Stroke Council’s Scientific Statement Oversight Committee and the Council on Epidemiology and Prevention. The panel included members with several different areas of expertise. The panel reviewed relevant articles on CVT in adults and children using computerized searches of the medical literature through July 2010. These articles were supplemented by other articles known to the authors. The evidence is organized within the context of the AHA framework and is classified according to the joint AHA/American College of Cardiology Foundation and supplementary AHA Stroke Council methods of classifying the level of certainty and the class and level of evidence (Tables 1 and 2). After review by the panel members, the manuscript was reviewed by expert peer reviewers and members of the Stroke Council Leadership Committee and was subsequently approved by the AHA’s Science Advisory and Coordinating Committee.

Although information about the cause and clinical manifestations of CVT is included for the convenience of readers who may be unfamiliar with these topics, the group’s recommendations emphasize issues regarding diagnosis, management, and treatment. The recommendations are based on the current available evidence and were approved by all members of the writing group. Despite major progress in the evaluation and management of this rare condition in recent years, much of the literature remains descriptive. In some areas, evidence is lacking to guide decision making; however, the writing group made an effort to highlight those areas and provide suggestions, with the understanding that some physicians may need more guidance, particularly in making decisions when extensive evidence is not available. Continued research is essential to better understand issues related to the diagnosis and treatment of CVT. Identification of subgroups at higher risk would allow a more careful selection of patients who may benefit from selective interventions or therapies.

Epidemiology and Risk Factors for CVT

CVT is an uncommon and frequently unrecognized type of stroke that affects approximately 5 people per million annually and accounts for 0.5% to 1% of all strokes. CVT is more commonly seen in young individuals. According to the largest cohort study (the International Study on Cerebral Venous and Dural Sinuses Thrombosis [ISCVT]), 487 (78%) of 624 cases occurred in patients <50 years of age (Figure 1). Clinical features are diverse, and for this reason, cases should be sought among diverse clinical index conditions. A prior pathological study found a prevalence of CVT of 9.3% among 182 consecutive autopsies. No population studies have reported the incidence of CVT. Very few stroke registries included cases with CVT. This may result in an overestimation of risk associated with the various conditions owing to referral and ascertainment biases. In the Registro Nacional Mexicano de Enfermedad Vascular Cerebral (RENAMEVASC), a multihospital prospective Mexican stroke registry, 3% of all stroke cases were CVT. A clinic-based registry in Iran reported an annual CVT incidence of 12.3 per million. In a series of intracerebral hemorrhage (ICH) cases in young people, CVT explained 5% of all cases.

Cause and Pathogenesis: Underlying Risk Factors for CVT

Predisposing causes of CVT are multiple. The risk factors for venous thrombosis in general are linked classically to the Virchow triad of stasis of the blood, changes in the vessel wall, and changes in the composition of the blood. Risk factors are usually divided into acquired risks (eg, surgery, trauma, pregnancy, puerperium, antiphospholipid syndrome, cancer, exogenous hormones) and genetic risks (inherited thrombophilia).

Table 3 summarizes the evidence for a cause-and-effect relationship between prothrombotic factors and CVT. Evidence for the strength and consistency of association, biological plausibility, and temporality is summarized. These criteria are most closely met for deficiency of antithrombin III, protein C, and protein S; factor V Leiden positivity; use of oral contraceptives; and hyperhomocysteinemia, among others.

Prothrombotic Conditions

The most widely studied risk factors for CVT include prothrombotic conditions. The largest study, the ISCVT, is a multinational, multicenter, prospective observational study with 624 patients. Thirty-four percent of these patients had an inherited or acquired prothrombotic condition. The prevalence of different prothrombotic conditions is summarized in Table 3. Recently, another group in the United States reported that 21% of 182 CVT case subjects in 10 hospitals had a prothrombotic condition.

Antithrombin III, Protein C, and Protein S Deficiency

Two studies have analyzed the role of natural anticoagulant protein deficiencies (antithrombin III, protein C, and protein S) as risk factors for CVT. One study compared 121 patients with a first CVT with 242 healthy control subjects. The other study compared 51 patients with CVT with 120 healthy control subjects. Only 1 patient (2%) had antithrombin III deficiency. The combined odds ratio (OR) of CVT when these 2 studies were combined was 11.1 for protein C deficiency (95% confi-
dence interval [CI] 1.87 to 66.05; \(P = 0.009 \) and 12.5 for protein S deficiency (95% CI 1.45 to 107.29; \(P = 0.03 \)).

Antiphospholipid and Anticardiolipin Antibodies
The first study mentioned above found a higher prevalence of antiphospholipid antibodies in patients with CVT (9 of 121) than in control subjects (0 of 242).36 In another study from India with 31 CVT patients, anticardiolipin antibodies were detected in 22.6% of CVT patients compared with 3.2% of normal control subjects.12 Similar findings (5.9%) were observed in the ISCVT study.10

Factor V Leiden Gene Mutation and Resistance to Activated Protein C
Resistance to activated protein C is mainly caused by the presence of the factor V Leiden gene mutation, which is a common inherited thrombophilic disorder. A recent meta-analysis of 13 studies, including 469 CVT cases and 3023 control subjects,28 reported a pooled OR of CVT of 3.38 (95% CI 2.27 to 5.05) for factor V Leiden, which is similar to its association with venous thromboembolism (VTE) in general.28

Prothrombin G20210A Mutation
The prothrombin G20210A mutation is present in 2% of whites and causes a slight elevation of prothrombin level.55,56 A meta-analysis of 9 studies,38 including 360 CVT patients and 2688 control subjects, reported a pooled OR of CVT of 9.27 (95% CI 5.85 to 14.67) for this mutation,28 which is stronger than its association with VTE in general.

Hyperhomocysteinemia
Hyperhomocysteinemia is a risk factor for deep vein thrombosis (DVT) and stroke but has not been clearly associated with an increased risk of CVT. Five case-control studies evaluated...
hyperhomocysteinemia in patients with CVT.13,16,17,29,30 Researchers from Milan13 reported on 121 patients with a first CVT and 242 control subjects, finding hyperhomocysteinemia in 33 patients (27%) and 20 control subjects (8%; OR 4.2, 95% CI 2.3 to 7.6). Low levels of serum folate and the 677TT methylene-tetrahydrofolate reductase genotype were not associated with risk, independent of homocysteine level.13

A study of 45 patients with CVT and 90 control subjects in Mexico reported an adjusted OR of CVT of 4.6 (95% CI 1.6 to 12.8) associated with high fasting homocysteine and an OR of 3.5 (95% CI 1.2 to 10.0) associated with low folate.29 A small Italian study of 26 consecutive patients with CVT and 100 healthy control subjects reported that 38.5% of case subjects and 13% of control subjects had hyperhomocysteinemia (OR 4.2, 95% CI 1.6 to 11.2).16 No significant differences were found in the prevalence of prothrombin or methylene-tetrahydrofolate reductase mutation. No factor V Leiden mutation was found. Another Italian group17 found a strong and significant association of the prothrombin G20210A mutation (30% versus 2.5% in patients versus control subjects, respectively, P=0.001; OR 16.2, P=0.002) and hyperhomocysteinemia (43.3% versus 10%, P=0.002; OR 6.9, P=0.002).

Pregnancy and Puerperium
Pregnancy and the puerperium are common causes of transient prothrombotic states.57 Approximately 2% of pregnancy-associated strokes are attributable to CVT.31 The frequency of CVT in the puerperium is estimated at 12 cases per 100 000 deliveries, only slightly lower than puerperal arterial stroke.58

In a study from Mexico, ≈50% of CVT occurred during pregnancy or puerperium.32 Most pregnancy-related CVT occurs in the third trimester or puerperium. Seven of 8 CVTs among 50 700 admissions for delivery in Canada occurred postpartum.33 During pregnancy and for 6 to 8 weeks after birth, women are at increased risk of venous thromboembolic events.34 Pregnancy induces several prothrombotic changes in the coagulation system that persist at least during early puerperium. Hypercoagulability worsens after delivery as a result of volume depletion and trauma. During the puerperium, additional risk factors include infection and instrumental delivery or cesarean section. One study reported that the risk of peripartum CVT increased with increasing maternal age, increasing hospital size, and cesarean delivery, as well as in the presence of hypertension, infections, and excessive vomiting in pregnancy.35 Recently, it was reported that in pregnant women, hyperhomocysteinemia was associated with increased risk of puerperal CVT (OR 10.8, 95% CI 4.0 to 29.4) in a study of 60 case subjects and 64 control subjects.30

Oral Contraceptives
A 1998 study compared the prevalence of several risk factors, including use of oral contraceptives, among 40 female patients with CVT, 80 female patients with DVT of the lower extremities, and 120 female control subjects.36 Nearly all CVT case subjects were using oral contraceptives (96%), which conferred 22.1-fold increased odds of CVT (95% CI 5.9 to 84.2). The OR for women with the prothrombin G20210A mutation who used oral contraceptives was 149.3 (95% CI 31.0 to 711.0) compared with those with neither characteristic. Stratification for the presence of factor V Leiden or prothrombin mutation and the use
Table 3. Predisposing Conditions for CVT and Principles in Favor of a Cause-and-Effect Relationship

<table>
<thead>
<tr>
<th>Condition</th>
<th>Prevalence, %*</th>
<th>Consistency†</th>
<th>Strength of Association‡</th>
<th>Biological Plausibility‡</th>
<th>Temporality‡</th>
<th>Biological Gradient‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prothrombotic conditions</td>
<td>34.1</td>
<td>Yes†</td>
<td>NA</td>
<td>Yes</td>
<td>Yes‡</td>
<td>Yes‡</td>
</tr>
<tr>
<td>Antithrombin III deficiency</td>
<td>Yes†</td>
<td>NA</td>
<td>12.1 (1.9–66.0)</td>
<td>Yes</td>
<td>Yes‡</td>
<td>Yes‡</td>
</tr>
<tr>
<td>Protein C deficiency</td>
<td>Yes†</td>
<td>11.1</td>
<td>12.5 (1.5 to 107.3)</td>
<td>Yes</td>
<td>Yes‡</td>
<td>Yes‡</td>
</tr>
<tr>
<td>Protein S deficiency</td>
<td>Yes†</td>
<td>8.8</td>
<td>3.4 (2.3 to 5.1)</td>
<td>Yes</td>
<td>Yes‡</td>
<td>Yes‡</td>
</tr>
<tr>
<td>Antiphospholipid and anticardiolipin antibodies</td>
<td>Yes†</td>
<td>9.3</td>
<td>(5.9 to 14.7)</td>
<td>Yes</td>
<td>Yes‡</td>
<td>Yes‡</td>
</tr>
<tr>
<td>Resistance to activated protein C and factor V Leiden</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mutation G20210A of factor II</td>
<td>Yes†</td>
<td>4.5</td>
<td>4.6 (1.6–12.0)</td>
<td>Yes</td>
<td>Yes‡</td>
<td></td>
</tr>
<tr>
<td>Pregnancy and puerperium</td>
<td>21</td>
<td>Yes†</td>
<td>NA</td>
<td>Yes</td>
<td>Yes‡</td>
<td></td>
</tr>
<tr>
<td>Oral contraceptives</td>
<td>54.3</td>
<td>Yes†</td>
<td>5.6 (4.0–7.9)</td>
<td>Yes</td>
<td>Yes‡</td>
<td>Yes‡</td>
</tr>
<tr>
<td>Drugs</td>
<td>7.5</td>
<td>NA</td>
<td>Yes</td>
<td>Yes</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Cancer related</td>
<td>7.4</td>
<td>Yes†</td>
<td>NA</td>
<td>Yes</td>
<td>Yes‡</td>
<td>NA</td>
</tr>
<tr>
<td>Hypercoagulable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antineoplastic drugs (tamoxifen, L-asparaginase)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infection</td>
<td>12.3</td>
<td>NA</td>
<td>Yes</td>
<td>Yes</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Mechanical precipitants</td>
<td>4.5</td>
<td>Yes†</td>
<td>NA</td>
<td>Yes</td>
<td>Yes‡</td>
<td>NA</td>
</tr>
<tr>
<td>Spontaneous intracranial hypotension</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lumbar puncture</td>
<td>1.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other hematologic disorders</td>
<td>12</td>
<td>Yes†</td>
<td>NA</td>
<td>Yes</td>
<td>Yes‡</td>
<td>NA</td>
</tr>
<tr>
<td>Paroxysmal nocturnal hemoglobinuria</td>
<td>Yes†</td>
<td>7.2</td>
<td>0.6</td>
<td>Yes</td>
<td>Yes‡</td>
<td>NA</td>
</tr>
<tr>
<td>Iron deficiency anemia</td>
<td>Yes†</td>
<td>1</td>
<td>0.2</td>
<td>Yes</td>
<td>Yes‡</td>
<td>NA</td>
</tr>
<tr>
<td>Nephrotic syndrome</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polycythemia, thrombocythemia</td>
<td>2.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systemic diseases</td>
<td>7.2</td>
<td>Yes†</td>
<td>NA</td>
<td>Yes</td>
<td>Yes‡</td>
<td>NA</td>
</tr>
<tr>
<td>Systemic lupus erythematosus</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Behçet disease</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inflammatory bowel disease</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thyroid disease</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sarcoidosis</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None identified</td>
<td>12.5</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

CVT indicates cerebral venous thrombosis; OR, odds ratio; CI, confidence interval; NA, nonapplicable/nonavailable; and IV, intravenous.

*Prevalence as per Ferro et al.10 Percentages for CVT associated with oral contraceptives or pregnancy/puerperium are reported among 381 women ≥50 years of age.

†Cause-and-effect relationship determined as follows: (1) Consistency of association: Has the association been repeatedly observed by different investigators (yes/no)? (2) Strength of association: How strong is the effect (relative risk or OR)? (3) Biological plausibility: Does the association make sense, and can it be explained pathophysiologically (yes/no)? (4) Temporality: Does exposure precede adverse outcome (yes/no)? (5) Biological gradient: Does a dose-response relationship exist (yes/no)? Evidence of a strong and consistent association, evidence of biological plausibility, a notable risk of recurrent events, and detection of a biological gradient are suggestive of causation rather than association by chance alone. Modified from Grimes and Schulz54 with permission of the publisher. Copyright © 2002, Elsevier.

‡Evidence for the biological gradient is not specific for CVT but for VTE: Anticardiolipins and CVT—based on a case-matched control study (Christopher et al)15; oral contraceptives—from Dentali et al28; cancer—results among 7029 patients with cancer, 20 of whom (0.3%) developed CVT, combined with results from Ferro et al (OR 27.9, 95% CI 16.5 to 47.2)10; hyperhomocysteinemia and CVT—Martelletti et al.18 For patients with the prothrombin 20210 mutation, having a heterozygous mutation increases the risk of developing a first venous thrombotic event by approximately 2 to 3 times the background risk (or 2 to 3 in 1000 people each year). Having homozygous prothrombin mutations increases the risk further, but it is not yet well established how much the risk is increased (Varga et al).25
of oral contraceptives showed similar point estimates for the coagulation abnormalities alone and the use of oral contraceptives alone, whereas the presence of both risk factors gave an OR of 30.0 (95% CI 3.4 to 263.0) for factor V Leiden and 79.3 (95% CI 10.0 to 629.4) for the prothrombin mutation. A study in the Netherlands found that of 40 female CVT patients, 85% used oral contraceptives, with an adjusted OR of 13 (95% CI 5 to 37). The combination of oral contraceptives with a prothrombotic condition also dramatically increased the risk of CVT. A study from Brazil showed similar results. In a meta-analysis that included 16 studies, the authors reported an increased risk of CVT in oral contraceptive users (relative risk 15.9, 95% CI 6.98 to 36.2). In another meta-analysis of 17 studies, an increased risk of CVT was found in patients who used oral contraceptives (OR 5.59, 95% CI 3.95 to 7.91; \(P < 0.001 \)). It is clear that the use of oral contraceptives is associated with an increased risk of CVT, that the great majority of younger nonpregnant women with CVT are oral contraceptive users, and that the risk of CVT with oral contraceptive use in women is greater among those with a hereditary prothrombotic factor.

Cancer

In the ISCVT, 7.4% of cases of CVT were associated with cancer. It has been speculated that CVT could be more frequent in cancer patients, particularly in patients with hematologic malignancies; however, there are no studies with a control group. Potential mechanisms for an association of cancer with CVT include direct tumor compression, tumor invasion of cerebral sinuses, or the hypercoagulable state associated with cancer. Chemotherapeutic and hormonal agents used for cancer treatment may also play a role.

Other Uncommon Causes

New neuroimaging procedures have increased the ability to detect CVT in recent years and have also helped to identify other potential causes, including infections, mainly in parameningeal locations (ear, sinus, mouth, face, and neck). These causes only explained 8.2% of all cases in the ISCVT series. In contrast, CVT caused by infection is more common in children. In a recent series of 70 children with CVT in the United States, 40% had infection-related CVT. Conversely, a French study of 62 adults with isolated lateral sinus thrombosis found that only 3 cases were related to parameningeal infections.

Other conditions have been associated with CVT in case reports or small series, including paroxysmal nocturnal hemoglobinuria, iron deficiency anemia, thrombocytopenia, heparin-induced thrombocytopenia, thrombotic thrombocytopenic purpura, nephrotic syndrome, inflammatory bowel disease, systemic lupus erythematosus, Behçet disease, mechanical precipitants, epideral blood patch, spontaneous intracranial hypotension, and lumbar puncture.

Clinical Diagnosis of CVT

Principal Clinical Findings

The diagnosis of CVT is typically based on clinical suspicion and imaging confirmation. Clinical findings in CVT usually fall into 2 major categories, depending on the mechanism of neurological dysfunction: (1) Those that are related to increased intracranial pressure attributable to impaired venous drainage and (2) those related to focal brain injury from venous ischemia/infarction or hemorrhage. In practice, many patients have clinical findings due to both mechanisms, either at presentation or with progression of the underlying disease. Headache, generally indicative of an increase in intracranial pressure, is the most common symptom in CVT and was present in nearly 90% of patients in the ISCVT. Similar headache frequency has been reported in other populations. The headache of CVT is typically described as diffuse and often progresses in severity over days to weeks. A minority of patients may present with thunderclap headache, suggestive of subarachnoid hemorrhage, and a migrainous type of headache has been described. Isolated headache without focal neurological findings or papilledema occurs in up to 25% of patients with CVT and presents a significant diagnostic challenge. CVT is an important diagnostic consideration in patients with headache and papilledema or diplopia (caused by sixth nerve palsy) even without other neurological focal signs suggestive of idiopathic intracranial hypertension. When focal brain injury occurs because of venous ischemia or hemorrhage, neurological signs and symptoms referable to the affected region are often present; most common are hemiparesis and aphasia, but other cortical signs and sensory symptoms may occur. Psychosis, in conjunction with focal neurological signs, has also been reported.

Clinical manifestations of CVT may also depend on the location of the thrombosis (Figure 2). The superior sagittal sinus is most commonly involved, which may lead to headache, increased intracranial pressure, and papilledema. A motor deficit, sometimes with seizures, can also occur. Scalp edema and dilated scalp veins may be seen on examination. For lateral sinus thromboses, symptoms related to an underlying condition (middle ear infection) may be noted, including constitutional symptoms, fever, and ear discharge. Pain in the ear or mastoid region and headache are typical. On examination, increased intracranial pressure and distention of the scalp veins may be noted. Hemianopia, contralateral weakness, and aphasia may sometimes be seen owing to cortical involvement. Approximately 16% of patients with CVT have thrombosis of the deep cerebral venous system (internal cerebral vein, vein of Galen, and straight sinus), which can lead to thalamic or basal ganglial infarction. Most patients present with rapid neurological deterioration. CVT may be confused with other medical conditions. Cortical vein thrombosis is also uncommon, and specific clinical syndromes related to the larger cortical veins are rarely seen (eg, temporal lobe hemorrhage associated with vein of Labbé thrombosis).

Several important clinical features distinguish CVT from other mechanisms of cerebrovascular disease. First, focal or generalized seizures are frequent, occurring in \(\approx 40\% \) of patients. Second, an important clinical correlate to the anatomy of cerebral venous drainage is that bilateral brain involvement is not infrequent. This is particularly notable in cases that involve the deep venous drainage system, when bilateral thalamic involvement may occur, causing alterations in level of consciousness without focal neurological findings. Bilateral motor signs, including paraparesis, may also be present due to sagittal sinus thrombosis and bitemporal injury. Finally, patients with
CVT often present with slowly progressive symptoms. Delays in diagnosis of CVT are common and significant. In the ISCVT, symptom onset was acute (<48 hours) in 37% of patients, subacute (48 hours to 30 days) in 56% of patients, and chronic (>30 days) in 7% of patients. The median delay from onset of symptoms to hospital admission was 4 days, and from symptom onset to diagnosis, it was 7 days.

Other Clinical and Laboratory Findings

Routine Blood Work

A complete blood count, chemistry panel, sedimentation rate, and measures of the prothrombin time and activated partial thromboplastin time are indicated for patients with suspected CVT. These studies may demonstrate abnormalities suggestive of an underlying hypercoagulable state, an infectious process, or an inflammatory state, all of which may contribute to the development of CVT.

Recommendations

1. In patients with suspected CVT, routine blood studies consisting of a complete blood count, chemistry panel, prothrombin time, and activated partial thromboplastin time should be performed (Class I; Level of Evidence C).

2. Screening for potential prothrombotic conditions that may predispose a person to CVT (eg, use of contraceptives, underlying inflammatory disease, infectious process) is recommended in the initial clinical assessment (specific recommendations for testing for thrombophilia are found in the long-term management section of this document) (Class I; Level of Evidence C).

Lumbar Puncture

Unless there is clinical suspicion of meningitis, examination of the cerebrospinal fluid (CSF) is typically not helpful in cases with focal neurological abnormalities and radiographic confirmation of the diagnosis of CVT. Elevated opening pressure is a frequent finding in CVT and is present in >80% of patients. An elevated opening pressure may be a clue for diagnosing CVT in patients who present at the emergency department with headaches. Elevated cell counts (found in ~50% of patients) and protein levels (found in ~35%) are often present, but their absence should not discourage consideration of the diagnosis of CVT. There are no specific CSF abnormalities in CVT. Therapeutic considerations are described in “Management and Prevention of Early Complications (Hydrocephalus, Intracranial Hypertension, Seizures).”

D-Dimer

Measurement of D-dimer, a product of fibrin degradation, has a diagnostic role in exclusion of DVT or pulmonary embolus when used with pretest probability assessment. A number of small studies, all with methodological limitations, demonstrated high sensitivity for the identification of patients with CVT and a potential role for exclusion of the diagnosis, although this finding was not universal. As is the case with its use in DVT and pulmonary embolism (PE), the specificity of D-dimer was poor, because there are many causes of elevated D-dimer. In a well-designed prospective, multicenter study of 343 patients presenting to the emergency department with symptoms that suggested CVT, a positive D-dimer level (defined as a level >500 μg/L) was found in 34 of 35 patients with confirmed CVT and 27 of 308 patients without CVT. This yielded a sensitivity of 97.1%, a specificity of 91.2%, a negative predictive value of 99.6%, and a positive predictive value of 55.7%, which supports a clinically useful role of D-dimer in excluding CVT. A normal D-dimer level according to a sensitive immunoassay or rapid ELISA may help identify patients with a low probability of CVT. A subsequent study of 73 patients with confirmed CVT found normal D-dimer levels in 7 patients (10%). Five of the 7 patients with confirmed CVT and negative D-dimer presented with isolated headache, which suggests that this subgroup might be particularly at risk of false-negative results of D-dimer testing. In contrast, of the 57 patients with confirmed CVT who presented with isolated intracranial hypertension or encephalic signs, only 2 (3.5%) had negative D-dimer testing.

Several factors may account for some of the discrepant findings noted above. First, D-dimer levels decline with time from onset of symptoms, which suggests that patients who...
present with subacute or chronic symptoms are more likely to have negative D-dimer levels.82 Second, the anatomic extent of thrombosed sinuses may correlate with D-dimer levels, which suggests that patients with lesser clot burden may have false-negative D-dimer testing results.82 Finally, a number of different D-dimer assays are available with variable test performance characteristics.

Recommendation

1. A normal D-dimer level according to a sensitive immunoassay or rapid enzyme-linked immunosorbent assay (ELISA) may be considered to help identify patients with low probability of CVT82,83 (Class IIb; Level of Evidence B). If there is a strong clinical suspicion of CVT, a normal D-dimer level should not preclude further evaluation.

Common Pitfalls in the Diagnosis of CVT

There are several clinical scenarios in which misdiagnosis, or delay in diagnosis, of CVT frequently occurs.

Intracranial Hemorrhage

Approximately 30\% to 40\% of patients with CVT present with ICH.14,84 Identification of these patients is critical given that the pathophysiologic underlying hemorrhage in such cases is distinct from other causes of ICH, and this has important treatment implications. Features suggestive of CVT as a cause of ICH include prodromal headache (which is highly unusual with other causes of ICH), bilateral parenchymal abnormalities, and clinical evidence of a hypercoagulable state. These features may not be present, however, and a high index of clinical suspicion is necessary. Isolated subarachnoid hemorrhage may also occur due to CVT, although this is rare (0.8\% of patients in ISCVT). Hemorrhage location is an important consideration in estimating the likelihood of CVT and is discussed elsewhere in this statement (see “Imaging in the Diagnosis of CVT” for further details).

Recommendation

1. In patients with lobar ICH of otherwise unclear origin or with cerebral infarction that crosses typical arterial boundaries, imaging of the cerebral venous system should be performed (Class I; Level of Evidence C).

Isolated Headache/Idiopathic Intracranial Hypertension

In 1 series, 25\% of patients with CVT presented with isolated headache, and another 25\% presented with headache in conjunction with papilledema or sixth nerve palsies suggestive of idiopathic intracranial hypertension.65 In a series of 131 patients who presented with papilledema and clinically suspected idiopathic intracranial hypertension, 10\% had CVT when magnetic resonance imaging (MRI)/magnetic resonance venography (MRV) was performed.85 Imaging of the cerebral venous system has been recommended for all patients with the clinical picture of idiopathic intracranial hypertension, because the distinction between CVT and idiopathic intracranial hypertension has important prognostic and treatment implications, and the yield of imaging is significant.57,85 For patients with isolated headache, the proper strategy for identification of CVT is much less clear. Headache is an extremely common symptom, and the vast majority of patients with isolated headache will not have CVT. The cost-effectiveness and yield of routine imaging are highly uncertain. Factors that may suggest the diagnosis, and thus prompt imaging evaluation, include a new, atypical headache; headache that progresses steadily over days to weeks despite conservative treatment; and thunderclap headache.64 In addition, a greater level of clinical suspicion for CVT should be maintained in patients with a hypercoagulable state.

Recommendations

1. In patients with the clinical features of idiopathic intracranial hypertension, imaging of the cerebral venous system is recommended to exclude CVT (Class I; Level of Evidence C).

2. In patients with headache associated with atypical features, imaging of the cerebral venous system is reasonable to exclude CVT (Class IIa; Level of Evidence C).

Isolated Mental Status Changes

Occasionally, patients with CVT will present with somnolence or a confusional state in the absence of obvious focal neurologic abnormalities.86–88 Such clinical presentations are more common in the elderly and with thrombosis of the deep venous system.89,90 Although a number of mechanisms may underlie this clinical presentation, an important cause is bilateral thalamic lesions due to involvement of the deep venous system. Computed tomography (CT) scanning, especially if performed early in the clinical course, may be unremarkable; MRI will usually demonstrate abnormalities in such cases.

Imaging in the Diagnosis of CVT

Over the past 2 decades, diagnostic imaging has played an increasing role in the diagnosis and management of CVT.2,3,55,91–97 Diagnostic imaging of CVT may be divided into 2 categories, which will be reviewed in more detail below: Noninvasive modalities and invasive modalities. The goal is to determine vascular and parenchymal changes associated with this medical condition. In some cases, the diagnosis is made only with cerebral digital subtraction angiography.72,91,98–100

Noninvasive Diagnostic Modalities: CT, MRI, and Ultrasound

Computed Tomography

CT is widely used as the initial neuroimaging test in patients who present with new-onset neurological symptoms such as headache, seizure, mental alteration, or focal neurological signs. CT without contrast is often normal but may demonstrate findings that suggest CVT.92,93 Anatomic variability of the venous sinuses makes CT diagnosis of CVT insensitive, with results on a plain CT being abnormal only in \(~30\%) of CVT cases.1,28,70,94,95,98 The primary sign of acute CVT on a noncontrast CT is hyperdensity of a cortical vein or dural sinus. Acutely thrombosed cortical veins and dural sinuses appear as a homogenous hyperdensity that fills the vein or sinus and are most clearly visualized when CT slices are perpendicular to the dural sinus or vein (Figure 3). However, only approximately one third of CVT demonstrates direct signs of hyperdense dural sinus.70,94,96 Thrombosis of the posterior portion of the superior sagittal sinus may appear as
a dense triangle, the dense or filled delta sign. An ischemic infarction, sometimes with a hemorrhagic component, may be seen. An ischemic lesion that crosses usual arterial boundaries (particularly with a hemorrhagic component) or in close proximity to a venous sinus is suggestive of CVT. Subarachnoid hemorrhage and ICH are infrequent. Subarachnoid hemorrhage was found in only 0.5% to 0.8% of patients with CVT, and when present, it was localized in the convexity as opposed to the area of the circle of Willis usually observed in patients with aneurysmal rupture.

Contrast-enhanced CT may show enhancement of the dural lining of the sinus with a filling defect within the vein or sinus. Contrast-enhanced CT may show the classic “empty delta” sign, in which a central hypointensity due to very slow or absent flow within the sinus is surrounded by contrast enhancement in the surrounding triangular shape in the posterior aspect of the superior sagittal sinus. This finding may not appear for several days after onset of symptoms but does persist for several weeks.

Because symptoms of CVT may be overlooked or associated with delays in seeking medical attention, CVT may be seen only during the subacute or chronic stage. Compared with the density of adjacent brain tissue, thrombus may be isodense, hypodense, or of mixed density. In this situation, contrast CT or CT venography (CTV) may assist the imaging diagnosis.

Magnetic Resonance Imaging

In general, MRI is more sensitive for the detection of CVT than CT at each stage after thrombosis (Table 4; Figure 4). CVT is diagnosed on MRI with the

Table 4. Comparison of the Advantages and Disadvantages of CT and MRI in the Diagnosis of CVT

<table>
<thead>
<tr>
<th></th>
<th>CT+CTV</th>
<th>MRI+MRV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advantages</td>
<td>Good visualization of major venous sinuses</td>
<td>Visualization of the superficial and deep venous systems</td>
</tr>
<tr>
<td></td>
<td>Quick (5–10 min)</td>
<td>Good definition of brain parenchyma</td>
</tr>
<tr>
<td></td>
<td>Readily available</td>
<td>Early detection of ischemic changes</td>
</tr>
<tr>
<td></td>
<td>Fewer motion artifacts</td>
<td>No radiation exposure</td>
</tr>
<tr>
<td></td>
<td>Can be used in patients with a pacemaker, defibrillator, or claustrophobia</td>
<td>Detection of cortical and deep venous thrombosis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Detection of macrobleeding and microbleeding</td>
</tr>
<tr>
<td>Disadvantages</td>
<td>Exposure to ionizing radiation</td>
<td>Time consuming</td>
</tr>
<tr>
<td></td>
<td>Risk of contrast reactions</td>
<td>Motion artifacts</td>
</tr>
<tr>
<td></td>
<td>Risk of iodinated contrast nephropathy (eg, in patients with diabetes, renal failure)</td>
<td>Availability</td>
</tr>
<tr>
<td></td>
<td>Low resolution for small parenchymal abnormalities</td>
<td>Confers a low risk of gadolinium-induced nephrogenic systemic fibrosis</td>
</tr>
<tr>
<td></td>
<td>Poor detection of cortical and deep venous thrombosis</td>
<td>Slow flow states, complex flow patterns, and normal anatomic variations in dural sinus flow can affect the interpretation</td>
</tr>
<tr>
<td>Sensitivity/specificity</td>
<td>Small studies comparing multiplanar CT/CTV vs DSA showed 95% sensitivity and 91% specificity*</td>
<td>The sensitivity and specificity of MRI/MRV are not known owing to the lack of large MRI/MRV head-to-head studies with DSA. Echoplanar T2 susceptibility-weighted imaging combined with MRV are considered the most sensitive sequences</td>
</tr>
<tr>
<td>Practical application</td>
<td>Acute onset of symptoms</td>
<td>Acute or subacute onset of symptoms</td>
</tr>
<tr>
<td></td>
<td>Emergency setting</td>
<td>Emergency or ambulatory setting</td>
</tr>
<tr>
<td></td>
<td>Multidetector CTV can be used as the initial test when MRI is not readily available</td>
<td>Patients with suspected CVT and normal CT/CTV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In patients with suspected deep CVT, because complex basal dural sinuses and their emissary channels are more commonly seen</td>
</tr>
</tbody>
</table>

CT indicates computed tomography; MRI, magnetic resonance imaging; CVT, cerebral venous thrombosis; CTV, CT venography; MRV, magnetic resonance venography; and DSA, digital subtraction angiography. *Wetzel et al.*

Figure 3. Noncontrast computed tomography head scan showed spontaneous hyperdensity of right transverse sinus.
detection of thrombus in a venous sinus. Findings are variable but may include a “hyperintense vein sign.” Isolated cortical venous thrombosis is identified much less frequently than sinus thrombosis. The magnetic resonance signal intensity of venous thrombus varies according to the time of imaging from the onset of thrombus formation. Acute thrombus may be of low intensity. In the first week, venous thrombus frequently appears as isointense to brain tissue on T1-weighted images and hypointense on T2-weighted images owing to increased deoxyhemoglobin. By the second week, thrombus contains methemoglobin, which results in hyperintensity on T1- and T2-weighted images (Figure 5). With evolution of the thrombus, the paramagnetic products of deoxyhemoglobin and methemoglobin are present in the sinus. A thrombosed dural sinus or vein may then demonstrate low signal on gradient-echo and susceptibility-weighted images of magnetic resonance images. The principal early signs of CVT on non–contrast-enhanced MRI are the combination of absence of a flow void with alteration of signal intensity in the dural sinus. MRI of the brain is suggestive of CVT by the absence of a fluid void signal in the sinus, T2 hypointensity suggestive of a thrombus, or a central isodense lesion in a venous sinus with surrounding enhancement. This appearance is the MRI equivalent of the CT empty delta sign. An acute venous thrombus may have hypointense signal that mimics a normal flow void. The nature of the thrombus then evolves through a subacute and chronic phase.

Figure 4. Proposed algorithm for the management of CVT. The CVT writing group recognize the challenges facing primary care, emergency physicians and general neurologists in the diagnosis and management of CVT. The aim of this algorithm is to provide guidance to physicians in the initial management of CVT. Anticoagulation remains the principal therapy and is aimed at preventing thrombus propagation and increasing recanalization. This algorithm is not comprehensive, nor applicable to all clinical scenarios and patient management must be individualized. Limited evidence is available on the benefits of decompressive hemicraniectomy and endovascular therapy for the management of CVT as reflected by the low grade and level of recommendations. Anticipated future advances in imaging techniques, new pharmacological agents and endovascular procedures may provide other therapeutic alternatives to be considered in patients with CVT, and in the future these guidelines will be periodically updated to reflect the changing evidence. CVT indicates cerebral venous and sinus thrombosis; LMWH, low molecular weight heparin; Tx, therapy; ICH, intracerebral hemorrhage; CTV, CT venogram; MRV, MR venogram.

†Intracranial hemorrhage that occurred as the consequence of CVST is not a contraindication for anticoagulation.
‡Endovascular therapy may be considered in patients with absolute contraindications for anticoagulation therapy or failure of initial therapeutic doses of anticoagulant therapy.
Thus, contrast-enhanced MRI and either CTV or MRV may be necessary to establish a definite diagnosis.

The secondary signs of MRI may show similar patterns to CT, including cerebral swelling, edema, and/or hemorrhage.91,130–134 Occasionally, diffusion-weighted imaging (DWI) and perfusion-weighted MRI may assist in making the diagnosis. DWI may show high signal intensity as restricted diffusion- and perfusion-weighted MRI with prolonged transit time.70,104,107,109,110,115,120,124,130–135

Brain parenchymal lesions of CVT are better visualized and depicted on MRI than at CT (Figure 6). Focal edema without hemorrhage is visualized on CT in ∼8% of cases and on MRI in 25% of cases.70,95,102,111,119,128,133,136–138 Focal parenchymal changes with edema and hemorrhage may be identified in up to 40% of patients.70,73,98,110,111,120,128,138 The discrepancy in frequency of detection may be due in part to varying timing of imaging after thrombosis.2,10,14,70,74,95,128,139 Petechial or confluent hemorrhage may also represent an underlying hemorrhagic venous infarction. This may include DWI abnormalities consistent with acute infarction, but the degree of DWI findings may be reduced in venous infarction compared with arterial infarction (Figure 7).124 An altered enhancement pattern suggestive of collateral flow or of venous congestion may be seen. There are some characteristic patterns of brain parenchymal changes that distinguish CVT from other entities. Also, to some extent, lesions related to specific sinuses are regionally distributed. Brain parenchymal changes in frontal, parietal, and occipital lobes usually correspond to superior sagittal sinus thrombosis (Figure 8). Temporal lobe parenchymal changes correspond to lateral (transverse) and sigmoid sinus thrombosis. Deep parenchymal abnormalities, including thalamic hemorrhage, edema, or intraventricular hemorrhage, correspond to thrombosis of the vein of Galen or straight sinus. MRI signal can also predict radiographic outcome to some extent, because DWI abnormality within veins or sinus predicts poor recanalization.71,105,110,117–119,131–133,135,140,141

CT Venography

CTV can provide a rapid and reliable modality for detecting CVT (Figure 9). CTV is much more useful in subacute or chronic situations because of the varied density in thrombosed
sinus (Figure 10). Because of the dense cortical bone adjacent to dural sinus, bone artifact may interfere with the visualization of enhanced dural sinus. CTV is at least equivalent to MRV in the diagnosis of CVT.94,97,100,103,106 However, drawbacks to CTV include concerns about radiation exposure, potential for iodine contrast material allergy, and issues related to use of contrast in the setting of poor renal function.2,70,72,74,97,99–101,103,109,115,116,141

In some settings, MRV is preferable to CTV because of these concerns (Table 4).

Magnetic Resonance Venography

The most commonly used MRV techniques are time-of-flight (TOF) MRV (Figures 11 and 12) and contrast-enhanced magnetic resonance. Phase-contrast MRI is used less frequently, because defining the velocity of the encoding parameter is both difficult and operator-dependent.
The 2-dimensional TOF technique is the most commonly used method currently for the diagnosis of CVT, because 2-dimensional TOF has excellent sensitivity to slow flow compared with 3-dimensional TOF. It does have several potential pitfalls in imaging interpretation (see “Potential Pitfalls in the Radiological Diagnosis of CVT: Anatomic Variants, Thrombus Signal Variability, and Imaging Artifacts” below). Despite the challenges, other sequences such as gradient echo, susceptibility-weighted imaging, and contrast MRI/MRV may assist in these situations. Nonthrombosed hypoplastic sinus will not have abnormal low signal in the sinus on gradient echo or susceptibility-weighted images. The chronic thrombosed hypoplastic sinus will have marked enhanced sinus and no flow on 2-dimensional TOF venography. Contrast-enhanced MRI offers improved visualization of cerebral venous structures.

In patients with persistent or progressive symptoms despite medical treatment, repeated neuroimaging (including a CTV or MRV) may help identify the development of a new ischemic lesion, ICH, edema, propagation of the thrombus, or other brain parenchymal lesions.

Deep CVT
The deep venous system is readily seen on CT and MRI and may be less impacted by artifact because of the separation from bony structures (Figure 13). A potential pitfall at the junction of the straight sinus and vein of Galen on TOF MRI is the appearance of absence of flow if image acquisition is in an axial plane to the skull. This pitfall may be overcome with contrast-enhanced MRI and DWI. Table 4 compares the advantages and disadvantages of CT/CTV and MRI/MRV.

Invasive Diagnostic Angiographic Procedures
Cerebral Angiography and Direct Cerebral Venography
Invasive cerebral angiographic procedures are less commonly needed to establish the diagnosis of CVT given the availability of MRV and CTV. These techniques are reserved for situations in which the MRV or CTV results are inconclusive or if an endovascular procedure is being considered.

Cerebral Angiography
Arteriographic findings include the failure of sinus appearance due to the occlusion; venous congestion with dilated cortical, scalp, or facial veins; enlargement of typically diminutive veins from collateral drainage; and reversal of venous flow. The venous phase of cerebral angiography will show a filling defect in the thrombosed cerebral vein/sinus (Figure 14). Because of the highly variable cerebral venous structures and inadequate resolution, CT or MRI may not provide adequate visualization of selected veins, especially cortical veins and in some situations the deep venous structures. Hypoplasia or atresia of cerebral veins or dural sinuses may lead to inconclusive results on MRV or CTV and can be clarified on the venous phase of cerebral angiography. Acute
Dural sinus and cortical vein thrombosis typically causes a delay in cerebral venous circulation, and cerebral angiography will demonstrate delayed and slow visualization of cerebral venous structures. Normally, the early veins begin to opacify at 4 to 5 seconds after injection of contrast material into the carotid artery, and the complete cerebral venous system is opacified in 7 to 8 seconds. If cerebral veins or dural sinuses are not visualized in the normal sequences of cerebral angiography, the possibility of acute thrombosis is suspected. This finding accounts for the observed delayed cerebral perfusion seen with perfusion-weighted MRI with prolonged transit time.

Direct Cerebral Venography

Direct cerebral venography is performed by direct injection of contrast material into a dural sinus or cerebral vein from microcatheter insertion via the internal jugular vein. Direct cerebral venography is usually performed during endovascular therapeutic procedures. In direct cerebral venography, intraluminal thrombus is seen either as a filling defect within the lumen in the setting of nonocclusive thrombosis or as complete nonfilling in occlusive thrombosis. Complete thrombosis may also demonstrate a “cupping appearance” within the sinus. Venous pressure measurements may be performed during direct cerebral venography to identify venous hypertension. Normal venous sinus pressure is <10 mm Hg. The extent of parenchymal change correlates with increased venous pressure and with the stage of thrombosis, with changes being maximal in acute thrombosis.

Other Diagnostic Modalities

Transfontanellar ultrasound may be used to evaluate pediatric patients, including newborn or young infants with open anterior or posterior fontanels. Ultrasound, along with transcranial Doppler, may be useful to support the diagnosis of CVT and for ongoing monitoring of thrombus and parenchymal changes.

Perfusion Imaging Methods

Anecdotal evidence using positron emission tomography showed a reduction of the cerebral blood flow after ligation of the superior sagittal sinus with a concomitant venous infarction. An increased regional cerebral blood volume was also observed in a young adult with sagittal sinus thrombosis. A prolonged mean transit time and increased cerebral blood volume have been suggested as venous congestion, contrary to the pattern observed in patients with an ischemic arterial stroke (prolonged mean transit time with reduction in cerebral blood volume).

Potential Pitfalls in the Radiological Diagnosis of CVT: Anatomic Variants, Thrombus Signal Variability, and Imaging Artifacts

The positive findings of intraluminal thrombus are the key to a confident diagnosis of CVT by CT or MRI. Unfortunately, these findings are not always evident, and the diagnosis rests on nonfilling of a venous sinus or cortical vein. Anatomic variants of normal venous anatomy may mimic sinus thrombosis, including sinus atresia/hypoplasia, asymmetrical sinus drainage, and normal sinus filling defects related to prominent arachnoid granulations or intrasinus septa. Angiographic examination of 100 patients with no venous pathology showed a high prevalence of asymmetrical lateral (transverse) sinuses (49%) and partial or complete absence of 1 lateral sinus (20%).

Flow gaps are commonly seen on TOF MRV images, which sometimes affects their interpretation. The hypoplastic

Figure 14. Venous phase of direct carotid angiogram and catheter venogram showed extensive thrombosed superior sagittal sinus (white arrows) and cortical veins. The direct venogram also showed collateral cortical veins.

Figure 15. Superior sagittal sinus thrombosis. CT Head showing a subtle decreased attenuation at right frontal lobe (arrows), an isodensity in superior sagittal sinus (short arrows) and right frontal cortical vein (a short arrow).
dural sinus may have a more tapering appearance than an abrupt defect in contrast-enhanced images of the sinus. The lack of identification of a thrombus within the venous sinus on MRI or contrast-enhanced MRV or CTV is helpful to clarify the diagnosis.160

As mentioned, sinus signal-intensity variations may also affect the interpretation of imaging in the diagnosis of CVT.70 Direct cerebral venography may be difficult to interpret owing to retrograde flow of contrast from the point of injection, and the venous pressure may not be accurate because of relative compartmentalization within the system.70

Recommendations

1. Although a plain CT or MRI is useful in the initial evaluation of patients with suspected CVT, a negative plain CT or MRI does not rule out CVT. A venographic study (either CTV or MRV) should be performed in suspected CVT if the plain CT or MRI is negative or to define the extent of CVT if the plain CT or MRI suggests CVT (Class I; Level of Evidence C).

2. An early follow-up CT or MRV is recommended in CVT patients with persistent or evolving symptoms despite medical treatment or with symptoms suggestive of propagation of thrombus (Class I; Level of Evidence C).

3. In patients with previous CVT who present with recurrent symptoms suggestive of CVT, repeat CT or MRV is recommended (Class I; Level of Evidence C).

4. Gradient echo T2 susceptibility-weighted images combined with magnetic resonance can be useful to improve the accuracy of CVT diagnosis70,129,151 (Class IIa; Level of Evidence B).

5. Catheter cerebral angiography can be useful in patients with inconclusive CT or MRV in whom a clinical suspicion for CVT remains high (Class IIa; Level of Evidence C).

6. A follow-up CTV or MRV at 3 to 6 months after diagnosis is reasonable to assess for recanalization of the occluded cortical vein/sinus in stable patients (Class IIa; Level of Evidence C).

Management and Treatment

Acute Management and Treatment of CVT

To address treatment of CVT in adults, we reviewed systematic reviews and guideline statements of the Cochrane Collaboration,161 the American College of Chest Physicians,162,163 and the European Federation of Neurological Sciences,164 in addition to performing a literature review using search terms in PubMed: (“cerebral vein thrombosis” OR “cerebral venous thrombosis” OR “sinus thrombosis”) AND randomized trial; (“cerebral vein thrombosis” OR “cerebral venous thrombosis” OR “sinus thrombosis”) AND treatment guideline. Secondary sources of data included reference lists of articles reviewed and cohort studies that related treatment to outcomes. A summary algorithm for the diagnosis and management of patients with CVT is provided (Figure 4).

Setting

Organized care has been defined as collaborative, high-quality, standardized, effective and cost-effective care given by an interdisciplin ary team using protocols based on best practices.165 According to the Stroke Unit Trialists’ Collaboration, the most important components of organized stroke care are assessment by a stroke neurologist, admission to a stroke unit with stroke-directed nursing care, physiotherapy, and occupational therapy. 166–169 Organized care is one of the most effective interventions to reduce mortality and morbidity after acute stroke.166,167 For example, stroke unit care was associated with a 14% reduction in the odds of death at 1 year (OR 0.86, 95% CI 0.76 to 0.98; \(P=0.02\)), death or institutionalization (OR 0.82, 95% CI 0.73 to 0.92; \(P<0.001\)), and death or dependency (OR 0.82, 95% CI 0.73 to 0.92; \(P=0.001\)). These benefits were independent of age, sex, stroke severity, and stroke subtype.167,169,170

CVT is an uncommon but potentially serious and life-threatening cause of stroke. On the basis of findings for stroke unit care in general, management of CVT in a stroke unit is reasonable for the initial management of CVT to optimize care and minimize complications. Additional specialist input as needed to provide therapeutic anticoagulation is appropriate.

Initial Anticoagulation

There are several rationales for anticoagulation therapy in CVT: To prevent thrombus growth, to facilitate recanalization, and to prevent DVT or PE. Controversy has ensued because cerebral infarction with hemorrhagic transformation or ICH is commonly present at the time of diagnosis of CVT, and it may also complicate treatment. A summary table is provided with data from observational studies and randomized clinical trials10,84,136,171–181 (Table 5) of CVT.

There are 2 available randomized controlled trials comparing anticoagulant therapy with placebo or open control in patients with CVT confirmed by contrast imaging. Taken together, these trials included only 79 patients. One trial of 20 patients assessed intravenous unfractionated heparin (UFH) using dose adjustment to achieve an activated partial thromboplastin time twice the pretreatment value compared with placebo.171 This study used a heparin bolus of 3000 U followed by continuous intravenous infusion. The primary outcome was a CVT severity scale at 3 months, which evaluated headache, focal signs, seizures, and level of consciousness. The secondary outcome was ICH. The trial was stopped early after 20 of the planned 60 patients were enrolled because there was a benefit of treatment. Among 10 patients in the heparin group, 8 recovered completely and 2 had mild deficits at 3 months. Among 10 patients in the placebo group, 1 recovered completely, 6 had minor deficits, and 3 died by 3 months. Two patients treated with placebo and none treated with heparin developed ICH. One patient in the placebo group had unconfirmed pulmonary embolus.

The other trial of 59 patients compared subcutaneous nadroparin dose on the basis of body weight (180 anti-factor Xa units per kilogram daily in 2 divided doses) with placebo for 3 weeks followed by 3 months of oral anticoagulation (without placebo control) in those randomized to nadroparin.172 The study was blinded during the first 3 weeks and open label thereafter. Primary outcomes were scores for activities of daily living, the Oxford Stroke Handicap Scale, and death. Secondary end points were symptomatic ICH and other major bleeding. At 3 months, 13% of patients in the
The nadroparin group had a poor outcome compared with 21% given placebo (treatment difference in favor of nadroparin −7%; 95% CI −26% to 12%). There was no symptomatic ICH in either group (1 nonfatal hemorrhage with nadroparin and 1 fatal unconfirmed pulmonary embolus with placebo). Six patients on active treatment (12%) and 8 control subjects (28%) had full recovery over 3 months.

Meta-analysis of these 2 trials revealed a nonstatistically significant relative risk of death or dependency with anticoagulation (relative risk 0.46, 95% CI 0.16 to 1.31), with a risk difference in favor of anticoagulation of −13% (95% CI −30% to 3%). The relative risk of death was 0.33 (95% CI 0.08 to 1.21), with a risk difference of −13% (95% CI −27% to 1%).

A third trial randomized 57 women with puerperal CVT confirmed only by CT imaging and excluded those with hemorrhage on CT. Treatment was with subcutaneous heparin 5000 IU every 6 hours, dose adjusted to an activated partial thromboplastin time 1.5 times baseline for at least 30 days after delivery. Outcome assessment was not blinded.

<table>
<thead>
<tr>
<th>First Author</th>
<th>N</th>
<th>Years Recruited</th>
<th>Regimen</th>
<th>F/U Duration</th>
<th>Died, n</th>
<th>Fully Recovered, n*</th>
<th>Disabled, n</th>
<th>ICH</th>
<th>Other Hemorrhage</th>
<th>VTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einhaupl171</td>
<td>20</td>
<td>1982–4</td>
<td>RCT:</td>
<td>3 mo</td>
<td>0-UFH</td>
<td>8-UFH</td>
<td>2-UFH</td>
<td>0</td>
<td>NR</td>
<td>0-UFH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10-UFH 2 × PTT</td>
<td></td>
<td></td>
<td>3-Placebo</td>
<td>1-Placebo</td>
<td>6-Placebo</td>
<td>2</td>
<td>1-Placebo</td>
<td></td>
</tr>
<tr>
<td>De Bruijn172</td>
<td>60</td>
<td>1992–6</td>
<td>RCT:</td>
<td>3 mo</td>
<td>2-UFH</td>
<td>4-Placebo</td>
<td>8-UFH</td>
<td>0</td>
<td>1-UFH</td>
<td>0-UFH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30-Nadroparin</td>
<td></td>
<td></td>
<td>2-UFH</td>
<td>4-Placebo</td>
<td>8-UFH</td>
<td>0</td>
<td>0-Placebo</td>
<td>1-Placebo</td>
</tr>
<tr>
<td>De Bruijn173</td>
<td>47</td>
<td>1992–6</td>
<td>RCT as above</td>
<td>18.5 mo</td>
<td>0</td>
<td>16†</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferro174</td>
<td>142</td>
<td>1980–98</td>
<td>12-UFH or AVK‡</td>
<td>18.5 mo</td>
<td>9</td>
<td>96§</td>
<td>6 (Rankin ≥3)</td>
<td>4</td>
<td>UFH-AVK</td>
<td>2 Systemic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30-None</td>
<td>Hospital stay</td>
<td>1-UFH</td>
<td>3-Placebo</td>
<td>2-UFH</td>
<td>0</td>
<td>NR</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Daif174</td>
<td>40</td>
<td>1985–94</td>
<td>4-UFH</td>
<td>36-No ACO</td>
<td>3-No ACO</td>
<td>28-None§</td>
<td>5-None§</td>
<td>11</td>
<td>0</td>
<td>NR</td>
</tr>
<tr>
<td>Preter175</td>
<td>77</td>
<td>1975–90</td>
<td>62-UFH+AVK‡</td>
<td>63 mo</td>
<td>Not included</td>
<td>66 Overall</td>
<td>11</td>
<td>0</td>
<td>NR</td>
<td>8 (6 off AVK)</td>
</tr>
<tr>
<td>Maqueda176</td>
<td>54</td>
<td>1985–2002</td>
<td>30-UFH</td>
<td>48-AVK ≥3 mo</td>
<td>3.5 y</td>
<td>3 (5.6%)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>3</td>
</tr>
<tr>
<td>Breteau177</td>
<td>55</td>
<td>1995–8</td>
<td>UFH+AVK‡</td>
<td>36 mo</td>
<td>7</td>
<td>15 (31%)</td>
<td>23</td>
<td>NR</td>
<td>NR</td>
<td>3</td>
</tr>
<tr>
<td>Cakmak178</td>
<td>16</td>
<td>1996–2000</td>
<td>UFH/LMWH+AVK‡</td>
<td>3 mo</td>
<td>0</td>
<td>14</td>
<td>2</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Ferro174 and Giroh‡</td>
<td>624</td>
<td>1998–2001</td>
<td>64% UFH 35% LMWH</td>
<td>16 mo</td>
<td>8.3%</td>
<td>57%</td>
<td>2.2%</td>
<td>36 (6%)</td>
<td>de novo</td>
<td>NR</td>
</tr>
<tr>
<td>Most AVK 80% at 6 mo**</td>
<td></td>
</tr>
<tr>
<td>Stolz179</td>
<td>79</td>
<td>1985–2001</td>
<td>63-UFH 2 × PTT</td>
<td>12 mo+</td>
<td>12 in hospital; 2 later (cancer)</td>
<td>57</td>
<td>10</td>
<td>NR</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Mak180</td>
<td>13</td>
<td>1995–1998</td>
<td>(3 Heparin)</td>
<td>5–36 mo</td>
<td>1</td>
<td>NR</td>
<td>1</td>
<td>0</td>
<td>NR</td>
<td>1</td>
</tr>
<tr>
<td>Brucker181</td>
<td>42</td>
<td>1982–4</td>
<td>Heparin+OAC</td>
<td>40</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CVT indicates cerebral venous thrombosis; F/U, follow-up; ICH, new intracerebral hemorrhage during follow-up; VTE, venous thromboembolism; RCT, randomized controlled trial; UFH, unfractionated heparin; PTT, partial thromboplastin time; NR, not reported; AVK, anti-vitamin K; ACO, anticoagulation; LMWH, low-molecular-weight heparin; LDUFH, low-dose unfractionated heparin; and OAC, oral anticoagulation.

*Definitions for disability vary among studies.
†Recovered completely.
‡Thirty-one of 49 patients with ICH received anticoagulation; 81 of 93 without ICH received anticoagulation.
§One patient was asymptomatic.
¶Anticoagulation was associated with a 3.8-fold (95% CI, 1.5–9.6) increased odds of full recovery; not associated with death risk.
¶¶No comparisons made by treatment status. Nine patients developed recurrent CVT (11.7%), all while not taking anticoagulation therapy.
#Seven had a predisposing condition; it is unknown whether they had stopped anticoagulation therapy.
**A total of 12.7% died or were dependent with early anticoagulation vs 18.3% without early anticoagulation (P>0.05).
Three patients in the control group either died or had residual paresis compared with none in the heparin group.

In the special situation of CVT with cerebral hemorrhage on presentation, even in the absence of anticoagulation, hemorrhage is associated with adverse outcomes. Highlighting this, in 1 trial of nadroparin, all 6 deaths in the trial overall occurred in the group of 29 patients with hemorrhage on their pretreatment CT scan. None of the deaths were attributed to new or enlarged hemorrhage. These 29 patients were equally divided between treatment groups. Thus, cerebral hemorrhage was strongly associated with mortality but not with cerebral bleeding on treatment. Other studies suggested low rates of cerebral hemorrhage after anticoagulation for CVT.

In the special situation of a patient with a major contraindication for anticoagulation (such as recent major hemorrhage), the clinician must balance the risks and benefits of anticoagulation, depending on the clinical situation. In these settings, as for venous thrombosis in general, consultation with an expert in anticoagulation management may be appropriate, and low-intensity anticoagulation may be considered if possible in favor of no anticoagulation until such time as it might be safe to use full-intensity anticoagulation.

Data From Observational Studies

A number of observational studies, both prospective and retrospective, are available, primarily from single centers. Not all studies reported specifically on outcomes of anticoagulation treatment, because the majority of patients in most studies were treated with intravenous UFH or LMWH at the time of diagnosis, with eventual use of vitamin K antagonists. Data are summarized in Table 5. Mortality rates were low, typically <10%, often due to the underlying disease (eg, cancer) rather than CVT and rarely due to ICH. The majority of patients fully recovered neurological function, and few became disabled.

In a retrospective study of 102 patients with CVT, 43 had an ICH. Among 27 (63%) who were treated with dose-adjusted intravenous heparin after the ICH, 4 died (15%), and 14 patients (52%) recovered completely. Of the 13 patients who did not receive heparin, mortality was higher (69%) with lower improvement in functional outcomes (only 3 patients completely recovered). The largest study by far was the ISCVT, which included 624 patients at 89 centers in 21 countries. Nearly all patients were treated with anticoagulation initially, and mortality was 8.3% over 16 months; 79% had complete recovery (modified Rankin scale [mRS] score of 0 to 1), 10.4% had mild to moderate disability (mRS score 2 to 3), and 2.2% remained severely disabled (mRS score 4 to 5). Few studies had sufficient numbers of patients not treated with anticoagulation to adequately address the role of anticoagulation in relation to outcome. Data from observational studies suggest a range of risks for ICH after anticoagulation for CVT from zero to 5.4%.

In conclusion, limited data from randomized controlled clinical trials in combination with observational data on outcomes and bleeding complications of anticoagulation support a role for anticoagulation in treatment of CVT, regardless of the presence of pretreatment ICH. On the basis of the available data, it is unlikely that researchers will have equipoise on this question, so a new randomized trial may not be feasible. Anticoagulation appears safe and effective. There was consensus in the writing group to support anticoagulation therapy in the management of patients with CVT. If anticoagulation is given, there are no data supporting differences in outcome with the use of UFH in adjusted doses or LMWH in CVT patients. However, in the setting of DVT or PE, a recent systematic review and meta-analysis of 22 studies showed a lower risk of major hemorrhage (1.2% versus 2.1%), thrombotic complications (3.6% versus 5.4%), and death (4.5% versus 6.0%) with LMWH.

Other Treatments

Fibrinolytic Therapy

Although patients with CVT may recover with anticoagulation therapy, 9% to 13% have poor outcomes despite anticoagulation. Anticoagulation alone may not dissolve a large and extensive thrombus, and the clinical condition may worsen even during heparin treatment. In general, thrombolysis is used if clinical deterioration continues despite anticoagulation or if a patient has elevated intracranial pressure that evolves despite other management approaches.

Many invasive therapeutic procedures have been reported to treat CVT. These include direct catheter medical thrombolysis and direct mechanical thrombectomy with or without thrombolysis. There are no randomized controlled trials to support these interventions compared with anticoagulation or with each other. Most evidence is based on small case series or anecdotal reports. Here, we review the studied interventions.

Direct Catheter Thrombolysis

In direct catheter thrombolysis, a standard microcatheter and microguidewire are delivered to the thrombosed dural sinus through a sheath or guiding catheter from the jugular bulb. Mechanical manipulation of the thrombus with the guidewire increases the amount of clot that might be impacted by the thrombolytic agent, potentially reducing the amount of fibrinolytic agent used.

In a retrospective multicenter study of CVT in the United States, 27 (15%) of 182 patients received endovascular thrombolysis. Ten patients were receiving concomitant anticoagulation therapy. Recanalization was achieved in 26 patients (96%), 4 developed an intracranial hemorrhage, and 1 patient (4%) died.
A systematic review that included 169 patients with CVT treated with local thrombolysis showed a possible benefit for those with severe CVT, which indicates that fibrinolitics may reduce case fatality in critically ill patients. ICH occurred in 17% of patients after thrombolysis and was associated with clinical worsening in 5%.206

Mechanical Thrombectomy/Thrombolysis

Balloon-Assisted Thrombectomy and Thrombolysis

Despite systemic thrombolysis or mechanical manipulation of the clot with direct fibrinolytic agent delivery, the sinus thrombosis may persist. Balloon-assisted thrombolysis may be more efficient because the inflated balloon may reduce washout of fibrinolytic agents, potentially lessening the dose of fibrinolytic agents required, the occurrence of hemorrhage,74,207,208 and procedure time. The balloon may be used to perform partial thrombectomy before thrombolysis,312,209

Catheter Thrombectomy

For patients with extensive thrombus that persists despite local administration of a fibrinolytic agent, rheolytic catheter thrombectomy may be considered. One such device is the AngioJet (MEDRAD, Inc, Warrendale, PA), which uses hydrodynamic thrombolytic action occurring at the tip of the catheter via the Venturi effect from high-velocity saline jets. Thrombus is disrupted and directed down the second lumen of the device. Perforation of the venous sinus wall may occur rarely, at a rate that is unknown but reported in the existing small series. It may be avoided by removal of the AngioJet after partial recanalization of the thrombosis and follow-up with additional microcatheter thrombolysis.187,189,193,198,199,201,202,210,211

The Merci retrieval device (Concentric Medical, Mountain View, CA) has also been used to remove thrombus in the cerebral venous system. This technique also requires direct catheter access to the venous sinus. The small corkscrew-shaped device is dispensed via the tip of the catheter, advanced into the thrombus, and then slowly pulled back into the catheter with the adherent thrombus. Here again, the device may be used to perform partial recanalization, followed by thrombolysis to avoid damaging the wall or trabeculae of the dural sinus.195 As mentioned above, the evidence available at the present time is anecdotal.

The Penumbra System (Penumbra, Inc, Alameda, CA) is a new-generation neuroembolectomy device that acts to debulk and aspirate acute clots. It uses a reperfusion catheter that aspirates thrombus while passing a wire-based separator within the catheter to break up the clot and facilitate aspiration. Only anecdotal evidence for its efficacy is available.212

The risks associated with use of the Penumbra System for cerebral venous thrombosis are likely similar to those seen with the Merci and AngioJet systems.

Surgical Considerations

As endovascular options for management of venous thrombosis have evolved, surgery has played an increasingly limited role. Surgical thrombectomy is needed uncommonly but may be considered if severe neurological or visual deterioration occurs despite maximal medical therapy.213,214

In a recent review, among 13 patients with severe CVT who underwent decompressive craniectomy, 11 (84.6%) achieved a favorable outcome (mRS score ≤3).215 Decompressive craniotomy may be needed as a life-saving measure if a large venous infarction leads to a significant increase in intracranial pressure. Likewise, large hematomas rarely may need to be considered for surgical evacuation if associated with a progressive and severe neurological deficit.

Summary

The use of these direct intrasinus thrombolytic techniques and mechanical therapies is only supported by case reports and small case series. If clinical deterioration occurs despite use of anticoagulation, or if the patient develops mass effect from a venous infarction or ICH that causes intracranial hypertension resistant to standard therapies, then these interventional techniques may be considered.

Aspirin

There are no controlled trials or observational studies that directly assess the role of aspirin in management of CVT.

Steroids

Steroids may have a role in CVT by decreasing vasogenic edema, but steroids may enhance hypercoagulability. In a matched case-control study among the 624 patients in the ISCVT,216 150 patients treated with steroids at the discretion of their healthcare provider were compared with 150 patients not so treated, matched to those treated on the basis of prognostic factors for poor outcome of CVT. Those treated with steroids thus had similar characteristics as control subjects, except they were more likely to have vasculitis. At 6 months, there was a trend toward a higher risk of death or dependence with steroid treatment (OR 1.7, 95% CI 0.9 to 3.3), and this did not differ after the exclusion of those with vasculitis, malignancy, inflammatory disease, and infection. Among those with parenchymal brain lesions on CT/MRI, results were striking, with 4.8-fold increased odds of death or dependence with steroid treatment (95% CI 1.2 to 19.8). Sensitivity analyses that used different analytic approaches yielded similar findings.

Antibiotics

Local (eg, otitis, mastoiditis) and systemic (meningitis, sepsis) infections can be complicated by thrombosis of the adjacent or distant venous sinuses. The management of patients with a suspected infection and CVT should include administration of the appropriate antibiotics and the surgical drainage of infectious sources (ie, subdural empyemas or purulent collections within the paranasal sinuses).

Management and Prevention of Early Complications (Hydrocephalus, Intracranial Hypertension, Seizures)

Seizures

Seizures are present in 37% of adults, 48% of children, and 71% of newborns who present with CVT.102,183 No clinical trials have studied either the optimal timing or medication choice for anticonvulsants in CVT. Whether to initiate anticonvulsants in all cases of CVT or await initial seizures before treatment is controversial. Because seizures increase the risk of anoxic damage, anticonvulsant treatment after even a single seizure is reasonable.217 In the absence of
seizures, the prophylactic use of antiepileptic drugs may be harmful (the risk of side effects may outweigh its benefits). A few studies have reported the occurrence and characteristics of patients with seizures accompanying CVT. Among 91 patients, 1 study reported that 32% presented with seizures and 2% developed them during hospitalization; only 9.5% developed late seizures, and seizures were not a predictor of prognosis at 1 year. Early seizures were 3.7-fold more likely (95% CI 1.4 to 9.4) in those with parenchymal lesions on CT/MRI at diagnosis and 7.8-fold more likely (95% CI 0.8 to 74.8) in those with sensory defects. A more recent report from the ISCVT showed 245 (39%) of 624 patients presented with seizures and 43 (6.9%) experienced early seizure within 2 weeks after diagnosis. Besides seizures on presentation, only a supratentorial parenchymal lesion on CT/MRI at diagnosis (present in 58%) was associated with occurrence of early seizures (OR 3.1, 95% CI 1.6 to 9.6). Furthermore, among those with a supratentorial lesion and no presenting seizure, use of antiepileptic drugs was associated with a 70% lower risk of seizures within 2 weeks, although this was not statistically significant (OR 0.3, 95% CI 0.04 to 2.6). On the basis of these findings, the authors suggested the prescription of antiepileptic agents in acute CVT patients with supratentorial lesions who present with seizures.

Hydrocephalus
The superior sagittal and lateral dural sinuses are the principal sites for CSF absorption by the arachnoid granulations, highly vascular structures that protrude across the walls of the sinuses into the subarachnoid space and drain into the venous system. In CVT, the function of the arachnoid granulations may be impaired, potentially resulting in failure of CSF absorption and communicating hydrocephalus (6.6%).

Obstructive hydrocephalus is a less common complication of CVT and results from hemorrhage into the ventricular system. This is typically associated with thrombosis that involves the internal cerebral veins and may be associated with thalamic hemorrhage. This syndrome is well described in term neonates but occurs at all ages. Neurosurgical evacuation of CSF with ventriculostomy, or in persistent cases, ventriculoperitoneal shunt, is necessary. The brain is under increased venous pressure, and tissue perfusion is at increased risk compared with other situations with obstructive hydrocephalus. Therefore, close monitoring and neurosurgical consultation are important, because intervention may be required at lesser severities of venous enlargement.

Intracranial Hypertension
Up to 40% of patients with CVT present with isolated intracranial hypertension. This is characterized by diffuse brain edema, sometimes seen as slit ventricles on CT scanning. Clinical features include progressive headache, papilledema, and third or sixth nerve palsies. Intracranial hypertension is primarily caused by venous outflow obstruction and tissue congestion compounded by CSF malabsorption. No randomized trials are available to clarify the optimal treatment; however, rational management of intracranial hypertension includes a combination of treatment approaches. First, measures to reduce the thrombotic occlusion of venous outflow, such as anticoagulation and possibly thrombolytic treatment, may result in resolution of intracranial hypertension. Second, reduction of increased intracranial pressure can be accomplished immediately by lumbar puncture with removal of CSF until a normal closing pressure is achieved. Unfortunately, lumbar puncture requires temporary cessation of anticoagulants, with an attendant risk of thrombus propagation. Despite the lack of randomized clinical trials, acetazolamide is a commonly used therapeutic alternative for the treatment of intracranial hypertension with CVT. It may have a limited role in the acute management of intracranial hypertension for patients with CVT. Acetazolamide, a carbonic anhydrase inhibitor, is a weak diuretic and decreases production of CSF. Although used occasionally, corticosteroids are not efficacious and carry risks of associated hyperglycemia and high lactate, which are deleterious to an ischemic brain. Serial lumbar punctures may be necessary when hypertension is persistent. In refractory cases, a lumbo-peritoneal shunt may be required. Because prolonged pressure on the optic nerves can result in permanent blindness, it is of paramount importance to closely monitor visual fields and the severity of papilledema during the period of increased pressure. Ophthalmologic consultation is helpful for this. Although rarely required, optic nerve fenestration is a treatment option to halt progressive visual loss.

Decompressive craniectomy has been used in patients with malignant arterial stroke to treat elevated intracranial pressure unresponsive to conventional treatment. In a pooled analysis of randomized trials, surgical decompression within 48 hours of stroke onset reduced case fatality and improved functional outcome. Limited evidence is available on the role of decompressive craniectomy in CVT with either brain edema, venous infarction, neurological deterioration, or impending cerebral herniation. A disadvantage of craniectomy is that it precludes anticoagulation for the immediate postoperative period.

Recommendations

1. Patients with CVT and a suspected bacterial infection should receive appropriate antibiotics and surgical drainage of purulent collections of infectious sources associated with CVT when appropriate (Class I; Level of Evidence C).

2. In patients with CVT and increased intracranial pressure, monitoring for progressive visual loss is recommended, and when this is observed, increased intracranial pressure should be treated urgently (Class I; Level of Evidence C).

3. In patients with CVT and a single seizure with parenchymal lesions, early initiation of antiepileptic drugs for a defined duration is recommended to prevent further seizures (Class I; Level of Evidence B).

4. In patients with CVT and a single seizure without parenchymal lesions, early initiation of antiepileptic drugs for a defined duration is probably recommended to prevent further seizures (Class IIa; Level of Evidence C).

5. In the absence of seizures, the routine use of antiepileptic drugs in patients with CVT is not recommended (Class III; Level of Evidence C).
6. For patients with CVT, initial anticoagulation with adjusted-dose UFH or weight-based LMWH in full anticoagulant doses is reasonable, followed by vitamin K antagonists, regardless of the presence of ICH. (Class IIa; Level of Evidence B). (For further details, refer to “Acute Management and Treatment of CVT: Initial Anticoagulation.”)

7. Admission to a stroke unit is reasonable for treatment and for prevention of clinical complications of patients with CVT (Class IIa; Level of Evidence C).

8. In patients with CVT and increased intracranial pressure, it is reasonable to initiate treatment with acetazolamide. Other therapies (lumbar puncture, optic nerve decompression, or shunts) can be effective if there is progressive visual loss. (Class IIa; Level of Evidence C).

9. Endovascular intervention may be considered if deterioration occurs despite intensive anticoagulation treatment (Class IIb; Level of Evidence C).

10. In patients with neurological deterioration due to severe mass effect or intracranial hemorrhage causing intractable intracranial hypertension, decompressive hemicraniectomy may be considered (Class IIa; Level of Evidence C).

11. For patients with CVT, steroid medications are not recommended, even in the presence of parenchymal brain lesions on CT/MRI, unless needed for another underlying disease (Class III; Level of Evidence B).

Long-Term Management and Recurrence of CVT

Risk of Recurrence With and Without Anticoagulation

Prevention strategies focus on preventing recurrence of CVT or other VTE in those CVT patients at high risk of these outcomes. There are no available risk stratification schemes in CVT, but patients with certain thrombophilic conditions or medical conditions, such as cancer, might be considered high risk. There are no randomized clinical trials of long-term prevention of first or recurrent CVT. Overall, there is approximately a 6.5% annual risk of any type of recurrent thrombosis.10,117 Because there are no secondary prevention trials of anticoagulation in adults with CVT, evaluation of prevention strategies can only be performed with observational studies that evaluate recurrence of CVT or VTE with or without ongoing anticoagulation. In a cohort of 154 patients treated at Mayo Clinic between 1978 and 2001, 56 patients initially received both heparin and warfarin, 12 received heparin only, and 21 received warfarin only.61 Seventy-seven (50%) were treated with warfarin for an average of 9 months, with 25 committed to lifelong therapy.61 During 36 months of follow-up (464 patient-years), there were 23 recurrent VTEs in 20 patients (13%), the majority in the first year. Ten patients had recurrent CVT (2.2 per 100 patient-years), and 11 had DVT or PE (2.8 per 100 patient-years). Nine of the recurrent events occurred while the patients were taking warfarin. After 8 years of follow-up, there was no impact of warfarin on survival or recurrence-free survival.61

In a cohort of 54 CVT patients treated consecutively at University Hospital Gasthuisberg, Leuven, Belgium, 8 (14.8%) had a recurrence of VTE (7 with DVT or PE, 1 with CVT and mesenteric vein thrombosis) over a median of 2.5 years of follow-up (4.5 per 100 patient-years). Median time to recurrence was 2.5 months (range 2 weeks to 4 years). Only 2 of these 8 patients were taking anticoagulants at the time of recurrence, 1 with an international normalized ratio (INR) of 1.6 and the other with an INR of 2.1. Among the 6 patients with recurrent VTE who were not taking anticoagulants, recurrence occurred between 2 weeks and 10 months after the index event. Those with recurrence more often had a thrombophilic disorder, had a history of DVT, and had not received oral anticoagulation because of perceived contraindications.176

In the ISCVT study, among 624 patients with CVT, there were 14 (2.2%) recurrent CVTs and 27 (4.3%) other thrombotic events (16 DVT, 3 PE, 2 ischemic stroke, 2 transient ischemic attack, and 4 acute limb ischemia) over a mean follow-up of 16 months.10 Seventeen (41.5%) of the 41 patients with recurrent or other thrombotic events were receiving anticoagulants, but the type of anticoagulation and the number who were receiving therapeutic doses of anticoagulation were unknown.10 It was not reported whether anticoagulation was given long-term and whether recurrent events differed based on its use.

The Cerebral Venous Thrombosis Portuguese Collaborative Study Group (VENPORT) evaluated outcomes for 142 CVT patients, of whom 51 were retrospectively enrolled and 91 were prospectively enrolled. There were 2 (2%) recurrent CVTs and 10 (8%) other arterial or venous thrombotic events (maximum 16 years of follow-up for the retrospective cases and 12 months of follow-up for prospective cases).117 For the prospectively followed cases, the incident risk of a thrombotic event was 4% per year (5 thrombotic events in 4 patients: 2 DVTs, 1 PE, 1 ischemic stroke, and 1 acute limb ischemia). Three of these events occurred with anticoagulation use, although the INR levels were unknown at the time of the event. In addition, all of these events occurred within 12 months of the index CVT.117

A cohort of 77 CVT patients diagnosed in France between 1975 and 1990 was followed up for 63 months.175 Nine (11.7%) had a recurrence of CVT, 8 during the first 12 months, and none were receiving anticoagulation at the time of recurrence. Eleven patients (14.3%) had other thrombotic events, including retinal vein thrombosis, PE, and arterial thromboses.175 Use of anticoagulation at the time of recurrent thromboses that were not CVTs was not reported.

More recently, 145 patients with a first CVT were followed up for a median of 6 years after discontinuation of anticoagulation therapy. CVT recurred in 5 patients (3%), and other manifestations of VTE (defined as DVT of the lower limbs or PE) were seen in 10 additional patients (7%). The recurrence rate accounted for 3.4% of all VTEs in the first 16 months (0.23 per 100 person-years; 95% CI 1.16 to 3.14) and 1.3% of CVTs in the first 16 months (0.53 per 100 person-years; 95% CI 0.16 to 1.10). Approximately half of the recurrences occurred within the first year after discontinuation of anticoagulant therapy. Mild thrombophilia abnormalities were not associated with recurrent CVT, but severe thrombophilia showed an increased risk of DVT or PE.210 In summary, the prevalence of CVT recurrence was similar in the Italian and ISCVT studies (1.3% and 2.2%, respectively) at the 16-month follow-up.
The overall risk of recurrence of any thrombotic event (CVT or systemic) after a CVT is ~6.5%. The risk of other manifestations of VTE after CVT ranges from 3.4% to 4.3% on the basis of the largest studies of this medical condition. Patients with severe thrombophilia have an increased risk of VTE.

Secondary Prevention of CVT and Other VTE Events

DVT/PE and CVT share some similarities. The chronic and transient risk factors appear to be similar, although women are more likely to have CVT, and selected thrombophilia subtypes may differ between CVT and DVT/PE. In the ISCVT cohort, the overall rate of recurrent CVT or other VTE recurrence was 4.1 per 100 person-years, with male sex and polycythemia/thrombocythemia being the only independent predictors found. The same study reported a steady increase in the cumulative risk of thrombotic recurrences not influenced by the duration of anticoagulation, which emphasizes the need for a clinical trial to assess the efficacy and safety of short versus extended anticoagulant therapy. Given that systemic VTE after CVT is more common than recurrent CVT, one may reasonably adopt the VTE guidelines for prevention of both new VTE and recurrent CVT. However, each individual patient should undergo risk assessment (see “Thrombophilias and Risk Stratification for Long-Term Management” below), and the patient’s risk level and preferences regarding long-term anticoagulation treatment, the risk of bleeding, and the risk of thrombosis without anticoagulation should then be considered.

Thrombophilias and Risk Stratification for Long-Term Management

Thrombophilias may be hereditary or acquired, and hereditary thrombophilias have been stratified as mild or severe on the basis of the risk of recurrence in very large family cohorts. Among VTE patients, the hereditary thrombophilias with the highest cumulative recurrence rates for VTE in the absence of ongoing anticoagulation have been deficiencies of antithrombin, protein C, and protein S, with a 19% recurrence at 2 years, 40% at 5 years, and 55% at 10 years. Homozygous prothrombin G20210A; homozygous factor V Leiden; deficiencies of protein C, protein S, or antithrombin; combined thrombophilia defects; and antiphospholipid syndrome are categorized as severe.

Interestingly, the more common hereditary thrombophilias, such as heterozygous factor V Leiden and prothrombin G20210A or elevated factor VIII, have a much lower risk of recurrence (7% at 2 years, 11% at 5 years, and 25% at 10 years) and could be categorized as mild. Hyperhomocysteinemia, a common hereditary or acquired risk factor for VTE, was not significantly associated with a high risk of recurrence. In addition, the annual incidence and the risk of recurrence increased markedly in those with combined thrombophilic defects, described as double heterozygous/homozygous.

There are several important points regarding the hereditary thrombophilia data described above. First, the familial nature of these deficiencies of protein C, S, or antithrombin was clearly established, which distinguishes these patients from those with sporadic or acquired abnormalities. Second, testing for deficiencies of protein C, S, and antithrombin must be performed at least 6 weeks after a thrombotic event and then confirmed with repeat testing and family studies. In addition, protein C and S functional activity and antithrombin levels are difficult to interpret during treatment with warfarin. Therefore, testing for these conditions is generally indicated 2 to 4 weeks after completion of anticoagulation. Lastly, clearly established deficiencies of proteins C, S, and antithrombin are relatively uncommon.

Antiphospholipid antibody syndrome is an acquired thrombophilia associated with specific laboratory criteria (lupus anticoagulant, anticardiolipin antibody, and anti-beta2-glycoprotein I) and a history of a venous or arterial event or fetal loss. Caution must be taken when the results of antiphospholipid antibody testing are interpreted. A normal result may occur at the time of the clinical presentation, which rules out antiphospholipid antibody syndrome. On the other hand, abnormal tests may occur transiently due to the disease process, infection, certain medications (antibiotics, cocaine, hydralazine, procainamide, quinine, and others), or unknown causes. Approximately 5% of the general population at any given time has evidence of abnormal tests, and these mainly have no clinical consequence.

A diagnosis of antiphospholipid syndrome requires abnormal laboratory testing on 2 or more occasions at least 12 weeks apart. Patients diagnosed with antiphospholipid syndrome have an increased risk of recurrent thrombotic events; however, test results cannot predict the likelihood of complications, their type, or their severity in a particular patient.

Although there are no prospective studies that report recurrence rates for CVT specifically, the high risk of recurrent VTE with this disorder meets the definition of severe thrombophilia. The Duration of Anticoagulation Study Group reported a 29% recurrence of VTE in patients with anticardiolipin antibodies versus 14% in those without them (P=0.001) over a 4-year period, and the risk increased with the titer of the antibodies. In a randomized controlled trial of warfarin for 3 months versus extended treatment for 24 months after first-ever idiopathic DVT or PE, the presence of antiphospholipid antibodies was associated with a 4-fold increased risk of recurrence (hazard ratio [HR] 4.0, 95% CI 1.2 to 13), and the presence of a lupus anticoagulant was associated with a 7-fold increased risk (HR 6.8, 95% CI 1.5 to 31) in the placebo group. The current recommendations for VTE patients call for indefinite anticoagulation (adjusted-dose warfarin INR 2.0 to 3.0 or heparin) for patients with antiphospholipid syndrome.

Other Tests That Might Define Risk of Recurrent CVT or VTE After CVT

In patients with DVT or PE, increasing evidence suggests there is clinical utility to D-dimer measurement when used to define risk of recurrent VTE. For example, in a randomized controlled trial (n=608), patients with an abnormal D-dimer level 1 month after the discontinuation of anticoagulation had a significant incidence of recurrent VTE (15% versus 2.9%), which was reduced by the resumption of anticoagulation (compared with those not receiving vitamin K antagonists, P=0.02). During 1.4 years of follow-up, 120 subjects with an abnormal D-dimer level were randomized to no anticoagulation, and 18 (15%) in this group...
developed a recurrent VTE. Of the 103 patients with abnormal D-dimer randomized to resume anticoagulation, only 3 (2.9%) had a recurrent VTE. Although the study was randomized, it was unblinded, and D-dimer levels were only obtained once. In addition, there were no subjects with CVT and no similar studies in CVT patients. Although the clinical utility of D-dimer for longer-term anticoagulation for VTE secondary prevention appears promising, the lack of standardization of D-dimer assays may limit their clinical applicability and reliability.

Recommendations

1. Testing for prothrombotic conditions, including protein C, protein S, antithrombin deficiency, antiphospholipid syndrome, prothrombin G20210A mutation, and factor V Leiden, can be beneficial for the management of patients with CVT. Testing for protein C, protein S, and antithrombin deficiency is generally indicated 2 to 4 weeks after completion of anticoagulation. There is a very limited value of testing in the acute setting or in patients taking warfarin. (Class IIa; Level of Evidence B).

2. In patients with provoked CVT (associated with a transient risk factor), vitamin K antagonists may be continued for 3 to 6 months, with a target INR of 2.0 to 3.0 (Table 3) (Class IIb; Level of Evidence C).

3. In patients with unprovoked CVT, vitamin K antagonists may be continued for 6 to 12 months, with a target INR of 2.0 to 3.0 (Class IIb; Level of Evidence C).

4. For patients with recurrent CVT, VTE after CVT, or first CVT with severe thrombophilia (ie, homozygous prothrombin G20210A; homozygous factor V Leiden; deficiencies of protein C, protein S, or antithrombin; combined thrombophilia defects; or antiphospholipid syndrome), indefinite anticoagulation may be considered, with a target INR of 2.0 to 3.0 (Class IIb; Level of Evidence C).

5. Consultation with a physician with expertise in thrombosis may be considered to assist in the prothrombotic testing and care of patients with CVT (Class IIb; Level of Evidence C).

Management of Late Complications (Other Than Recurrent VTE)

Headache

Headache is a common complaint during the follow-up of CVT patients, occurring in ≈50% of patients. In general, headaches are primary and not related to CVT. In the Lille study, 53% of patients had residual headache, 29% fulfilled criteria for migraine, and 27% had headache of the tension type. In VENOPORT, 55% of patients reported headaches during the follow-up, and these were mild to moderate in 45%. In a series of 17 patients presenting with headache as the only neurological sign of CVT, several patients had headaches at 3 months, which comprised migraine attacks similar to those that occurred previously (4), tension type (2), and new onset of migraine with aura (2). At follow-up, severe headaches that required bed rest or hospital admission were reported in 14% of patients in the ISCVT and 11% in VENOPORT. In patients with persistent or severe headaches, appropriate investigations should be completed to rule out recurrent CVT. Occasionally, MRV may show stenosis of a previously occluded sinus, but the clinical significance of this is unclear. Headache during follow-up is more common among patients who present acutely as having isolated intracranial hypertension. In these patients, if headache persists and MRI is normal, lumbar puncture may be needed to exclude elevated intracranial pressure.

Seizures

Focal or generalized post-CVT seizures can be divided into early or remote (occurring ≥2 weeks after diagnosis) seizures. On the basis of case series, remote seizures affect 5% to 32% of patients. Most of these seizures occur in the first year of follow-up. In ISCVT, 11% of the patients experienced remote seizures (36 patients by 6 months, 55 by 1 year, and 66 by 2 years). Risk factors for remote seizures were hemorrhagic lesion on admission CT/MRI (HR 2.62, 95% CI 1.52 to 4.52), early seizure (HR 2.42, 95% CI 1.38 to 4.22), and paroxysma (HR 2.22, 95% CI 1.33 to 3.69). Five percent of the patients had post-CVT epilepsy (>1 remote seizure). Post-CVT epilepsy was also associated with hemorrhagic lesion on admission CT/MRI (OR 6.76, 95% CI 2.26 to 20.41), early seizure (OR 3.99, 95% CI 1.16 to 11.0), and paroxysms (OR 2.75, 95% CI 1.33 to 6.54). Initiation of antiepileptic drugs for a defined duration is recommended to prevent further seizures in patients with CVT and parenchymal lesions who present with a single seizure. Recommendations covering different scenarios are provided in the section on the “Management and Prevention of Early Complications.”

Visual Loss

Severe visual loss due to CVT rarely occurs (2% to 4%). Papilledema can cause transient visual impairment, and if prolonged, optic atrophy and blindness may ensue. Visual loss is often insidious, with progressive constriction of the visual fields and relative sparing of central visual acuity. Visual deficits are more common in patients with papilledema and those who present with increased intracranial pressure. Delayed diagnosis is associated with an increased risk of later visual deficit. Patients with papilledema or visual complaints should have a complete neuro-ophthalmological study, including visual acuity and formal visual field testing.

Dural Arteriovenous Fistula

Thrombosis of the cavernous, lateral, or sagittal sinus can later induce a dural arteriovenous fistula. A pial fistula can also follow a cortical vein thrombosis. The relationship between the 2 entities is rather complex, because (1) dural fistulas can be a late complication of persistent dural sinus occlusion with increased venous pressure, (2) the fistula can close and cure if the sinus recanalizes, and (3) a preexisting fistula can be the underlying cause of CVT. The exact frequency of dural fistula after CVT is not known because there are no cohort studies with long-term angiographic investigation. The incidence of dural arteriovenous fistula was low in cohort studies without systematic angiographic follow-up (1% to 3%). A cerebral angiogram may help identify the presence of a dural arteriovenous fistula.
Recommendation

1. In patients with a history of CVT who complain of new, persisting, or severe headache, evaluation for CVT recurrence and intracranial hypertension should be considered (Class I; Level of Evidence C).

CVT in Special Populations

CVT During Pregnancy

Pregnancy induces changes in the coagulation system that persist into the puerperium and result in a hypercoagulable state, which increases the risk of CVT. Incidence estimates for CVT during pregnancy and the puerperium range from 1 in 2500 deliveries to 1 in 10,000 deliveries in Western countries, and ORs range from 1.3 to 13.238–240 The greatest risk periods for CVT include the third trimester and the first 4 postpartum weeks.240 Up to 73% of CVT in women occurs during the puerperium.241 Cesarean delivery appears to be associated with a higher risk of CVT after adjustment for age, vascular risk factors, presence of infections, hospital type, and location (OR 3.10, 95% CI 2.26 to 4.24).35

Vitamin K antagonists, including warfarin, are associated with fetal embryopathy and bleeding in the fetus and neonate and thus are generally believed to be contraindicated in pregnancy. Therefore, anticoagulation for CVT during pregnancy and early in the puerperium consists of LMWH in the majority of women.220

In contrast to UFH, LMWH is not associated with teratogenicity or increased risk of fetal bleeding. The American College of Chest Physicians guidelines for antithrombosis address prevention and treatment of DVT and pulmonary embolus in pregnancy and the puerperium, recommending LMWH over UFH (recommendation 4.2.1).241a They recommend that treatment be continued throughout pregnancy and for at least 6 weeks postpartum (for a total minimum duration of treatment of 6 months). Although these recommendations are directed to systemic venous thrombosis, it is logical to apply them to CVT for several reasons. First, safety in terms of teratogenicity and fetal/newborn/maternal bleeding complications should be similar, and second, the recommendations are concordant with treatment of non–pregnancy-associated CVT.

In a retrospective cohort study of 37 high-risk pregnancies, once-daily tinzaparin was studied for the prevention of initial or recurrent cerebral thrombosis. During treatment, no systemic venous thrombosis occurred; however, 1 parietal infarct and 1 postpartum CVT were documented.242 As in nonpregnant women, fibrinolytic therapy is reserved for patients with deterioration despite systemic anticoagulation, and its use has been reported during pregnancy.243

Future Pregnancies and Recurrence

Patients with previous VTE are at increased risk of further venous thrombotic events compared with healthy individuals.244,245 Similarly, women with a history of VTE appear to have an increased risk of thrombotic events (ie, DVT, PE) in future pregnancies.57 Pregnancy, and in particular puerperium, are known risk factors for CVT. Six studies investigated the outcome and complications of pregnancy in women who had CVT,10,117,175,246–248 with a total of 855 women under observation, of whom 83 became pregnant (101 pregnancies) after their CVT.

These studies found that the risk of complications during future pregnancies was low. In fact, 88% of the pregnancies ended in a normal birth, the remainder being terminated prematurely by voluntary or spontaneous abortion. There was only 1 case of recurrent CVT and 2 cases of DVT; however, a high proportion of spontaneous abortion was noted. On the basis of the available evidence, CVT is not a contraindication for future pregnancies. Considering the additional risk that pregnancy confers to women with a history of CVT, prophylaxis with LMWH during future pregnancies and the postpartum period can be beneficial.

Recommendations

1. For women with CVT during pregnancy, LMWH in full anticoagulant doses should be continued throughout pregnancy, and LMWH or vitamin K antagonist with a target INR of 2.0 to 3.0 should be continued for at least 6 weeks postpartum (for a total minimum duration of therapy of 6 months) (Class I; Level of Evidence C).

2. It is reasonable to advise women with a history of CVT that future pregnancy is not contraindicated. Further investigations regarding the underlying cause and a formal consultation with a hematologist and/or maternal fetal medicine specialist are reasonable.10,117,175,246–248 (Class IIa; Level of Evidence B).

3. It is reasonable to treat acute CVT during pregnancy with full-dose LMWH rather than UFH (Class IIa; Level of Evidence C).

4. For women with a history of CVT, prophylaxis with LMWH during future pregnancies and the postpartum period is probably recommended (Class IIa; Level of Evidence C).

CVT in the Pediatric Population

The incidence of pediatric CVT is 0.67 per 100,000 children per year.91 When neonates are excluded, the reported incidence is 0.34 per 100,000 children per year.209 Neonates present with seizures or lethargy, whereas older infants and children (similar to adults) usually present with seizures, altered levels of consciousness, increasing headache with papilledema, isolated intracranial hypertension, or focal neurological deficits.

Risk Factors

Risk factors for pediatric CVT are age related. Neonates constitute 43% of pediatric patients with CVT.91 There are several likely reasons for their increased risk. First, considerable mechanical forces are exerted on the infant’s head during birth that result in molding of the skull bones along the suture lines. This results in mechanical distortion of and damage to the underlying dural venous sinuses and thrombosis. The neonate also has an increased thrombotic tendency.250 First, there is a transplacental transfer of circulating maternal antiphospholipids to the fetus, which can persist into the newborn period.251 Second, neonates have reduced levels of circulating anticoagulant proteins, including proteins C and S and antithrombin, and higher hematocrit relative to adults. Furthermore, hemoconcentration occurs with the normal fluid loss and relative dehydration of the neonate during the first week of postnatal life.
Multiple risk factors are present in more than half of neonates with CVT. Additional complications of gestation and labor and delivery increase the risk of CVT. Maternal preeclampsia/eclampsia is a reported risk factor for neonatal CVT. Neonatal diseases including head and neck infections, meningitis, dehydration secondary to feeding difficulties or gastroenteritis, and congenital heart disease also cause CVT. A recent meta-analysis of observational studies estimated the impact of thrombophilia on the incident risk of arterial ischemic stroke and CVT. The reported magnitude of association was as follows: Antithrombin deficiency, OR 7.1 (95% CI 2.4 to 22.4); protein C deficiency, OR 8.8 (95% CI 4.5 to 17.0); protein S deficiency, OR 3.2 (95% CI 1.2 to 8.4); factor V G1691A, OR 3.3 (95% CI 2.6 to 4.1); factor II G20210A, OR 2.4 (95% CI 1.7 to 3.5); methylenetetrahydrofolate reductase C677T (arterial ischemic stroke), OR 1.58 (95% CI 1.2 to 2.1); antiphospholipid antibodies (arterial ischemic stroke), OR 7.0 (95% CI 3.7 to 13.1); elevated lipoprotein(a), OR 6.3 (95% CI 4.5 to 8.7); and combined thrombophilias, OR 11.9 (95% CI 5.9 to 23.7). The authors also concluded that further studies are needed to determine the impact of thrombophilias on outcome and recurrence risk.

In older children and adolescents, systemic lupus erythematosus, nephrotic syndrome, leukemia or lymphoma with l-asparaginase treatment, and trauma are reported causes of CVT. Prothrombotic disorders ranged from 33% to 66% of neonatal and pediatric CVTs and are frequently observed in children with CVT. Therefore, treatment practices have been extrapolated primarily from adult studies.

In children, and increasingly in neonates, the mainstay of CVT treatment is anticoagulation, including LMWH, UFH, and warfarin. Individual and regional practices vary widely in pediatric CVT and particularly in neonatal CVT. Seizures were observed in >50% of the pediatric population with CVT. Given the higher frequency of epileptic seizures in children, continuous electroencephalography monitoring may be considered for unconscious or mechanically ventilated children.

Management of CVT in the Pediatric Population
Consideration of endovascular treatment for neonates and children with CVT is driven by the high rates of adverse outcomes. No randomized clinical trials have been conducted in pediatric CVT. Therefore, treatment practices have been extrapolated primarily from adult studies.

In children, and increasingly in neonates, the mainstay of CVT treatment is anticoagulation, including LMWH, UFH, and warfarin. Individual and regional practices vary widely in pediatric CVT and particularly in neonatal CVT. Seizures were observed in >50% of the pediatric population with CVT. Given the higher frequency of epileptic seizures in children, continuous electroencephalography monitoring may be considered for unconscious or mechanically ventilated children.

Primary Evidence
Despite the absence of randomized trials, increasing evidence from case series and large observational studies supports the efficacy of anticoagulation in children or neonates with CVT. In the Canadian Pediatric Ischemic Stroke Registry, 85 of 160 children with CVT at 16 Canadian children’s hospitals received anticoagulation (25 neonates and 60 non-neonates). There were no fatal or severe complications reported; however, follow-up was not systematic.

In a European multicenter study among 396 pediatric patients (75 neonates) with CVT, 250 (63%) received acute anticoagulation. Twenty-two (6%) had recurrent VTE (13 cerebral; 3%) after a median of 6 months of follow-up. In the multivariable survival analysis, nonadministration of an anticoagulant before relapse (HR 11.2, 95% CI 3.4 to 37.0; P < 0.0001), persistent occlusion on repeat venous imaging (HR 4.1, 95% CI 1.1 to 14.8; P = 0.032), and heterozygosity for the prothrombin G20210A mutation (HR 4.3, 95% CI 1.1 to 16.2; P = 0.034) were independently associated with recurrent VTE. Of note, there was no significant difference in recurrence based on medical conditions such as cancers (acute lymphoblastic leukemia, lymphoma, or brain tumor), type 1 diabetes mellitus, nephrotic syndrome, infectious diseases, or heparin-induced thrombocytopenia. The number of CVT cases needed to screen to detect at least 1 prothrombin G20210A heterozygote was 16. The number needed to treat for 1 year with anticoagulation to prevent 1 recurrent VTE was 32 for the entire group.

Outcome
CVT is associated with a significant frequency of adverse outcomes in neonates and older infants and children. In neonates, long-term follow-up is required to ascertain the outcomes, because deficits may only become evident with brain maturation over many years. Among neonates with CVT, neurological deficits are observed in 28% to 83%; Differences among studies may relate to treatment protocols: In 1 study of 39 neonates with CVT, neurological deficits were reported in 83%, and only 10% of neonates received anticoagulation. In contrast, in a Canadian Registry that included 160 children with CVT, venous infarction occurred in 42%, and 8% died. Additional outcomes included seizures in 20% and symptomatic recurrent thrombosis in 19 children (13%; CVT in 12 and extracerebral thrombosis in the remaining 7 children). Among the 63 neonates with CVT, neurological deficits were seen in only 34%, anticoagulation was used in 36%, and mortality among neonates was 7%. In CVT occurring beyond the newborn period, neurological deficits are reported in 17% to 46% of cases.

One study showed that 18% of children with CVT had residual visual impairment on long-term follow-up. Other studies reported similar findings in children and adults with CVT.
was 3 for those with prothrombin G20210A who were older than 2 years of age at diagnosis of CVT.245

A recently published case series from the Netherlands studied anticoagulation use in neonates with CVT, intraventricular hemorrhage, or thalamic hemorrhage.201 Among the 10 neonates, 1 infant died before therapy could be initiated, and 2 were born before typical use of LMWH therapy. The remaining 7 neonates received 3 months of LMWH (dalteparin) with a target anti-Xa level of 0.5 to 1.0 U/mL. There were no new hemorrhages during treatment. Another pediatric CVT study that included 42 children reported safety and improved outcomes with anticoagulation even in the presence of ICH.187 Finally, in a prospective single-center study of protocol-based anticoagulation therapy among 162 pediatric patients, approximately half received anticoagulation at diagnosis, including 35% of neonates and 71% of children. Hemorrhagic complications were rare (6%); all were nonfatal and were associated with a favorable clinical outcome in the majority. Propagation of CVT thrombus was observed in more than one quarter of neonates and more than one third of children not treated with anticoagulation.264 Further studies on optimal dosing of anticoagulation with stratification by cerebral hemorrhage at the time of the diagnosis are in the planning stage through the International Pediatric Stroke Study.265,266

Published Pediatric Stroke Guidelines

In the past 5 years, 3 sets of guidelines addressing treatment of pediatric CVT were published.267–269 All 3 guidelines recommended use of anticoagulation with LMWH, UFH, and/or warfarin for 3 to 6 months in children beyond the newborn period, even in the presence of intracranial hemorrhage. By contrast, recommendations regarding anticoagulation for neonatal CVT have been discordant. Of the 3 published guidelines, 1 did not address neonatal CVT.268 1 recommended acute anticoagulation,269 and the other recommended no acute anticoagulation.251 Specifically, the American College of Chest Physicians recommended initial anticoagulation except in the presence of significant hemorrhage, in which case monitoring for propagation was suggested, with initiation of anticoagulation if propagation should occur. Anticoagulation was recommended for a minimum of 6 weeks and no longer than 3 months. It was suggested that a venous imaging study be performed at 6 weeks, and if full recanalization is seen, anticoagulation can be discontinued. The AHA guidelines make no recommendations regarding anticoagulation. Anticoagulation is considered reasonable in neonates with thrombus propagation or thrombophilia (which cannot always be diagnosed during acute illness). The reluctance to treat neonatal CVT with anticoagulation was based on several concerns. First, there was an absence of safety data for neonates, and second, there was concern regarding increased susceptibility of the neonatal brain to hemorrhage. Before the current outcome literature, another reason not to treat neonates was the erroneous perception that neonates have a good outcome from CVT and treatment is therefore unnecessary. As noted in previous sections, these assumptions have been refuted in part by studies published in the past few years. However, in the absence of clinical trial evidence, practice variability is understandable.251

Recommendations

1. Supportive measures for children with CVT should include appropriate hydration, control of epileptic seizures, and treatment of elevated intracranial pressure (Class I; Level of Evidence C).
2. Given the potential for visual loss owing to severe or long-standing increased intracranial pressure in children with CVT, periodic assessments of the visual fields and visual acuity should be performed, and appropriate measures to control elevated intracranial pressure and its complications should be instituted (Class I; Level of Evidence C).
3. In all pediatric patients, if initial anticoagulation treatment is withheld, repeat neuroimaging including venous imaging in the first week after diagnosis is recommended to monitor for propagation of the initial thrombus or new infarcts or hemorrhage (Class I; Level of Evidence C).
4. In children with acute CVT diagnosed beyond the first 28 days of life, it is reasonable to treat with full-dose LMWH even in the presence of intracranial hemorrhage (Class IIa; Level of Evidence C).
5. In children with acute CVT diagnosed beyond the first 28 days of life, it is reasonable to continue LMWH or oral vitamin K antagonists for 3 to 6 months (Class IIa; Level of Evidence C).
6. In all pediatric patients with acute CVT, if initial anticoagulation is started, it is reasonable to perform a head CT or MRI scan in the initial week after treatment to monitor for additional hemorrhage (Class IIa; Level of Evidence C).
7. Children with CVT may benefit from thrombophilia testing to identify underlying coagulation defects, some of which could affect the risk of subsequent rethromboses and influence therapeutic decisions250–252 (Class IIb; Level of Evidence B).
8. Children with CVT may benefit from investigation for underlying infections with blood cultures and sinus radiographs239,267 (Class IIb; Level of Evidence B).
9. In neonates with acute CVT, treatment with LMWH or UFH may be considered72,179,201,236,263 (Class IIb; Level of Evidence B).
10. Given the frequency of epileptic seizures in children with an acute CVT, continuous electroencephalography monitoring may be considered for individuals who are unconscious or mechanically ventilated (Class IIb; Level of Evidence C).
11. In neonates with acute CVT, continuation of LMWH for 6 weeks to 3 months may be considered (Class IIb; Level of Evidence C).
12. The usefulness and safety of endovascular intervention are uncertain in pediatric patients, and its use may only be considered in carefully selected patients with progressive neurological deterioration despite intensive and therapeutic levels of anticoagulant treatment (Class IIb; Level of Evidence C).

Clinical Outcomes: Prognosis

There are several studies and reviews on the outcome and prognosis of CVT.181,256 The majority of such studies are retrospective (totally or in part).14,63,66,69,136,175,179,190,194,233,270–274 Of the few prospective studies, some did not analyze prognostic factors178,193,261 or performed only a bivariate analysis of such predictors275,276 or analyzed specific subgroups of patients.42,84,89,192 There are only 5 cohort studies5,55,93,167,203
that analyzed prognostic factors for the short-term\(^5\) and the long-term outcome of CVT patients (Table 6).\(^6,10,117,177,277\)

Neurological Worsening After Diagnosis

Neurological worsening may occur in 23% of patients, even several days after diagnosis. Neurological worsening can feature depressed consciousness, mental status disturbance, new seizure, worsening of or a new focal deficit, increase in headache intensity, or visual loss. Approximately one third of patients with neurological deterioration will have new parenchymal lesions when neuroimaging is repeated. Patients with depressed consciousness on admission are more likely to deteriorate.\(^1,278\)

Early Death

Approximately 3% to 15% of patients die in the acute phase of the disorder.\(^28\) Most early deaths are a consequence of CVT. In the ISCVT,\(^10,21\) (3.4%) of 624 patients died within 30 days from symptom onset; however, in a recent retrospective/prospective multicenter study\(^16\) from the United States, higher mortality (13%) was reported. Case series from developing countries also have higher figures for early deaths, with 6% reported in a large Pakistan-Middle East registry,\(^63\) the dependency rate (mRS score \(= 15\)) in a single-center case series from Iran.\(^261\)

In the largest study, the ISCVT, risk factors for 30-day mortality were depressed consciousness, altered mental status, and thrombosis of the deep venous system, right hemisphere hemorrhage, and posterior fossa lesions. The main cause of acute death with CVT is transtentorial herniation secondary to a large hemorrhagic lesion,\(^5\) followed by herniation due to multiple lesions or to diffuse brain edema. Status epilepticus, medical complications, and PE are among other causes of early death.\(^136,279\)

Late Deaths

Deaths after the acute phase are predominantly related to the underlying conditions, in particular malignancies.\(^10,14\)

Long-Term Outcome

In the ISCVT study,\(^25\) complete recovery at last follow-up (median 16 months) was observed in 79% of the patients; however, there was an 8.3% overall death rate and a 5.1% dependency rate (mRS score \(\geq 3\)) at the end of follow-up (12.6% if we consider patients who survived with an mRS score \(\geq 2\)). In a systematic review that included both retrospective and prospective studies, overall mortality was 9.4%, and the proportion of dependency (mRS score \(\geq 3\) or Glasgow Outcome Scale score \(\geq 3\)) was 9.7%.\(^28\) Two retrospective/prospective studies were reported after this review. In the Pakistan-Middle East registry,\(^63\) the dependency rate (mRS score \(\geq 3\)) was higher (11%), whereas in the US multicenter registry,\(^16\) 28% of patients were dependent at 12 months. Of note, some studies include patients transferred to tertiary care centers, whose strokes are usually more severe, with the potential for a referral bias. Among the 7 cohort studies (including the prospective part of retrospective/prospective studies in which information can be analyzed separately), the overall death and dependency rate was 15% (95% CI 13% to 18%).\(^10\)

Neuropsychological and Neuropsychiatric Sequelae

There is little information on the long-term neuropsychological and neuropsychiatric outcome in CVT survivors.\(^260,272\) Despite the apparent general good recovery in most patients with CVT, approximately one half of survivors feel depressed or anxious, and minor cognitive or language deficits may preclude them from resuming their previous jobs.\(^260,272\)

Abulia, executive deficits, and amnesia may result from thrombosis of the deep venous system, with bilateral pontine infarcts. Memory deficits, behavioral problems, or executive deficits may persist.\(^263,280\)

Aphasia, in general of the fluent type, results from left lateral sinus thrombosis with temporal infarct or hemorrhage. Recovery is usually favorable, but minor troubles in spontaneous speech and naming might persist.

Risk Factors for Long-Term Poor Outcomes

Risk factors in the ISCVT cohort were central nervous system infection, any malignancy, thrombosis of the deep venous system, intracranial hemorrhage on admission CT/MRI, Glasgow Coma Scale score <9, mental status disturbance, age >37 years, and male sex.\(^25\) Brain herniation leading to early death was more frequent in young patients, whereas late deaths due to malignancies and less favorable functional outcome were more frequent in elderly patients.\(^6,10,89\) Table 6 summarizes demographic, imaging, and clinical variables associated with poor prognosis.\(^261,282\) A Glasgow Coma Scale score of 14 to 15 on admission, a complete or partial intracranial hypertension syndrome (including isolated headache) as the only manifestation of CVT, and absence of aphasia were variables associated with a favorable outcome.\(^117,177\)

Risk Score Models

Despite the overall favorable outcome, \(\approx 15\%\) of CVT patients die or become dependent after CVT.\(^10,283\) Risk stratification scores might improve the ability to inform CVT

Table 6. Variables Associated With Poor Prognosis in Cohort Studies

<table>
<thead>
<tr>
<th>Demographic</th>
<th>Clinical</th>
<th>Neuroimaging</th>
<th>Risk Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (\geq 37) y(^10)</td>
<td>Coma(^10,117,277)</td>
<td>Intracerebral hemorrhage(^10,277)</td>
<td>Cancer(^10,177)</td>
</tr>
<tr>
<td>Male sex(^10)</td>
<td>Neurological deficit and severity (NIHSS)(^177,277)</td>
<td>Involvement of the straight sinus(^277)</td>
<td>CNS infection(^10)</td>
</tr>
<tr>
<td></td>
<td>Encephalopathy(^117)</td>
<td>Thrombosis of the deep venous system(^10)</td>
<td>Underlying coagulopathy hereditary thrombophilia(^66)</td>
</tr>
<tr>
<td></td>
<td>Decreased level of consciousness(^10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hemiparesis(^10)</td>
<td>Venous infarction(^66,179)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seizures(^10,179)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NIHSS indicates National Institutes of Health Stroke Scale; CNS, central nervous system.
patients of their individual prognosis and to select those who might benefit most from intensive monitoring and invasive treatments. One study created and validated a risk score model to predict a poor outcome. The risk score model range from 0 (lowest risk) to 9 (highest risk), and a cutoff of ≥3 points indicated a higher risk of death or dependency at 6 months. Two points were assigned for the presence of malignancy, coma, or thrombosis of the deep venous system and 1 point for male sex, presence of decreased level of consciousness, or ICH. The predictive ability (c-statistics) in the derivation cohort was 85.4%, 84.4%, and 90.1% in the validation samples. Sensitivity and specificity in the combined samples were 96.1% and 13.6%, respectively.

Another study incorporated age >37 years and central nervous system infection into this model and assigned a weighted index to each variable. The study validated the score in 90 CVT patients and obtained an area under the receiver operator characteristic curve of 0.81 to predict mortality. With a cutoff score of ≥14, sensitivity was 88% and specificity was 70%. The predictive value for good outcome, defined as an mRS score <2, was 95%, and for bad outcome, it was 39%.

Recanalization
In a systematic review of 5 small studies, recanalization rates of CVT at 3 months and 1 year of follow-up were 84% and 85%, respectively. The highest rates of recanalization are observed in deep cerebral veins and cavernous sinus thrombosis and the lowest rates in lateral sinus thrombosis. In adults, recanalization of the occluded sinus is not related to outcome after CVT.

Summary/Future Considerations
This statement provides an extensive and critical review of the literature related to the diagnosis and management of CVT and its most common complications. A dural sinus or cerebral venous thrombosis (CVT) accounts for 0.5% to 1% of all strokes, mostly affecting young individuals and women of childbearing age. Patients with CVT commonly present with headache, although some develop a focal neurological deficit, decreased level of consciousness, seizures, or intracranial hypertension without focal neurological signs. Uncommonly, an insidious onset may create a diagnostic challenge. A prothrombotic factor or a direct cause is identified in approximately two thirds of patients with sinus thrombosis. The diagnosis is usually made by venographic studies with CT (CTV) or MRI (MRV) to demonstrate obstruction of the venous sinuses or cerebral veins by thrombus. Management of CVT includes treatment of the underlying condition; symptomatic treatment; the prevention or treatment of complications of increased intracranial pressure, ICH, or venous infarction; and typically, anticoagulation therapy (see algorithm in Figure 4).

Diagnostic and therapeutic techniques in stroke are in continuous evolution. Important advances have been made in the understanding of the pathophysiology of cerebral sinus thrombosis. Yet promising techniques (endovascular procedures, hemispherectomy for the management of refractory intracranial hypertension in the context of mass effect or ICH, etc) need to be evaluated rigorously before they are widely adopted.

Despite substantial progress in the study of CVT in recent years, much of the literature remains descriptive. The CVT writing group made an effort to highlight areas that require further study (eg, larger randomized clinical trials to determine the benefit of therapeutic interventions) and provided suggestions that reflect the current standard practice. A randomized clinical trial aimed at comparing the benefit of anticoagulation therapy versus endovascular thrombolysis (TO-ACT Trial; Thrombolysis Or Anticoagulation for Cerebral Venous Thrombosis) is under way. The results of TO-ACT may contribute to improving the acute management of patients with CVT.

Management dilemmas in CVT can be complex. Healthcare providers managing these patients may require assistance from appropriate subspecialists given that there is no strong literature evidence to guide some of these challenging clinical decisions. The present statement is unlikely to end the debate about the management of CVT. Rather, the content of the present statement should be seen as a compilation of the best available evidence at the present time. Through a process of innovative research and systematic evaluation, diagnosis, management, and therapeutic alternatives will continue to evolve and consequently lead to better outcomes for patients with CVT.

Search Strategy

Appendix

To address the diagnosis and management of CVT, we systematically searched in PubMed on the following terms: “cerebral vein thrombosis” OR “cerebral venous thrombosis” OR “sinus thrombosis.” Then, we refined our search by combining these with “epidemiology,” “management,” “diagnosis,” “imaging,” “MRI, “randomized trial,” “prognosis,” and “outcome.” These terms were searched with regard to adults, pregnant women, children, and neonates. Our last search was undertaken on July 7, 2010. No language restriction was placed on the searches. Because the intention was to guide readers on the management of CVT based on a comprehensive review of the literature, including sometimes specific and/or uncommon clinical situations, no formal restrictions or further quality assessment was undertaken.

For the treatment section, we reviewed systematic reviews and guideline statements of the Cochrane Collaboration, the AHA/American Stroke Association, the American College of Chest Physicians, and the European Federation of Neurological Sciences, in addition to literature reviews and treatment guidelines. For specific therapeutic alternatives, we combined (“cerebral vein thrombosis” OR “cerebral venous thrombosis” OR “sinus thrombosis”) with “emicraniecomy,” “thrombolysis,” or “endovascular.” Secondary sources of data included reference lists of articles reviewed and cohort studies that related treatment to outcomes.

Authors assigned to each section were responsible for checking for additional references for their specific topic. For the section on “CVT in the Pediatric Population,” we also reviewed the guideline statements of the American Academy of Pediatrics and the “American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition)” on antithrombotic therapy in neonates and children. For the section on “CVT During Pregnancy,” we also reviewed the guideline statements from the American College of Chest Physicians.
Writing Group Disclosures

<table>
<thead>
<tr>
<th>Writing Group Member</th>
<th>Employment</th>
<th>Research Grant</th>
<th>Other Research Support</th>
<th>Speakers' Bureau/ Honoraria</th>
<th>Expert Witness</th>
<th>Ownership Interest</th>
<th>Consultant/ Advisory Board</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gustavo Saposnik</td>
<td>University of Toronto</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Fernando Barinagarrementeria</td>
<td>Universidad del Valle de Mexico</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Robert D. Brown, Jr</td>
<td>Mayo Clinic</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Cheryl D. Bushnell</td>
<td>Wake Forest University</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Brett Cucchiara</td>
<td>University of Pennsylvania</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Mary Cushman</td>
<td>University of Vermont</td>
<td>NIH‡</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Gabrielle deVeber</td>
<td>Hospital for Sick Children,</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>$<10 000 CSVT</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Toronto</td>
<td></td>
<td></td>
<td></td>
<td>legal case*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jose M. Ferro</td>
<td>University of Lisbon, Portugal</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Servier*; Tecnifar*</td>
</tr>
<tr>
<td>Fong Y. Tsai</td>
<td>University of California at Irvine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

This table represents the relationships of writing group members that may be perceived as actual or reasonably perceived conflicts of interest as reported on the Disclosure Questionnaire, which all members of the writing group are required to complete and submit. A relationship is considered to be “Significant” if (a) the person receives $10 000 or more during any 12-month period, or 5% or more of the person’s gross income; or (b) the person owns 5% or more of the voting stock or share of the entity, or owns $10 000 or more of the fair market value of the entity. A relationship is considered to be “Modest” if it is less than “Significant” under the preceding definition.

*Modest.
†Significant.

Reviewer Disclosures

<table>
<thead>
<tr>
<th>Reviewer</th>
<th>Employment</th>
<th>Research Grant</th>
<th>Other Research Support</th>
<th>Speakers’ Bureau/ Honoraria</th>
<th>Expert Witness</th>
<th>Ownership Interest</th>
<th>Consultant/Advisory Board</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kenneth A. Bauer</td>
<td>Beth Israel Deaconess Medical Center</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Guilherme Dabus</td>
<td>Baptist Cardiac and Vascular Institute</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Adnan I. Qureshi</td>
<td>University of Minnesota</td>
<td>Protein Design Labs*</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Brian Silver</td>
<td>Henry Ford Medical Center</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Greg Zipfel</td>
<td>Washington University</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

This table represents the relationships of reviewers that may be perceived as actual or reasonably perceived conflicts of interest as reported on the Disclosure Questionnaire, which all reviewers are required to complete and submit. A relationship is considered to be “Significant” if (a) the person receives $10 000 or more during any 12-month period, or 5% or more of the person’s gross income; or (b) the person owns 5% or more of the voting stock or share of the entity, or owns $10 000 or more of the fair market value of the entity. A relationship is considered to be “Modest” if it is less than “Significant” under the preceding definition.

*Modest.
References

1188 Stroke April 2011

284. Reference deleted in proof.
Diagnosis and Management of Cerebral Venous Thrombosis: A Statement for Healthcare Professionals From the American Heart Association/American Stroke Association
Gustavo Saposnik, Fernando Barinagarrementeria, Robert D. Brown, Jr, Cheryl D. Bushnell, Brett Cucchiara, Mary Cushman, Gabrielle deVeber, Jose M. Ferro and Fong Y. Tsai

Stroke. 2011;42:1158-1192; originally published online February 3, 2011;
doi: 10.1161/STR.0b013e31820a8364

Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2011 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/42/4/1158

Data Supplement (unedited) at:
http://stroke.ahajournals.org/content/suppl/2012/03/12/STR.0b013e31820a8364.DC3
http://stroke.ahajournals.org/content/suppl/2012/02/28/STR.0b013e31820a8364.DC2
http://stroke.ahajournals.org/content/suppl/2012/02/28/STR.0b013e31820a8364.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org/subscriptions/
Diagnóstico y tratamiento de la trombosis venosa cerebral. Comunicado de la American Heart Association/American Stroke Association para los profesionales de la salud

El Stroke Council on Epidemiology and Prevention de la American Heart Association aborda por primera vez la realización de unas guías de práctica clínica para el diagnóstico y tratamiento de la trombosis venosa cerebral. Aunque se trata de un tipo poco frecuente de ictus (representando sólo el 0,5-1% del total), presenta unas características diferenciales importantes al afectar predominantemente a pacientes jóvenes y ser múltiples los factores de riesgo asociados a esta enfermedad. Se establecen recomendaciones basadas en la evidencia que abordan tanto los métodos diagnósticos de laboratorio y neuroimagen; las diferentes opciones terapéuticas, desde el tratamiento anticoagulante (con el uso de heparina en fase aguda) hasta nuevas alternativas en desarrollo como el tratamiento endovascular (trombectomía/trombolisis); y el manejo de las posibles complicaciones asociadas a la trombosis venosa cerebral, tanto las precoces (hidrocefalia, hipertensión intracraneal, crisis) como las tardías (recurrencias de trombosis venosa cerebral, cefalea, crisis, pérdida visual, fistula arteriovenosa). Por último, se analiza la evidencia disponible sobre el manejo de esta enfermedad en dos grupos poblacionales especialmente susceptibles: mujeres gestantes y niños. (Comentario al artículo Diagnosis and Management of Cerebral Venous Thrombosis. A Statement for Healthcare professionals from the American Heart Association/American Stroke Association. Gustavo Saposnik, Fernando Barinagarrementeria, Robert D. Brown, Jr, Cheryl D. Bushnell, Brett Cucchiara, Mary Cushman, Gabrielle deVeber, Jose M. Ferro, Fong Y. Tsai on behalf of the American Heart Association Stroke Council and the Council on Epidemiology and Prevention. Stroke. 2011;42:1158-1192.)

脳静脈洞血栓症の疫学と危険因子

CVT は若年者に発症し、発症率は 5 人 /100,000/ 年と推定され、全脳卒中の 0.5 ~ 1.0%を占める。CVT には遺伝性または後天性の凝固亢進状態が存在する。遺伝性因子 (血栓性素因) には抗凝固蛋白欠乏症 (アンチトロンビン III、プロテイン C、プロテイン S), 第 5 凝固因子 Leiden 変異、プロトロンビン G20210A 変異が含まれている。高ホモシスチン血症と CVT の関連についてはまだ結論が得られていない。後天性因子には手術、外傷、妊娠、産褥、抗リン脂質抗体症候群、悪性腫瘍、ホルモン療法などがあり、経口避妊薬 (OC) との関連も高く、特にプロトロンビン G20210A 変異が第 5 凝固因子 Leiden 変異の保有者では OC によりリスクが極めて高くなる。幼少児では感染症が CVT の原因であることが多い。

脳静脈洞血栓症の臨床診断

CVT の臨床所見は頭蓋内圧亢進と脳実質の虚血/出血によるが、多くの場合両者が併存する。頭痛は 90% の症例にみられ、頭痛に乳頭浮腫か複視 (外転神経麻痺) が併存すれば CVT を考慮すべきである。局所徴候としては片麻痺、失語が多い。局所または全般性けいれん発作は約 40% にみられ、脳深部静脈系では視床の損傷により、局所症状なしに意識障害を発症することがある。臨床的に CVT を疑った場合、血液検査ではプロトロンビン時間 (PT-INR) と活性化部分トロンボプラスチン時間 (aPTT) を測定し、凝固亢進状態を起こし得る疾患と薬物を検索する必要がある (表 1: 推奨クラス I, エビデンス・レベル C)。脳脊髄液検査は臓膜炎の疑いがあるとき以外ではあまり有用でないが、脳圧の亢進は 80% にみられる。D- ダイマーは深部靜脈血栓 (DVT) や肺塞栓 (PE) の除外に是有用だが、D- ダイマー値が正常である場合、CVT の可能性は低いかもしれないが (表 1: 推奨クラス IIb, エビデンス・レベル B) 除外はできない。

脳静脈洞血栓症の画像診断 (表 2)

頭部 CT は頭痛やけいれん発作がある症例の検査の第一歩であるが、造影なしでは診断感度は低い。上矢状静脈洞後部に血栓が形成されると高シグナル (high density: HD) 三角形がみられることがある (デルタシグナル)。造影 CT では静脈や静脈洞内に血栓が造影欠損として認められ、静脈洞に沿った硬膜の造影が増強される。MRI では静脈内に血栓が認められるが、血栓形成後の時期により性状が異なる。CT 静脈造影 (CTV) は迅速かつ確実に CVT を描出するが、塗描した骨により見えにくい

AHA/ASA Scientific Statement

脳静脈洞血栓症の診断と管理

Diagnosis and Management of Cerebral Venous Thrombosis

A Statement for Healthcare Professionals From the American Heart Association/American Stroke Association

The American Academy of Neurology affirms the value of this statement as an educational tool for neurologists. The American Association of Neurological Surgeons and Congress of Neurological Surgeons have reviewed this document and affirm its educational content. The Ibero-American Stroke Society (Sociedad Iberoamericana de Enfermedad Cerebrovascular) endorses the recommendations contained in this report. Endorsed by the Society of NeuroInterventional Surgery

Gustavo Saposnik, MD, MSc, FAHA, Chair; Fernando Bar-inagarren-men teria, MD, FAHA, FAAN; Robert D. Brown, Jr, MD, MPH, FAHA, FAAN; Cheryl D. Bushnell, MD, MHS, FAHA; Brett Cucchiara, MD, FAHA; Mary Cushman, MD, MSc, FAHA; Gabrielle deVeber, MD; Jose M. Ferro, MD, PhD; Fong Y. Tsai, MD; on behalf of the American Heart Association Stroke Council and the Council on Epidemiology and Prevention

Stroke 2011; 42: 1158-1192
場合がある。MR 静脈造影 (MRV) には二次元タイム・オブ・フレイト法や造影 MRV が用いられる。グラディエント・エコーまたは磁化率強調画像では血栓のない洞形成不全は低シグナルを呈しない。造影 MRV では脳静脈構造がより鮮明になる。カテテル脳血管撮影 (DSA) と脳静脈撮影は、MRV または CTV で結論がでない場合や血管内治療が考慮されている場合に施行される。脳静脈洞と皮質静脈の急性血栓症では脳静脈流の遅延が起こるが、DSA により血栓可視化の遅延は観察されない。脳静脈撮影は内頸静脈からの造影剤の注入により施行され、通常は血管内治療中に行われる。

脳静脈洞血栓症の管理と治療（表 3～5）

1) 急性期の管理と内科的治療（表 3）：脳卒中集中治療室（SU）での徹底した管理により合併症が予防できると考えられる。急性期の抗凝固療法につき議論が続く理由は、CVT の診断がつく頃には出血性梗塞か脳内出血（ICH）が起こっていることが多いからである。無作為比較試験としては 2 件が造影画像で確認された CVT で施行されているが、そのうち 1 件は (Lancet 1991; 338: 597-600, Lancet 1991; 338: 958)、もう 1 件では (Stroke 1999; 30: 484-488)。59 例において低分子ヘパリン（LMWH）nadroparin（180 anti-Factor Xa units/kg/day 分 2 皮下注）と偽薬が 3 週間投与され、その後経口抗凝固薬が nadroparin 群のみに 3 カ月投与された。これら 2 件のメタ解析では有意差ではなかったが、抗凝固薬群で死亡と要介助の相対的リスク（RR = 0.46）の低下が認められた。ICH を伴う CVT の抗凝固療法については、nadroparin を用いた試験で 29 例中 6 例が死亡したが、死亡は新規の出血や ICH の増大によるものではなかった。大規模観察研究である ISCVT 研究 (Stroke 2004; 35: 664-670) では、624 例中全例が抗凝固療法を受けたが、16 カ月の死亡率は 8.3%で、79%に完治（mRS 0～1）がみられ、10.4%に軽～中等度の障害（mRS 2～3）、22.2%に重度の障害が残った。これらのデータは、治療前の ICH の有無にかかわらず、C VT における抗凝固療法を支持している。C VT では、aPTT を調整した未分画ヘパリン・偽薬の比較が 16 カ月の結果をもってせめぎられたが、41.5%は抗凝固療法を受けていたが詳細は不明である。血栓性素因を有する CVT における治療法には、抗凝固薬療法、線溶療法、血管内治療、手術的治療、抗凝固療法と再発のリスクについての無作為試験が行われた。再発予防法は CVT と DVT に関する観察研究に基づいている。ISCVT 研究では 16 カ月間に CVT の再発（2%）と他の血栓性イベント（4%）を合わせて 6.5％にみられ、その 41.5%は抗凝固療法を受けていたが詳細は不明である。血栓性素因（thrombophilia）には遺伝性と後天性があり、遺伝性の血栓性素因は再発のリスクに従って軽度と重度に層別化される。プロトロンビン G20210A 異常のホモ接合体、第 5 因子遺伝子 Leiden 異常のホモ接合体、およびプロテイン C、プロテイン S、アノントロンビンIII欠乏症、複合血栓性素因異常および抗リン脂質抗体症候群は重度に
脳静脈血栓症の診断と管理

クラス I 検査や治療法の有用性および有効性を示すエビデンスまたは一般的合意がある。

クラス II 検査や治療法の有用性および有効性に関して相反するエビデンスまたは見解の相違が認められる。

クラス IIa 検査や治療法の有用性および有効性を支持するエビデンスまたは見解が多数を占める。

クラス IIb 有用性および有効性を支持するエビデンスや見解は十分ではない。

クラス III 検査や治療法が有用または有効でなく、場合によっては有害となり得ることを示すエビデンスまたは一般的合意がある。

治療の推奨

エビデンスレベル A 複数の無作為試験またはメタ解析により得られたデータがある。

エビデンスレベル B 1つの無作為試験または複数の非無作為試験より得られたデータがある。

エビデンスレベル C 専門家の合意した見解、症例研究、または標準治療法。

診断の推奨

エビデンスレベル A 参照基準を用いてマスクされた評価者により施行された複数の前向きコホート研究のデータがある。

エビデンスレベル B 1つのグレード A の研究、または 1つ以上の症例対照研究のデータ、あるいは参照基準を使ってマスクされていない評価者によって施行された研究のデータがある。

エビデンスレベル C 専門家の合意した見解。

表 1 AHA ガイドラインにおける各推奨のクラスとエビデンスレベルの定義

<table>
<thead>
<tr>
<th>クラス</th>
<th>エビデンスレベル</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>A</td>
<td>検査や治療法の有用性および有効性を示すエビデンスまたは一般的合意がある。</td>
</tr>
<tr>
<td>II</td>
<td>A</td>
<td>検査や治療法の有用性および有効性に関して相反するエビデンスまたは見解の相違が認められる。</td>
</tr>
<tr>
<td>IIa</td>
<td>A</td>
<td>検査や治療法の有用性および有効性を支持するエビデンスまたは見解が多数を占める。</td>
</tr>
<tr>
<td>IIb</td>
<td>A</td>
<td>有用性および有効性を支持するエビデンスまたは見解は十分ではない。</td>
</tr>
<tr>
<td>III</td>
<td>A</td>
<td>検査や治療法が有用または有効でなく、場合によっては有害となり得ることを示すエビデンスまたは一般的合意がある。</td>
</tr>
</tbody>
</table>

小児科領域の脳静脈洞血栓症（表 7）

新生児けいれん発作と頭頸で発症し、幼児はけいれん発作、意識障害、乳頭渇腫を伴う頭痛、頭蓋内圧亢進などで発症する。危険因子については、新生児は出産時に頭蓋にストレスがかかり、抗凝固蛋白が少なく、母親の周産期合併症、子供死症を含む危険因子と考えられる。遺伝性血栓性素因以外に、新生児では頭頸部の感染、脳膜炎、脱水、先天性心疾患がリスクとなる。年長児・思春期ではループス・エリテマトーデス、ネフローゼ症候群、白血病、リンパ腫、外傷などが危険因子とされる。脳塞については、カナダの登録研究において160人の小児の8%に死亡、13%にCVTの再発が認められた。新生児では死亡率は7%であった。治療と管理についての無作為試験が存在しないため、成人のデータから推測する必要があるが、小児と新生児に対するLMWH、UFA、ラファリンを含む抗凝固療法の有効性が支持されつつある。

（文責：柳原 武彦）
表2 脳静脈洞血栓症の画像診断

<table>
<thead>
<tr>
<th>推奨</th>
<th>エビデンスの分類とレベル</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 単純CTまたはMRIは、CVTが疑われる患者の初期評価に有用であるが、陰性所見が得られなかったというCTVの可能性が残されたわけではない。単純CTまたはMRIが陰性のCTV疑い例や、単純CTまたはMRIでCTVが示唆された患者のCTの経過を明らかにするには、静脉造影（CTVまたはMRV）を実施すべきである。</td>
<td>クラスI、エビデンスレベルC</td>
</tr>
<tr>
<td>2. 内科的治療を行っても症状が持続ないしは進行するCVT患者や、血栓の伸展を示唆する症状が認められる患者には、CTVまたはMRVにより早期の再検査を実施することが推奨される。</td>
<td>クラスI、エビデンスレベルC</td>
</tr>
<tr>
<td>3. CVTの既往があり、CVTを示唆する症状が再発した患者には、CTVまたはMRVによる再検査を実施することが推奨される。</td>
<td>クラスI、エビデンスレベルC</td>
</tr>
<tr>
<td>4. グラディエントエコー法または磁化率強調画像と他のMRI法との併用は、CVTの診断精度の向上に有用な可能性がある。</td>
<td>クラスIIa、エビデンスレベルB</td>
</tr>
<tr>
<td>5. CTVまたはMRVでは、1年間で推奨されるものの、臨床的にCVTの疑いの高濃度の患者には、カテゴリー脳血管造影が有用な可能性がある。</td>
<td>クラスIIa、エビデンスレベルC</td>
</tr>
<tr>
<td>6. 症状の安定した患者には、診療から3～6ヶ月後にCTVまたはMRVによる再検査を実施し、閉塞した皮質静脈/静脈洞の再開通の評価を行うことが妥当である。</td>
<td>クラスIIa、エビデンスレベルC</td>
</tr>
</tbody>
</table>

CTV:CT静脈造影、CVT:脳静脈洞血栓症、MRV:磁気共鳴静脈造影。

表3 脳静脈洞血栓症の急性期の管理と治療

<table>
<thead>
<tr>
<th>推奨</th>
<th>エビデンスの分類とレベル</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 急性期CVT患者の管理と治療はStroke Unitで行うのが妥当である。</td>
<td>クラスIIa、エビデンスレベルC</td>
</tr>
<tr>
<td>2. 脳静脈洞血栓症疑い例では適切な抗生物質を投与し、適応CVTと関連した感染源の外科的ドレナージにより、貯留した膿を除去すべきである。</td>
<td>クラスI、エビデンスレベルC</td>
</tr>
<tr>
<td>3. ICHの有無に関わらず、CVT患者に、用量を調整したUFHまたは体重に基づいた十分な抗凝固療法を行い、その後ビタミンK拮抗薬を投与するのが妥当である。</td>
<td>クラスIIa、エビデンスレベルB</td>
</tr>
<tr>
<td>4. 療法の実施に伴なう予防と治療を伴なうCVT患者には、さらに慢性の抗凝固療法を行い、その後ビタミンK拮抗薬を投与するのが妥当である。</td>
<td>クラスIIb、エビデンスレベルC</td>
</tr>
</tbody>
</table>

CTV:脳静脈洞血栓症、ICH:脳内出血、LMWH:低分子ヘパリン。

表4 脳静脈洞血栓症の早期合併症の管理と予防

<table>
<thead>
<tr>
<th>推奨</th>
<th>エビデンスの分類とレベル</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. CVT患者の合併症の治癒はStroke Unitで行うのが妥当である。</td>
<td>クラスIIa、エビデンスレベルC</td>
</tr>
<tr>
<td>2. 単純のけんれん発作を生じた脳実質病変を伴うCVT患者には、さらなるけんれん発作を予防するために、期間を限定して電磁気療法を早期に開始することが推奨される。</td>
<td>クラスI、エビデンスレベルC</td>
</tr>
<tr>
<td>3. 単純のけんれん発作を生じた脳実質病変を伴わないCVT患者にも、さらなるけんれん発作を予防するために、期間を限定して電磁気療法を早期に開始することが推奨される。</td>
<td>クラスIIa、エビデンスレベルC</td>
</tr>
<tr>
<td>4. けんれん発作がみられなかった場合、CVT患者に対する抗てんかん薬の日常的な使用を推奨しない。</td>
<td>クラスIII、エビデンスレベルC</td>
</tr>
<tr>
<td>5. 脳内圧亢進を示すCVT患者については、TCD検査の行う有無を監視することが推奨される。脳圧検査の行うが認められる場合は、頭蓋内圧亢進に対する早期的治療が必要である。</td>
<td>クラスIIa、エビデンスレベルC</td>
</tr>
<tr>
<td>6. 脳圧亢進を示すCVT患者については、アセタゾラミド投与を開始するのが適切である。脳圧検査の行うが認められる場合、頭蓋内圧亢進に対する早期的治療が必要である。</td>
<td>クラスIIa、エビデンスレベルC</td>
</tr>
<tr>
<td>7. 強い圧排効果による神経学的徴候の悪化や頭蓋内出血による脳圧亢進と頭蓋内圧亢進が認められる脳圧検査の行うが認められる場合、頭蓋内圧亢進に対する早期的治療が必要である。</td>
<td>クラスIIb、エビデンスレベルC</td>
</tr>
<tr>
<td>8. 脳実質病変の治癒に必要な場合を除き、CT/MRIで脳実質病変が認められても、CVT患者へのステロイド薬投与は推奨されない。</td>
<td>クラスIII、エビデンスレベルB</td>
</tr>
</tbody>
</table>

CTV:脳静脈洞血栓症、Stroke Unit:脳卒中集中治療室。
脳静脈洞血栓症の診断と管理

表 5 脳静脈洞血栓症の長期管理および再発予防

<table>
<thead>
<tr>
<th>推奨</th>
<th>エビデンスの分類とレベル</th>
</tr>
</thead>
</table>
| 1. CVT 患者の管理には、プロテイン C、プロテイン S、アンチトロンビン欠損症、抗リン脂質抗体症候群、プロトロンビンG20210A変異、第V因子Leiden変異を含む、凝固亢進状態の検査が有益だろう。一般的には、凝固療法終了から2〜4週後に、プロテイン C、プロテイン S、アンチトロンビン欠損症の検査を実施する。急性期の検査やワルファリン投与例への検査はほとんど有用性がない。
| クラス III, エビデンスレベル B |
| 2. 誘発性（一過性の危険因子を伴う）の CVT 患者には、INR目標値を2.0〜3.0として、ビタミン K拮抗薬の6〜12カ月継続を考慮してもよい。
| クラス III, エビデンスレベル C |
| 3. 非誘発性の CVT 患者には、INR目標値を2.0〜3.0として、ビタミン K拮抗薬の6〜12カ月継続を考慮してもよい。
| クラス III, エビデンスレベル C |
| 4. CVT 再発例、CVT後のVTE症例、または重度の血栓性素因で認められるCVT初発例（すなわちプロトロンビンG20210A変異ホモ接合体、第 V 因子 Leiden 変異ホモ接合体、プロトロンビン C・プロテイン S・アンチトロンビン欠損症、複合的な血栓性素因異常、抗リン脂質抗体症候群）には、INR目標値を2.0〜3.0として、無期限の抗凝固療法を検討してもよい。
| クラス III, エビデンスレベル C |
| 5. 血栓症に詳しい医師に相談し、凝固亢進状態の検査やCVT患者のケアについて意見を求めてもよい。
| クラス III, エビデンスレベル C |

CVT: 脳静脈洞血栓症, INR: 国際標準化比, VTE: 静脈血栓塞栓症。

表 6 妊娠中の脳静脈洞血栓症

<table>
<thead>
<tr>
<th>推奨</th>
<th>エビデンスの分類とレベル</th>
</tr>
</thead>
</table>
| 1. CVTのある妊婦には、妊娠期間中、充分な抗凝固効果を得られる量のLMWHを継続すべきであり、出産後はLMWHまたはINR目標値を2.0〜3.0としてビタミンK拮抗薬を最低限6週間継続投与すべきである（総治療期間は最低限6か月とする）。
| クラス I, エビデンスレベル C |
| 2. 妊娠中の急性 CVTには、UFHよりもLMWHの投与が妥当である。
| クラス IIa, エビデンスレベル C |
| 3. CVTの既往のある女性には、将来の妊娠は禁忌ではないことを助言することが適当である。根拠のある病因について詳しく調べ、血液専門医や胎児専門医の診察を受けながらが妥当である。
| クラス IIb, エビデンスレベル B |
| 4. CVTの既往のある女性が妊娠した場合には、妊娠中および出産後にLMWHを予防的に投与する適応があるだろう。
| クラス IIa, エビデンスレベル C |

CVT: 脳静脈洞血栓症, INR: 国際標準化比, LMWH: 低分子ヘパリン, UFH: 未分画ヘパリン。

表 7 小児における脳静脈洞血栓症の管理

<table>
<thead>
<tr>
<th>推奨</th>
<th>エビデンスの分類とレベル</th>
</tr>
</thead>
</table>
| 1. CVT患児には血液培養と副鼻腔洞X線検査を行い、根拠に感染症がないかどうかを調べることが考慮されている。
| クラス IIb, エビデンスレベル B |
| 2. CVT患児には血栓性素因に関する検査を行い、根拠にある凝固障害を明らかにするのが有益であろう。障害によっては、その後の再発リスクおよび治療上の意思決定に影響を及ぼす可能性がある。
| クラス IIb, エビデンスレベル B |
| 3. 急性CVTを発症した新生児には、LMWHまたはUFH投与を考慮してよい。
| クラス III, エビデンスレベル C |
| 4. 急性CVTをきたした新生児には、6週間〜3か月にわたりLMWHを継続投与することを考慮してよい。
| クラス III, エビデンスレベル B |
| 5. 生後28日以降に急性CVTと診断された小児には、たとえICHが認められても、LMWHの充分量の投与が妥当である。
| クラス III, エビデンスレベル C |
| 6. 生後28日以降に急性CVTと診断された小児には、LMWHまたは経口ビタミンK拮抗薬を3〜6カ月継続投与するのが妥当である。
| クラス III, エビデンスレベル C |
| 7. 急性CVTをきたしたすべての小児患者において、初期の抗凝固療法が開始された場合は、治療開始後1週間以内に頭部CTまたはMRIを実施し、新たな出血を検査することが推奨されている。
| クラス III, エビデンスレベル B |
| 8. すべての小児患者において、初期の抗凝固療法を行わない場合は、診断後1週間以内に静脈造影を含めた脳梗塞検査を再度実施して、初期血栓の伸長や新規梗塞または出血の有無を監視することが推奨される。
| クラス III, エビデンスレベル C |
| 9. CVT患者に対する支持的処置には、適切な水分補給、てんかん発作のコントロール、頭蓋内圧亢進の治療を含めるべきである。
| クラス I, エビデンスレベル C |
| 10. 重度または長期間に及ぶ頭蓋内圧亢進により視覚障害・視野欠損の恐れがあるCVT患児には、視覚および視野検査を定期的に実施すべきであり、頭蓋内圧亢進の合併症の適切な治療を導入すべきである。
| クラス I, エビデンスレベル C |
| 11. 急性CVTの患児はてんかん発作の発現頻度が高いため、意識消失状態にある患児や機械的呼吸を行っている患児には、持続的脳波モニタリングを考慮してよい。
| クラス IIb, エビデンスレベル C |
| 12. 小児患者における血管内治療の有用性および安全性は明らかでないため、有効レベルの抗凝固薬による積極的治療にもかかわらず、神経学的徵象が悪化する患者を慎重に選択し、これらの患者に対してのみ血管内治療を検討してよい。
| クラス IIb, エビデンスレベル C |

CVT: 脳静脈洞血栓症, ICH: 脳内出血, LMWH: 低分子ヘパリン, UFH: 未分画ヘパリン。
Stroke April 2011

AHA/ASA Scientific Statement

脑静脉血栓形成的诊断和处理
一项来自美国心脏协会/美国卒中协会针对医疗专业的声明（摘译）

Diagnosis and Management of Cerebral Venous Thrombosis
A Statement for Healthcare Professionals From the American Heart Association/American Stroke Association

Gustavo Saposnik, MD, MSc, FAHA, Chair; Fernando Barinagarrementeria, MD, FAHA, FAAN; Robert D. Brown, Jr, MD, MPH, FAHA, FAAN; Cheryl D. Bushnell, MD, MHS, FAHA; Brett Cucchiara, MD, FAHA; Mary Cushman, MD, MSc, FAHA; Gabrielle deVeber, MD; Jose M. Ferro, MD, PhD; Fong Y. Tsai, MD on behalf of the American Heart Association Stroke Council and the Council on Epidemiology and Prevention

背景：此声明旨在提供针对脑静脉窦血栓形成的综述和提供关于其诊断、处理和治疗的推荐意见。面向的读者是负责脑静脉窦血栓形成病人诊断和处理的医师和其它医疗提供者。

方法和结果：专题组成员是由美国心脏协会卒中理事会科学声明监督委员会任命并代表不同专业领域。专题组以1966年以来发表的报告为重点，对相关文献做了回顾，并使用美国心脏协会证据水平分级方法对证据进行评价和制定建议。声明经专题组批准之后，再经同行评议并通过美国心脏协会科学顾问和协调委员会的批准。

结论：对脑静脉血栓形成的诊断、处理及复发的预防提供了基于证据的建议。提供了关于妊娠期和儿童人群中脑静脉血栓形成的评价和处理的建议，也总结了关于临床并发症（抽搐发作、脑积水、颅内压增高以及神经系统症状和体征恶化）处理的思考。描述了脑静脉窦血栓形成病人的诊断和处理流程。

关键词：美国心脏协会科学声明;静脉血栓形成;硬膜窦血栓形成,颅内;脑梗死,静脉性;卒中;疾病处理;预后;结局评估;抗凝剂;妊娠;儿童

(Stroke. 2011;42:1158-1192. 北京天坛医院神经内科 曹亦宾 摘译 王拥军 校)

硬脑膜窦和（或）脑静脉血栓形成（CVT）是一种不常见的卒中类型，通常好发于年轻人[1]。危险因素具有多样性，缺乏统一的治疗方法，临床诊断和处理可能困难。CVT 大约占所有卒中的 0.5%-1%[2]。诱发因素包括先存疾病（如易栓症、炎症性肠道疾病）、一过性疾病（诸如妊娠、脱水、感染）、某些药物（诸如口服避孕药、毒品滥用）及不可预知的事件（诸如头部外伤）[3,4]。

CVT 的病因和临床表现形式具有多样性，不仅是神经内科和神经外科医生而且也是急诊科、普通内科、肿瘤科、血液科、妇产科、儿科以及家庭医生经常遇到的临床问题。本科学声明旨在回顾 CVT 的相关文献并提供诊断和处理建议。

CVT 的流行病学和危险因素

CVT 是一种少见且经常被误诊的卒中类型，年发病率大约为 5/100 万，占所有卒中的 0.5%-1%[1]。CVT 更常见于青年个体。脑静脉和硬脑膜窦血栓形成国际研究 (ISCVT) 报告的 624 例中有 487 例 (78%) 病人的年龄小于 50 岁 [1,6]。还没有人群研究报告过

Author order is alphabetical after the writing group chair. All authors have contributed equally to the present work.
The American Heart Association makes every effort to avoid any actual or potential conflicts of interest that may arise as a result of an outside relationship or a personal, professional, or business interest of a member of the writing panel. Specifically, all members of the writing group are required to complete and submit a Disclosure Questionnaire showing all such relationships that might be perceived as real or potential conflicts of interest.

This statement was approved by the American Heart Association Science Advisory and Coordinating Committee on October 26, 2010. A copy of the statement is available at http://www.americanheart.org/presenter.jhtml?identifier3003999 by selecting either the “topic list” link or the “chronological list” link (No. KB-0186). To purchase additional reprints, call 843-216-2533 or e-mail kelle.ramsay@wolterskluwer.com.

Expert peer review of AHA Scientific Statements is conducted at the AHA National Center. For more on AHA statements and guidelines development, visit http://www.americanheart.org/presenter.jhtml?identifier3023366.

Permissions: Multiple copies, modification, alteration, enhancement, and/or distribution of this document are not permitted without the express permission of the American Heart Association. Instructions for obtaining permission are located at http://www.americanheart.org/presenter.jhtml?identifier4431. A link to the “Permission Request Form” appears on the right side of the page.

© 2011 American Heart Association, Inc.
Saposnik et al Diagnosis and Management of Cerebral Venous Thrombosis

CVT 的患病率。

病因和发病机制：CVT 的潜在危险因素

CVT 的诱因是多方面的。危险因素通常被归类为获得性危险（诸如手术、创伤、妊娠、围产期、抗磷脂抗体综合征、癌症、外源性激素）和遗传性危险（遗传性易栓症）。

表 3 总结了促凝因素与 CVT 之间因果关系 [10,11] 的证据 [12-55]。总结的证据涉及联系强度和一致性、生物学可信度及时间性。其中，最符合这些标准的是抗凝血酶 III 缺乏、蛋白 C 和蛋白 S 缺乏症、凝血因子 V(factor V)Leiden 阳性、使用口服避孕药及高同型半胱氨酸血症。

血栓前状态

血栓前状态是研究最广泛的 CVT 危险因素之一。ISCVT 研究发现 34% 的 CVT 病人有遗传性或获得性血栓前状态 [10]。其中，抗凝血酶 III、蛋白 C 和蛋白 S 缺乏症已经对天然抗凝蛋白缺乏症（抗凝血酶 III、蛋白 C 和蛋白 S）作为 CVT 危险因素的作用进行了分析。一项研究对 121 例首次患 CVT 的病人和 242 例健康对照者进行了比较 [36]。另一项研究对 51 例 CVT 病人和 120 例健康对照者进行了比较 [12]。仅 1 例病人 (2%) 有抗凝血酶 III 缺乏。将两项研究合并之后，蛋白 C 缺乏症患 CVT 危险的合并比值比 (odds ratio, OR) 是 11.1 (95% CI 1.87-66.05; P=0.009)，而蛋白 S 缺乏症是 12.5 (95% CI 1.45-107.29; P=0.03)。

抗磷脂和抗心磷脂抗体

一项研究发现 CVT 病人中抗磷脂抗体的发生率 (9/121) 高于对照组 (0/242) [36]。另一项研究中，与正常人对照组的 3.2% 相比，31 例 CVT 病人中 22.6% 被检测出抗磷脂抗体 [12]。ISCVT 研究观察到的结果与之相似 (5.9%) [10]。

凝血因子 V Leiden基因突变和活化蛋白 C抵抗

活化蛋白 C 抵抗主要是由凝血因子 V Leiden 基因突变所致，而凝血因子 V Leiden 基因突变是一种常见的遗传性易栓性疾患。

凝血酶原G20210A基因突变

凝血酶原 G20210A 基因突变大约见于 2% 的白种人，它能导致凝血酶原水平的轻度增高 [55,56]。一项对 9 项研究共 360 例 CVT 病人和 2688 例对照受者的 meta 分析报告 [38]，此种基因突变的 CVT 混合 OR 值为 9.27 (95% CI 5.85-14.67) [38]，比它与总的静脉血栓栓塞 (VTE) 的相关性要强。

高同型半胱氨酸血症

高同型半胱氨酸血症是深静脉血栓形成 (DVT) 和卒中的一个危险因素，但对其与 CVT 危险性增加的相关性还不清楚。

妊娠和产褥期

妊娠和产褥期是一过性血栓前状态的常见原因 [37]。大约 2% 的妊娠相关性卒中可归咎于 CVT [51]。据估计，产褥期 CVT 的发生率为 12/10 万次分娩，仅略低于产褥期动脉性卒中 [58]。

大多数妊娠相关性 CVT 发生在妊娠晚期或产褥期 [32]。妊娠可诱发凝血系统发生若干促凝改变，这些改变至少持续至产褥期的早期。分娩后由于血容量丢失和创伤可加重高凝状态。在产褥期，其它危险因素还有感染和器械辅助分娩或剖腹产等。

口服避孕药

应用口服避孕药与 CVT 危险增加有关，大多数患 CVT 的年轻非妊娠妇女是口服避孕药者，而在那些有某种遗传性易栓因素的妇女中口服避孕药者患 CVT 的危险更大。

癌症

据推测，CVT 在癌症特别是血液系统恶性肿瘤病人中或许更常见，但还未见到有对照组的研究。癌症与 CVT 之间联系的潜在机制包括肿瘤直接压迫、肿瘤侵犯脑静脉窦 [39-41] 或癌症伴随的高凝状态 [60]。用于癌症治疗的化疗药物和激素也可能起到一定作用。

其它少见病因

新的神经影像技术近年来提高了发现 CVT 的能力并且也有助于识别出其它潜在的病因，其中包括感染，主要是位于脑膜附近部位 (耳、副鼻窦、口腔、面部及颈部) 的感染。感染所致的 CVT 在成年人中并不多见，但在儿童中却很常见。

一些个案病例报道和小规模病例系列研究已将其它疾患与 CVT 联系在一起，包括阵发性睡眠性血红蛋白尿、铁粒细胞性贫血、血小板减少症、肝素诱导性血小板减少症、血栓性血小板减少性紫癜、肾病综合症、炎症性肠道疾病、系统性红斑狼疮、白塞氏病、硬膜外血肿、自发性低颅压以及腰穿。
CTV的临床诊断

主要临床表现

CTV的诊断通常基于临床怀疑和影像学检查证实。根据神经系统功能障碍的机制，通常将CTV的表现分为两大类：一类与静脉引流受阻所致的颅内压增高有关，另一类与静脉性缺血/梗死或出血所致的局灶性脑损伤有关。头痛是CTV最常见的症状，见于近90%的病人。CTV所致头痛常为弥漫性且常有数天至数周的进行性加重。少数病人可表现为断裂样头痛或偏头痛型头痛。没有局灶性神经系统异常或视乳头水肿的孤立性头痛常见于高达25%的CTV患者。

临床表现还与血栓形成的部位有关。上矢状窦受累最常见，可导致头痛、颅内压增高和视乳头水肿[67]，也可出现运动缺失症状，有时伴有抽搐。在横窦静脉血栓形成，由于皮层受累，有时可以见到偏盲、对侧肢体无力及失语，可以发现与某一原发疾病有关的症状（中耳感染）[69]。深部脑静脉系统（大脑静脉、大脑大静脉及直窦）的血栓形成，可导致丘脑或基底节梗死。皮层静脉血栓形成少见。

D-二聚体

D-二聚体对CTV的特异性差，许多原因可导致D-二聚体增高。研究表明D-二聚体测定有助于临床上排除CTV[77-81]。

建议

建议

1. 一种敏感的免疫测定方法或快速酶联免疫吸附法（ELISA）测定的正常D-二聚体水平可以被考虑有助于识别CTV概率低的病人（IIb级推荐；B级证据）。如果临床上高度怀疑CTV，则D-二聚体水平正常不应该妨碍进一步的评估。

CTV诊断中的常见遗憾

有几种临床情景经常发生CTV的误诊或延迟诊断。

脑出血

大约30%-40%的CTV病人表现为脑出血（ICH）[4,34]。鉴于这类病例中脑出血的发病机制有别于其它ICH的原因，识别出这些病人至关重要，对治疗有重要意义。提示ICH的病因为CTV的特征包括先驱性头痛（在其它原因ICH中很不寻常）、双侧脑实质异常以及有高凝状态的临床证据。单纯蛛网膜下腔出血的发生也可能是CTV所致，尽管这种情况罕见（在ISCVT研究中占0.8%）。出血部位对评估CTV的可能性也是一个重要考虑内容。

建议

1. 对原因不甚明确的脑叶ICH或跨经典动脉分布界限的脑梗死病人，应该做脑静脉系统的

生化、凝血酶原时间及活化的部分凝血酶时间组成的常规血液检查（I级推荐；C级证据）。
成像 (I 类推荐; C 级证据)。

孤立性头痛/特发性颅内压增高

将 CVT 与特发性颅内压增高区分开有重要的转归和治疗意义，建议对所有临床上认为特发性颅内压增高的病人进行脑静脉系统的成像 [67,85]。对于孤立性头痛的病人，识别 CVT 的合理策略还不十分清楚。头痛是一个相当常见的症状，而且绝大多数单纯头痛的病人都不会有 CVT。常规影像检查的成本-效益比和获益十分不确定。可能提示诊断并因此促使影像评估的因素包括新发的经保守治疗仍在数天至数周之内持续进展的不典型头痛以及霹雳样头痛 [64]。对有某种高凝状态的头痛病人，应高度警惕 CVT。

建议

1. 对临床上认为特发性颅内压增高的病人，推荐做脑静脉系统成像以排除 CVT (I 类推荐; C 级证据)。
2. 对有不典型特征的头痛病人，为排除 CVT 而做脑静脉系统成像是合理的 (IIa 推荐; C 级证据)。

孤立性精神状态改变

偶尔，CVT 病人可表现为嗜睡或意识浑浊而没有明显的局灶性神经系功能异常 [96-98]。这类临床表现常见于老年人和有深静脉系统血栓形成者 [89,90]。尽管此种临床表现有许多发病机制，但是一个重要的原因是深静脉系统受累所致的双侧丘脑病变。CT 扫描，尤其在病程早期做时，可无特殊改变；MRI 在这类病例通常会显示出异常。

C VT 诊断性影像学检查

在过去 20 年间，诊断性影像学检查在 CVT 的诊断和处理方面所起的作用越来越大 [2,3,55,91-97]。CVT 的诊断性成像可被分为两类：无创检查和有创检查。目的明确与本病有关的血管和脑实质改变。部分病例仅能靠脑血管数字减影做出诊断 [72,91,98-100]。无创诊断检查方法：CT、MRI 及超声 CT

平扫头部 CT 是诊断 CVT 的首选检查，可以发现一些提示 CVT 的征象。静脉窦解剖变异使得 CT 对 CVT 的诊断不具敏感性，大约仅有 30% 的 CVT 病人有 CT 上有异常所见 [1,28,70,92,95,98]。急性期 CVT 在平扫 CT 上的主要征象是某一皮层静脉或硬脑膜窦呈高密度改变。然而，大约仅有 1/3 的 CVT 被发现有高密度硬脑膜窦的直接征象 [70,94,96]。上矢状窦后部血栓可以看似一个高密度三角，即高密度或实心的 δ (delta) 征。平扫 CT 也可显示缺血性梗死，有时伴有出血成分。横跨常见动脉分界的 (特别是有出血成分的) 或紧邻某一静脉窦的缺血性梗死提示 CVT [93]。蛛网膜下腔出血和 ICH 并不常见 [99]。蛛网膜下腔出血仅见于 0.5%-0.8% 的 CVT 病人 [10,14,99]，而且一旦出现，其部位常在大脑凸面，恰与在动脉瘤破裂病人中经常观察到的 Willis 环区域相近。

强化 CT 可以显示静脉窦的硬膜强化伴静脉或静脉窦内的充盈缺损，呈典型的 “空 Δ” 征 (empty delta sign) [93]。这种征象在症状起病后数日内可能不会出现但可持续数周。

由于 CVT 的症状可能被疏忽或延迟就诊，使得 CVT 可能只有在亚急性期或慢性期才被发现。与邻近脑组织的密度相似，血栓可以呈等密度、低密度或混杂密度。这种情况下，强化 CT 或 CT 静脉造影术 (CTV) 可能有助于影像学诊断 [70-74,94,97,100-105]。

磁共振成像

通常，MRI 对 CVT 的显示在脑静脉血栓形成的每个阶段都比 CT 敏感 [1,70,96,97,101,106,107]。通过在 MRI 上发现某一静脉窦内有血栓可做出 CVT 的诊断 [105,108-113]。孤立性皮层静脉血栓被发现的几率比静脉窦血栓要小得多。静脉血栓的磁共振信号强度随成像检查时间距血栓形成的发生时间长短而变化 [6,65,94,101-107]。急性血栓可以是低信号。在第 1 周，由于脱氧血红蛋白含量的增加，静脉血栓通常在 T1 加权像上呈与脑组织相等的等信号而在 T2 加权像上呈低信号。到第 2 周，血栓含有氧化血红蛋白，导致其在 T1 和 T2 加权像上均呈高信号 [2,10,42,76,77,73,74,98-100,105,106,108,113-128]。随着血栓的演变，静脉窦内出现脱氧血红蛋白和氧化血红蛋白的顺磁性代谢产物。此时硬膜窦或静脉内血栓在梯度回波和磁敏感加权磁共振成像上呈低信号 [70,119,129]。

C VT 在平扫 MRI 上的主要早期征象是硬膜窦内流空影消失和信号强度改变。这一征象是 CT 空 (delta) 征的等位征。急性静脉血栓可以呈酷似正常流空影的等信号，为确立诊断可能需要做强化 MRI 和 CTV 或 MR 静脉造影 (MRV)。MRI 的次要征象与 CT 显示的类型可能相似，包括脑肿胀、水肿 (或) 出血 [91,130-134]。CTV 脑实质病变在 MRI 上比在 CT 上更直观更清晰。点状或融合成片状出血提示出血性静脉梗死。在一定程度上，与静脉窦血栓有关的病变呈区域性分布。额叶、顶叶和枕叶的脑实质改变通常对应上矢状窦血栓形成。额叶脑实质改变对应侧(横) 窦和乙状窦血栓形成。深部脑实质异常，包括丘脑出血、水肿或脑室内出血，与 Galen 静脉或直窦血栓形成对应。
CT静脉造影

CTV 为显示 CVT 提供了一种快速和可靠的检查方法，对亚急性期或慢性期 CVT 的诊断更有帮助。在诊断 CTV 方面，CTV 至少可与 MRV 媲美 [94,97,100,101,103,106]。

磁共振静脉造影

最常用的 MRV 技术是时间飞跃 (TOF) MRV 和造影剂增强磁共振。二维 TOF 比三维 TOF 对缓慢血流的敏感性好。静脉窦发育不良在梯度回波或磁敏感加权成像上不会有窦内异常低信号。

对内科药物治疗下仍有持续的或进展性症状的病人，重复影像学检查 (包括 CTV 或 MRV) 可有助于识别新的缺血性病变、ICH、水肿、血栓扩散及其它脑实质病变的发生发展 [97,110,111,120,128,136-138,140,141]。

深部 CVT

深部静脉系统在 CT 和 MRI 上容易被显示且很少受到伪差的影响。

有创的诊断性血管造影检查

血管造影的结果包括因闭塞所致的静脉窦不显影、静脉淤滞伴扩张的皮层、头皮或面部静脉、侧支引流微小静脉的扩张以及静脉血流逆转。脑血管造影的静脉期显示在形成血栓的脑静脉/窦内有充盈缺损。脑静脉或硬膜窦发育不良或闭锁可以酷似静脉窦血栓形成，有时需无创的成像检查除外 CVT 是不可能的 [2,71,72,95,97,106,108,109,125,142-150,158]。直接脑静脉造影因逆流注射造影剂而可能难以解释，而静脉压又因静脉系统内的相对分隔效应而可能不准确 [70]。

脑血管造影

血管造影的结果包括因闭塞所致的静脉窦不显影、静脉淤滞伴扩张的皮层、头皮或面部静脉、侧支引流微小静脉的扩张以及静脉血流逆转。脑血管造影的静脉期显示在形成血栓的脑静脉/窦内有充盈缺损。脑静脉或硬膜窦发育不良或闭锁可以导致 MRV 或 CTV 的结果没有定论或考虑行血管内治疗的情况下才做。

脑血管造影

血管造影的结果包括因闭塞所致的静脉窦不显影、静脉淤滞伴扩张的皮层、头皮或面部静脉、侧支引流微小静脉的扩张以及静脉血流逆转。脑血管造影的静脉期显示在形成血栓的脑静脉/窦内有充盈缺损。脑静脉或硬膜窦发育不良或闭锁可以导致 MRV 或 CTV 的结果没有定论，但是可被血管造影的静脉期澄清。急性期硬膜窦或皮层静脉血栓通常导致脑静脉期的延迟，而且脑血管造影可以显示脑静脉结构显影的延迟或缓慢。正常情况下，早期静脉在造影剂被注射到颈动脉之后的 4-5 秒开始显影，而整个脑静脉系统在 7-8 秒显影 [74,91,124,132]。如果脑静脉或硬膜窦在脑血管造影的正常序列中不能被显示，则怀疑急性血栓形成的可能性。

直接脑静脉造影

直接脑静脉血管造影是经颈内静脉途径利用微导管深插并将造影剂注射到某一硬膜窦或脑静脉来执行 [74,91]。直接脑静脉造影通常是在血管内治疗操作过程中进行。在直接脑静脉造影上，管腔内血栓可被显示为管腔内充盈缺损或完全不显影。直接脑静脉造影过程中还可做静脉压力测定以识别静脉压增高的可能性。正常静脉窦压力 <10 mm H2O。

其它诊断性检查方法

经颅多普勒超声可被用于评估儿童病人，包括前后囟门未闭合的新生儿或婴幼儿。超声和经颅多普勒可能有助于支持 CVT 的诊断和连续监测血栓和脑实质的改变 [152,154,155]。

灌注成像方法

应用正电子发射断层扫描的经验性证据表明，上矢状窦结扎同时伴有静脉性梗死后有脑血流量的降低 [156]。在年轻成年上矢状窦血栓形成病人也观察到局部脑血容量的增加 [157]。与在缺血性动脉性卒中中病人观察到的类型 (平均通过时间延长和脑血容量降低) 相反，平均通过时间延长和脑血容量增加提示为静脉淤滞 [111,124]。

CTV 放射学诊断方面的潜在缺陷：解剖变异、血栓信号多变性以及影像伪差

经 CT 或 MRI 发现血管腔内血栓是 CVT 确诊的关键。然而，正常脑静脉解剖变异 (包括静脉窦闭锁 / 发育不良、不对称静脉引流以及蛛网膜颗粒或窦间分隔所致的正常静脉窦充盈缺损) 可以酷似静脉窦血栓形成，有时需无创的成像检查除外 CVT 是不可能的 [2,71,72,95,97,106,108,109,125,142-150,158]。直接脑静脉造影因逆流注射造影剂而可能难以解释，而静脉压又因静脉系统内的相对分隔效应而可能不准确 [70]。

建议

1. 尽管平扫 CT 或 MRI 有助于疑似 CVT 病人的最初评估，但是平扫 CT 或 MRI 结果阴性并不能排除 CVT。对疑似 CVT 的病人，如果平扫 CT 或 MRI 阳性或在平扫 CT 或 MRI 提示 CVT 情况下为确定 CVT 的范围，应做静脉造影检查 (CTV 或 MRV) (I 类推荐 ; C 级证据)。
2. 对内科治疗下仍有持续的或演变的症状或有提示血栓扩大的症状的 CVT 病人，建议早期随访 CTV 或 MRV (I 类推荐 ; C 级证据)。
3. 对表现为提示 CVT 复发症状的既往有 CVT 的病人，建议复查 CTV 或 MRV (I 类推荐 ; C 级证据)。
4. 常规 T2 磁敏感加权成像联合磁共振可能有助于提高 CVT 诊断的准确性 (IIa 类推荐 ; B 级证据)。
5. 对 CTV 或 MRV 没有定论但临床上仍高度怀疑 CVT 的病人，导管脑血管造影可能有帮助 (IIa 类推荐 ; C 级证据)。
6. 对病情稳定的病人，为了评价闭塞皮层静脉/静脉窦的再通情况，在诊断后3-6个月时随访CTV或MRV是合理的（IIa类推荐；C级证据）。

CTV急性期处理和治疗

本文提供了CTV病人诊断和处理的简要程序。

环境

组织化医疗是降低急性卒中后残疾率和死亡率的最有效干预措施之一[166,167]。CTV是一种不常见但又可能危及生命的卒中病因。基于卒中单元的整体疗效，为了优化治疗和减少并发症，在卒中单元内进行CTV的初始处理是合理的。

初始抗凝治疗

CTV抗凝疗法有若干理由：预防血栓增长、促进血管再通以及预防深静脉血栓(DVT)或肺栓塞(PE)。因为在CTV诊断时常存在脑梗死伴出血转化或ICH，这种情况也可使治疗复杂化，因此对抗凝治疗一直有争议。

现有两项随机对照试验，在经造影剂强化成像检查确诊的CTV病人中对抗凝治疗和安慰剂或开放对照进行了比较。合起来看，这两项试验仅纳入79例病人。一项20例病人的试验对采用剂量调节的以使活化的部分凝血活酶时间达治疗前数值的两倍的静脉内普通肝素(UFH)和安慰剂进行了评价[171]。此研究使用肝素的方法为3000单位团注后持续静脉输注。主要结局是3个月时评估头痛、局灶体征、抽搐发作和意识水平的CTV严重程度量表。次要结局是ICH。此试验因有治疗获益而在纳入预期60例病人中的20例时被提前终止。在3个月时，肝素组10例病人中，8例完全恢复，2例有轻度神经功能缺失。安慰剂组10例病人中，3个月时1例完全恢复，6例有轻度神经功能缺失，3例死亡。发生ICH者见于2例安慰剂治疗的病人而未见于肝素治疗的病人。安慰剂组中1例病人有未经证实的肺栓塞。

另一项59例病人的试验对剂量基于体重(180抗Xa因子单位/天/公斤体重，分两次剂量)的皮下注射低分子肝素(nadroparin)和安慰剂进行了比较，疗程为3周，随后被随机化到低分子肝素组的病人接受3个月的口服抗凝治疗(没有安慰剂对照)[172]。此研究在前3周为盲法而随后为开放标签。主要结局是日常生活活动量表、牛津卒中残疾量表及死亡。次要终点是症状性ICH和其它严重出血。在3个月时，与给予安慰剂者的21%相比，13%的低分子肝素组病人的预后不良(有利于低分子肝素的治疗差异-7%；95%CI-26-12%)。两组中都没有症状性ICH(低分子肝素组有1例非致命性出血，安慰剂组有1例致命的未被证实的肺栓塞)。6例积极治疗的病人(12%)和8例对照病人(28%)3个月时完全恢复。

对这2项试验的Meta分析[161]显示，抗凝治疗的死亡或生活不能自理的相对危险度(relative risk 0.46, 95% CI 0.16-1.31)没有统计学显著性，对抗凝治疗有利的危险差异-13%(95% CI -30-3%)。死亡的相对危险度是0.33 (95% CI 0.08-1.21)，危险差异是-13%(95% CI -27%-1%)。

在就诊时CTV合并脑出血的特殊情况下，即使不用抗凝治疗，出血也与不良预后有关。研究提示CTV抗凝治疗脑出血的发生率低[171,175]。在病人有抗凝治疗主要禁忌证(如近期严重出血)的特殊情况下，临床医生必须依据临床情况权衡抗凝治疗的风险和益处。在这种情况下，就像对待一般静脉血栓一样，请一位抗凝治疗方面的专家会诊可能是适当的，如果有可能，可以考虑低剂量强度抗凝治疗。

来自观察性研究的资料

现有许多观察性研究，既有前瞻性的，也有回顾性的，但大多数来自单中心[10,136,175-178]。因为大多数研究中绝大多数病人在诊断时是用静脉UFH或低分子肝素(LMWH)治疗的，最终应用维生素K拮抗剂，因此，并非所有的研究都专门报告抗凝治疗的结局。死亡率低，通常<10%，常死于基础病(如，癌症)而不是CTV，而且死于ICH罕见。绝大多数病人神经系统功能完全恢复，少数变成残疾。

目前为止最大规模研究为ISCVT，纳入来自21个国家89个中心的624例病人。几乎所有病人初始治疗为抗凝，16个月死亡率8.3%，79%完全恢复(改良Rankin评分[mRS]评分0-1)，10.4%轻-中度残疾(mRS评分2-3)，2.2%仍有重度残疾(mRS评分4-5) [10]。几乎没有研究有足够的未接受抗凝治疗的病人例数来合理推断抗凝与预后之间的关系。来自观察性研究的资料提示CTV抗凝后ICH的危险范围是0到5.4%(136,171,181,183)。

总之，来自有限的关于抗凝治疗的预后和出血并发症的随机对照试验的资料和观察性资料支持抗凝在CTV治疗中起到一定作用，无论是否存在治疗前ICH。写作组一致支持在CTV病人处理中采用抗凝治疗。如果给予抗凝治疗，没有在CTV病人中使用以调整的剂量UFH的应用或LMWH在预后方面的差异的资料。

其它治疗

纤维蛋白溶解疗法

尽管CTV病人接受抗凝治疗可以恢复，但是在抗
凝治疗下仍有9%-13%的病人预后不良。单纯抗凝治疗或许不能使一个大的或广泛的血栓溶解，而临床情况即使在肝素治疗期间也会恶化。不完全再通或持续性血栓形成可以解释这一现象。单纯抗凝治疗下CVT部分或完全再通率为47%-100%。

不幸的是，大多数报告3-6个月时部分或完全再通的研究为小样本研究。将4项研究合并后，发现94例（82.5%）在3-6个月时有部分或完全再通。

溶栓后17%的病人发生ICH，与5%的病人病情恶化有关[206]。

手术方面的考虑

由于静脉血栓形成的血管内治疗方法的进展，外科手术所起的作用已经越来越局限。需要外科手术血栓切除术者不常见，但如果在最佳内科治疗下严重的神经系统或视力恶化发生可以被考虑。如果大的静脉性梗死导致明显的颅内压增高时，则需开颅减压术作为挽救生命的措施。同样，大的血肿如果无进行性的或严重的神经系统功能缺失可能需要被考虑做手术清除术。

总结

这些直接窦内溶栓技术和机械性治疗方法的应用仅受到个案报告和小规模病例系列的支持。如果在应用抗凝治疗的情况下仍发生临床恶化，或病人出现导致常规治疗方法抵抗的颅内压增高的来自静脉梗死或ICH的占位效应，那么可以考虑这些介入治疗技术。

阿司匹林

没有直接评价阿司匹林在CVT处之中作用的对照试验。

激素

激素通过减轻血管源性水肿而可能在CVT中起到一定作用，但激素可以增加高凝状态。在ISCVT的624例病人中一项匹配的病例对照研究中，将150例由经治医生决定采用激素治疗的病人与150例未采用激素的病人进行比较，并基于CVT结局不良的预后因素治疗的病人匹配。采用激素治疗的病人与对照病人的特征相似，除了更容易有血管炎。在6个月，治疗有死亡或不能独立的危险较大的趋势（OR 1.7, 95% CI 0.9-3.3），而在排除血管炎、暴力学溶栓作用。

Merci取栓装置（Concentric Medical，Mountain View，CA）也已经被用于去除脑静脉系统的血栓。此技术也需要将导管直接送到静脉窦。将小螺旋形装置送入导管末端被推送到血栓内，然后缓慢地与附着的血栓一起被拉回到导管内。为了避免损伤静脉窦壁或窦内小梁，可以先用此装置行部分再通，随后再进行溶栓。[209]。现有证据目前尚未在经验阶段。

Penumbra系统（Penumbra，Inc，Alameda，CA）是新一代神经系统血栓去除装置，能起到去除和抽吸急性血凝块的作用。它采用一个能破碎血凝块和有助于抽吸的一个基于导丝的分离器的能抽吸血栓的再灌注导管。关于其治疗效果目前仅有经验性的证据[212]。
性病、炎性疾病及感染后，这一趋势没有差别。在CT/MRI上有脑实质病变的病人中，结果令人震惊，激素治疗的死亡或依赖的比值比增加4.8倍（95% CI 1.2-19.8）。

抗生素
局部（如，中耳炎、中耳乳突炎）和全身性（脑膜炎，败血症）感染可以合并附近或远隔静脉窦血栓形成。怀疑感染和CVT病人的处理应包括应用适当的抗生素和感染灶（如硬膜下积脓或副鼻窦化脓性积液）的手术引流。

抗生素的使用
抗生素局部（如，中耳炎、中耳乳突炎）和全身性（脑膜炎，败血症）感染可以合并附近或远隔静脉窦血栓形成。怀疑感染和CVT病人的处理应包括应用适当的抗生素和感染灶（如硬膜下积脓或副鼻窦化脓性积液）的手术引流。

抗生素的使用
抗生素局部（如，中耳炎、中耳乳突炎）和全身性（脑膜炎，败血症）感染可以合并附近或远隔静脉窦血栓形成。怀疑感染和CVT病人的处理应包括应用适当的抗生素和感染灶（如硬膜下积脓或副鼻窦化脓性积液）的手术引流。

抗生素的使用
抗生素局部（如，中耳炎、中耳乳突炎）和全身性（脑膜炎，败血症）感染可以合并附近或远隔静脉窦血栓形成。怀疑感染和CVT病人的处理应包括应用适当的抗生素和感染灶（如硬膜下积脓或副鼻窦化脓性积液）的手术引流。
的抗生素治疗且应在适当时机接受 CVT 相关性感染灶的引流手术 (I 类推荐; C 级证据)。

2. 对 CVT 合并颅内压增高的病人, 建议监测有无进行性视力丧失, 而这一情况一旦被观察到, 则应紧急治疗颅内压增高 (I 类推荐; C 级证据)。

3. 对有脑实质病变的 CVT 合并单次抽搐发作的病人, 建议早期开始规定好疗程的抗癫痫药物以预防进一步的抽搐发作 (I 类推荐; B 级证据)

4. 对没有脑实质病变的 CVT 合并单次抽搐发作的病人, 勉强地建议早期开始规定好疗程的抗癫痫药物以预防进一步的抽搐发作 (IIa 类推荐; C 级证据)。

5. 在没有抽搐发作的情况下, 不建议对 CVT 病人常规应用抗癫痫药物 (III 类推荐; C 级证据)。

6. 对 CVT 病人, 无论是否存在 ICH, 采用按剂量调节的 UFH 或基于体重的充足抗凝剂量的 LMWH 开始抗凝治疗是合理的, 后续应用维生素 K拮抗剂 (IIa 类推荐; B 级证据)。(为了解详细情况, 参见“CVT 的急性期处理和治疗: 初始抗凝治疗。”)

7. 为治疗和预防 CVT 病人的临床并发症, 将病人收住到卒中单元是合理的 (IIa 类推荐; C 级证据)。

8. 对 CVT 合并颅内压增高的病人, 开始低分子肝素治疗是合理的。如果存在进行性视力丧失, 其它治疗 (腰穿、视神经减压术, 或脑脊液分流术) 可能是有效的 (IIa 类推荐; C 级证据)。

9. 如果在强化抗凝治疗下发生病情恶化, 则可以考虑血管内介入治疗 (IIa 类推荐; C 级证据)。

10. 对因可引起难治性颅内压增高的严重占位效应或颅内出血而出现神经症状和体征恶化的病人, 可以考虑去骨瓣减压术 (IIb 类推荐; C 级证据)。

11. 对 CVT 病人, 即使在 CT/MRI 上存在脑实质病变, 不推荐激素类药物治疗, 除非有其它基础疾病所需 (III 类推荐; B 级证据)。

CVT 的长期处理和复发

预防策略集中在对那些 CVT 或其它 VTE 复发高危 CVT 病人的预防上。有某些易栓状态或疾病 (如, 癌症) 的病人可被认为高危病人。还未有关于首次或复发 CVT 长期预防的随机临床试验。总体上, 任何类型复发性血栓形成的年复发风险大约是 6.5%[10,117]。

因为没有关于成年 CVT 病人抗凝治疗的二级预防试验, 因此仅能用评估正在用或不用抗凝治疗的 CVT 或 VTE 复发风险的观察性研究来做预防策略的评价。在一组于 1978 年至 2001 年间 Mayo Clinic 治疗的 154 例病人队列中, 56 例初始接受肝素和华法林两种治疗, 21 例仅肝素治疗, 21 例仅华法林治疗[60]。77 例 (50%) 用华法林治疗平均 9 个月, 25 例为终身服用华法林[61]。在 36 个月随访 (464 个病人年) 期间, 有 20 例病人 (13%) 共 23 次 VTE 复发, 大多数发生在第 1 年内。10 例病人有 CVT 复发 (2.2/100 个病人年), 11 例有 DVT 或 PE(2.8/100 个病人年)。9 次复发事件发生在病人正在服用华法林期间。随访 8 年之后, 华法林对抗凝或无复发存活没有影响[61]。

一组比利时一家大学医院连续治疗的 54 例 CVT 病人队列中, 平均随访 2.5 年, 8 例 (14.8%) 有 VTE 复发 (7 例为 DVT 或 PE, 1 例为 CVT 和肠系膜静脉血栓) (4.5/100 个病人年)。复发的平均时间是 2.5 个月 (范围自 2 周至 4 年)。这 8 例病人中仅 2 例在复发时正在服用抗凝药, 1 例的国际标准化比率 (INR) 为 1.6, 另 1 例 INR 为 2.1, 6 例没有正在服用抗凝药的复发 VTE 病人中, 复发发生在先证事件后 2 周至 10 个月之间。有某种易栓疾患、有 DVT 历史及没有接受口服抗凝药容易复发[176]。

在 ISCVT 研究中, 平均随访 16 个月期间, 624 例 CVT 病人中有 14 例 (2.2%) 复发 CVT 和 27 例 (4.3%) 其它血栓事件 (16 例 DVT, 3 例 PE, 2 例血栓性卒中, 2 例短暂性脑缺血发作及 4 例急性肢端缺血)。这 41 例复发或其它血栓性事件的病人中有 17 例 (41.5%) 正在服用抗凝药, 但这些正在接受治疗剂量的抗凝药的复发 VTE 病人中, 复发发生在先证事件后 2 周至 10 个月之间。有某种易栓疾患、有 DVT 历史及没有接受口服抗凝药容易复发[176]。

CVT 后任何血栓事件 (CVT 或系统性) 的复发危险大约为 6.5%。基于对本病最大规模的回顾性总结[10], CVT 之后其它 VTE 表现的危险是 3.4%[209]至 4.3%[108]。有严重易栓症的病人 VTE 危险增加。

CVT 和其它 VTE 事件的二级预防

DVT/PE 和 CVT 有一些相同之处。两者的慢性或一过性危险因素是相似的。在 ISCVT 病例队列中 CVT 或其它 VTE 复发的总发生率是 4.1/100 人年, 男性和红细胞增多/血小板增多是被发现的唯一独立的预测因子[219]。同一研究报告了血栓性复发事件的累积危险的稳定增加不受抗凝治疗时间的影响, 提示需要开展一个临床试验评价短期与长期抗凝治
Saposnik et al Diagnosis and Management of Cerebral Venous Thrombosis

治疗的疗效和安全性[219]。鉴于 CVT 之后系统性 VTE 比复发性 CVT 更常见，因此有理由采纳 VTE 的指南预防新的 VTE 和复发性 CVT[219,220]。然而，应该对每一个体病人进行危险评估，然后考虑病人的危险水平和关于长期抗凝治疗、出血危险以及不用抗凝情情况下的血栓形成的危险的选择[220]。

易栓症和长期处理的危险分层

易栓症可能是遗传性的或获得性的，基于在非常大的家族病例队列中观察到的血栓复发危险，遗传性易栓症被分为轻度或重度[221]。在 VTE 病人中，未在没有抗凝治疗的情况下 VTE 的累积复发危险最大的易栓症是抗凝血酶和蛋白 C 和蛋白 S 缺乏症，2 年复发率 19%，5 年复发率 40%，10 年复发率 55%。纯合子凝血酶原 G20210A、纯合子因子 V Leiden、蛋白 C、蛋白 S 或抗凝血酶缺乏症、联合性易栓性缺陷以及抗磷脂抗体综合征被分列为重度为重度。

抗磷脂抗体综合征是一种获得性易栓症，伴有特殊的实验室标准（狼疮抗凝物、抗心磷脂抗体及抗 β2 糖蛋白 I）和静脉性或动脉性血栓事件或流产病史[224]。尽管没有报道针对 CVT 复发率的前瞻性研究，但是与此疾病相关的复发性 VTE 危险升高符合严重易栓症的定义。当前对 VTE 病人的建议要求有抗磷脂抗体综合征的病人无限期抗凝治疗（调整剂量的华法林 INR 2.0-3.0）或肝素[220]。

其它能确定 CVT 后复发性 CVT 或 VTE 危险的实验室测定

在 DVT 或 PE 病人中，越来越多的证据提示临床中可用 D-二聚体测定确定复发、VTE 的风险[224,229,230]。尽管 D-二聚体应用于长期抗凝治疗行 VTE 二级预防似有前途，但是标准化的 D-二聚体测定法的缺乏可能限制其在临床上的适用性和可信性[222]。

建议

1. 检测血栓前状态，包括蛋白 C、蛋白 S、抗凝血酶缺乏症、抗磷脂抗体综合征、凝血酶原 G20210A 基因突变以及因子 V Leiden，可有益于 CVT 病人的处理。蛋白 C、蛋白 S 和抗凝血酶缺乏的测定的指征通常在完成抗凝治疗后 2 至 4 周。急性期或服用华法林病人的检测结果的值非常有限（IIa 类推荐；B 级证据）。
2. 对应激性 CVT（与某种一过性危险因素相关的）病人，维生素 K 抗凝剂可以持续 3 至 6 个月，INR 目标值 2.0-3.0（IIb 类推荐；C 级证据）。
3. 对非应激性 CVT 病人，维生素 K 抗凝剂可以持续 6 至 12 个月，INR 目标值 2.0-3.0（IIb 类推荐；C 级证据）。

4. 对 CVT 后有复发 CVT、VTE 或首次 CVT 合并严重易栓症（即，纯合子凝血酶原 G20210A、纯合子因子 V Leiden、蛋白 C、蛋白 S 或抗凝血酶缺乏症、易栓症联合缺陷以及抗磷脂抗体综合征）的病人，可以考虑无限期抗凝治疗，INR 目标值 2.0-3.0（IIb 类推荐；C 级证据）。

5. 可以考虑与有血栓研究领域有经验的医师会诊协助检测血栓前状态和治疗 CVT 病人（IIb 类推荐；C 级证据）。

晚期并发症(而非复发性 VTE)处理

头痛

头痛是 CVT 病人随访期间的常见主诉，大约见于 50% 的病人[193,205]。一般情况下，头痛为原发性且与 CVT 无关。对有持续的或严重的头痛病人，应做适当的检查排除复发性 CVT。偶尔，MRV 可显示之前曾闭塞过的静脉窦有狭窄，但对其临床意义并不清楚。头痛在随访期间更常见于表现为有急性单纯颅内压增高者。对这些病人，如果头痛为持续性且 MRI 正常，则需要做腰穿排除颅内压增高。

抽搐发作

CVT 后局灶性或全身性抽搐发作可以被分为早期或远期（诊断后 2 周后发生的）抽搐发作[10,197]。基于病例系列研究，远期抽搐发作可累及 5% 到 32% 的病人。这些抽搐发作大多数发生在随访第一年内。对有单次抽搐发作的 CVT 合并脑实质病变的病人，建议开始一个规定疗程的抗癫痫药物治疗。

视力丧失

CVT 所致的严重视力丧失在有发生（2%-4%）[191,233]。视乳头水肿或短暂视力障碍，如长期存在，则可出现视神经萎缩和失明。视力丧失通常是隐袭性的，伴随进行性视野缩小和相对的中心视力回避。视力缺失更常见于有视乳头水肿病人和表现为颅内压增高的病人。延误诊断与晚期视力缺失危险增加有关。有视乳头水肿或视力障碍主诉的病人应该做全面的神经眼科检查，包括视敏度和正规视野检查。

硬脑膜动静脉瘘

海绵窦、横窦或上矢状窦血栓形成可诱发晚期硬脑膜动静脉瘘[236]。这两种疾病之间的关系颇为复杂，因为：(1) 硬脑膜动静脉瘘可以是持续的硬脑膜窦闭塞伴静脉压增高的晚期并发症；(2) 如静脉窦有再通则瘘可以闭合和痊愈；(3) 先存动静脉瘘可以
Stroke April 2011

是 CVT 的潜在病因。因为没有进行长期血管造影检查的队列研究，因此尚不清楚 CVT 之后硬脑膜动静脉瘘的确切发生率。在没有系统性血管造影随访的队列研究中，硬脑膜动静脉瘘的发生率低(1%-3%)[35,34,202,203,237]。脑血管造影可有助于确定硬脑膜动静脉瘘的存在。

建议

1. 对有 CVT 病史者诉为新的、持续的或严重的头痛病人，应考虑对 CVT 复发和颅内压增高进行评估 (I 类推荐；C 级证据)。

特殊人群的 CVT

妊娠期 CVT

妊娠诱发凝血系统的改变，这些改变可持续到产褥期且可导致高凝状态从而增加患 CVT 的危险。据估计，在西方国家妊娠期和产褥期 CVT 的发病率的变化范围在 1/2500 至 1/10000 次分娩之间，而 OR 变化范围从 1.3 至 13[238-240]。脑血管造影可有助于确定硬脑膜动静脉瘘的存在。

建议

1. 对妊娠期 CVT 妇女，整个妊娠期应持续给予全抗凝剂量的 LMWH，而产后至少 6 个月应持续给予 LMWH 或 INR 目标值为 2.0-3.0 的维生素 K 拮抗剂 (总的时间疗程为 6 个月) (I 类推荐；C 级证据)。
2. 有理由劝告有 CVT 病的妇女再次妊娠并非禁忌。关于潜在原因的进一步检查和与血液科专家 (或) 母婴医学专家会诊是合理的 (IIa 类推荐；B 级证据)。
3. 有理由采用全身 LMWH 而非 UFH 治疗妊娠期急性 CVT (IIa 类推荐；C 级证据)。
4. 对有 CVT 病的妇女，可以建议在未来妊娠期和产后期预防性应用 LMWH (IIa 类推荐；C 级证据)。

儿童人群中的 CVT

儿童 CVT 的发病率是 0.67/100 000 儿童 / 年 [91]。当排除新生儿时，报告的发病率是 0.34/100 000 儿童 / 年 [249]。新生儿表现为抽搐发作或昏睡，而年长婴儿和儿童 (与成年人相似) 通常表现为抽搐发作、意识水平改变、进行性头痛伴视乳头水肿、孤立性颅内压增高或局灶性神经功能缺失。

危险因素

儿童 CVT 的危险因素与年龄相关。新生儿占儿童 CVT 病人的 43%[91]。新生儿患病危险性增加的原因有几种。首先，出生过程中婴儿头部受到明显的机械性力的作用而导致颅骨沿颅缝线塑形，这将引起其下的硬脑膜静脉窦发生机械性变形和损伤以及血栓形成。新生儿也有血栓倾向增大[250]。首先，循环性母亲的抗磷脂抗体经胎盘转运到胎儿，这种情况可持续到新生儿期[251]。其次，新生儿循环性抗凝蛋白(包括蛋白 C、蛋白 S 及抗凝血酶) 水平下降，而相对于成人的血球压积较高。此外，随着正常体液丢失和出生后生活第一周内相对性新生儿脱水而发生血液浓缩。半数以上的新生儿 CVT 有多种危险因素[252]。母亲怀孕和分娩的并发症可增加新生儿 CVT 的危险。母亲先兆子痫 / 子痫是新生儿 CVT 的一个危险因素 [253]。包括头颈部感染、脑膜炎、继发于喂食困难或胃肠炎的脱水及先天性心脏病在内的新生儿疾病也可引起 CVT[91]。

未来妊娠和复发

与健康个体相比，有既往 VTE 的病人再次发生静脉血栓事件的危险增加 [244,245]。同样，有 VTE 病史的妇女在未来妊娠时似乎也有血栓事件 (即，DVT、PE) 危险的增加 [57]。妊娠，尤其是产褥期，是已知的 CVT 危险因素。现有证据显示，CVT 并不是妊娠期的禁忌证。鉴于妊娠给有 CVT 史的妇女带来的额外危险，再次妊娠期和产后期预防性 LMWH 可能有益处。

建议

1. 对妊娠期 CVT 妇女，整个妊娠期应持续给予全抗凝剂量的 LMWH，而产后至少 6 个月应持续给予 LMWH 或 INR 目标值为 2.0-3.0 的维生素 K 拮抗剂 (总的时间疗程为 6 个月) (I 类推荐；C 级证据)。
2. 有理由劝告有 CVT 病的妇女再次妊娠并非禁忌。关于潜在原因的进一步检查和与血液科专家 (或) 母婴医学专家会诊是合理的 (IIa 类推荐；B 级证据)。
3. 有理由采用全身 LMWH 而非 UFH 治疗妊娠期急性 CVT (IIa 类推荐；C 级证据)。
4. 对有 CVT 病的妇女，可以建议在未来妊娠期和产后期预防性应用 LMWH (IIa 类推荐；C 级证据)。
Saposnik et al Diagnosis and Management of Cerebral Venous Thrombosis

... is CVT 的病因 [102,245]。缺铁性贫血是一个已确定的 CVT 危险因素 [254]。缺铁性贫血是一个已确定的 CVT 危险因素 [254]。血栓前疾患在新生儿和儿童 CVT 中占 33% 至 66% 且当有其他 CVT 危险因素时经常出现 [102]。

放射学诊断

就像在成年人一样，做出诊断需高度怀疑 CVT 和特异性静脉成像检查。这一点对新生儿尤其重要，新生儿没有特异性的临床表现，大多数病人仅为抽搐发作。儿童 CVT 的神经影像检查结果与成年人相似。在新生儿，二维 TOF MRV 有几个缺点，包括仰卧位时枕骨挤压上矢状窦后部处局部区域没有血流。这种情况见于 14% 的没有 CVT 的新生儿 [255,256]。因此，经常需要 CTV 明确是否存在 MRV 所提示的 CVT。在新生儿，经囟门多普勒超声可通过显示闭塞性血栓所致的血流缺失而提示 CVT，然而，尤其是闭塞性血栓，这种技术不是太可靠 [257]。

脑实质病变在新生儿比在儿童更容易是出血性的 [102]。新生儿颅内出血经常包括幕上硬膜下出血。有脑室内出血的足月新生儿的病因为 CVT 者占 34% 的病例，经常伴有丘脑出血 [205]。

预后

新生儿、年长婴儿和儿童 CVT 有显著的不良预后的发生率。对新生儿，需要长期随访确定预后，因为神经缺失症状仅会随着历时数年的脑发育成熟才会变得明显。在 CVT 新生儿中，28% [258]、83% [102,245,253,259] 可观察到神经系统功能缺失。

一项研究显示长期随访中 18% 的儿童 CVT 有后遗视力障碍。其它研究报道儿童和成人 CVT 的结果相似 [235,237,259]。

儿童人群中 CVT 的处理

考虑新生儿和儿童 CVT 的血管内治疗受到不良预后发生率的驱动。还没有对儿童 CVT 进行过随机临床试验，因此，治疗实践主要是来自成年人研究结果的外推。

对儿童，且越来越多地对新生儿，CVT 治疗的主流是抗凝治疗，包括 LMWH、UFH 及华法林。个体和地区性医疗在儿童 CVT 且特别是在新生儿 CVT 方面的差异非常大。抽搐发作可在超过 50% 的儿童人群中观察到 [102]。鉴于癫痫性抽搐发作在儿童病人中发生率较高，那么可以考虑对无意识或机械性通气的儿童行连续的脑电图监测。

主要证据

尽管没有随机化试验，但是越来越多的来自病例系列和大规模观察性研究的支持证据抗凝在儿童或新生儿 CVT 中的疗效 [72,179,201,236,263]。近期发表的一项来自荷兰的病例系列研究了抗凝在 CVT、脑室出血或脑出血的新生儿中的应用 [201]。10 例新生儿中，1 例婴儿在治疗开始前死亡，2 例在常规应用 LMWH 治疗之前出生，其余 7 例新生儿接受 3 个月的 LMWH (dalteparin)，以抗 Xa 水平 0.5-1.0 U/mL 为目标值。治疗期间没有出血增加或新发出血。另一项纳入 42 例儿童 CVT 的研究报告，即使在存在 ICH 情况下，抗凝治疗也是安全的且能改善预后 [187]。最后，在一项基于方案的抗凝治疗的前瞻性多中心研究中，共纳入 162 例儿童病人，大约半数在诊断时接受抗凝治疗，包括 35% 的新生儿和 71% 的儿童。出血性并发症罕见（6%），均为非致命性且大多数临床预后良好。未经抗凝治疗的病人中超过 1/4 的新生儿和超过 1/3 的儿童被观察到有 CVT 扩大 [264]。进一步研究关于以诊断时脑出血分层的最佳抗凝剂量正通过国际儿童卒中研究而处在计划阶段 [265,266]。

已发表的儿童卒中指南

在过去 5 年间，3 套针对儿童 CVT 治疗的指南被发表 [267-269]。所有这 3 个指南都建议对非新生儿期的儿童采用 LMWH、UFH 和 (或) 华法林治疗 3-6 个月，即使在脑出血存在的情况下。

与之不同的是，关于对新生儿 CVT 的抗凝治疗没有一致的建议。3 个已发表的指南中，1 个没有提及新生儿 CVT [268]，1 个建议急性期抗凝 [269]，另 1 个建议不进行急性期抗凝 [251]。特别是，美国胸科医师学会建议初始抗凝，除非存在明显出血的情况下，而提问在这种情况下进行病例监测 CVT 是否扩大，如果发生扩大则开始抗凝治疗。建议抗凝治疗至少 6 周且不超过 3 个月。提议在 6 周时应该做静脉成像检查，而如果见到完全再通，则可以停用抗凝。

AHA 指南对初始抗凝未做出推荐意见。对有血栓扩大或易栓症 (其在急性疾病期间不会总能被诊断出) 的新生儿抗凝被认为是合理的。不情愿用抗凝治疗新生儿 CVT 基于若干担忧。首先，缺乏对新生儿安全性的研究资料；其次，担心会增加新生儿脑对出血的敏感性。在当前预后文献发表之前，不治疗新生儿的另一个原因是新生儿 CVT 的预后良好因此治疗是不必要的这一错觉。如之前章节所指出的那样，这些假设已经部分地被在过去几年发表的研究所推翻。然而，在缺乏临床试验数据的情况下，医疗实践的变异是可理解的 [251]。

建议

1. 对儿童 CVT 的支持性措施应包括适当补液、...
控制癫痫性抽搐发作以及颅内压增高的治疗（I 类推荐；C 级证据）。

2. 既然 CVT 儿童有因严重或长期颅内压增高而发生视力丧失的可能性，那么应做视野和视敏度的定期评估并应采取适当措施控制颅内压增高和其并发症（I 类推荐；C 级证据）。

3. 对所有儿童病人，如果撤除抗凝，建议在诊断后的第 1 周重复包括静脉成像在内的神经影像以监测早期血栓扩大或新的梗死或出血（I 类推荐；C 级证据）。

4. 对超过出生后 28 天诊断的急性 CVT 儿童，即使存在颅内出血，用全剂量 LMWH 治疗是合理的（IIa 类推荐；C 级证据）。

5. 对超过出生后 28 天诊断的急性 CVT 儿童，继续 LMWH 或口服维生素 K 拮抗剂 3-6 个月是合理的（IIa 类推荐；C 级证据）。

6. 对所有急性 CVT 儿童病人，如果开始抗凝治疗，治疗后在最初 1 周做头部 CT 或 MRI 以监测其它出血是合理的（IIa 类推荐；C 级证据）。

7. CVT 儿童可从为识别潜在凝血缺陷而做的易栓症测定中获益，一些易栓症可影响随后再发血栓的危险性并影响治疗决策（IIb 类推荐；B 级证据）。

8. CVT 儿童可从利用血培养和副鼻窦放射检查调查潜在感染中获益（IIb 类推荐；B 级证据）。

9. 对急性 CVT 新生儿，可以考虑用 LMWH 或 UFH 治疗（IIb 类推荐；B 级证据）。

10. 对急性 CVT 新生儿，可以考虑持续 LMWH 治疗 6 周至 3 个月（IIb 类推荐；C 级证据）。

11. 血管内介入治疗在儿童病人中的用途和安全性不确定，仅可考虑将其用于仔细选择的在强化或治疗水平抗凝治疗下有进行性神经系统的病人（IIb 类推荐；C 级证据）。

枢神经系统感染、任一恶性病、深部静脉系统血栓、入院时CT/MRI上颅内出血、格拉斯哥昏迷量表(GCS)评分<9、精神状态紊乱、年龄大于37岁以及男性[55]。可导致早期死亡的脑疝更多见于年轻患者，而由于恶性病所致的晚期死亡和不良功能预后更常见于老年病人[6,10,89]。入院时GCS评分14-15、完全或部分颅内压增高综合征(包括孤立性头痛)作为仅有的CVT表现以及没有失语是预后良好的相关指标[117,177]。

危险评分模型
尽管总体预后良好，但是大约15%的CVT病人死亡或因CVT变得不能自理[10,283]。危险分层评分可以提高我们告知CVT病人其个体预后和选择可从加强监护和有创性治疗强化中获益的能力。一项研究创建并验证了一个预测不良预后的危险评分模型。此危险评分模型的分值范围从0(最低危险)至9分(最高危险)，而界限(cutoff)值≥3提示6个月时的死亡或不能自理。存在恶性病、昏迷或深静脉系统血栓为2分，而男性、存在意识水平下降或ICH为1分。在验证样本中推导队列预测能力(c统计量)为85.4%、84.4%和90.1%。在合并样本中的敏感性和特异性分别是96.1%和13.6%。

另一研究[284]将年龄大于37岁和中枢神经系统感染合并到此模型中，并给每一个指标指定一个加权指数。此研究验证了90例CVT病人的评分并得出了一个0.81的受试者工作特征曲线下面积预测死亡率。界限评分≥14，敏感性是88%而特异性为70%。良好预后(被定义为mRS评分<2)的预示值为95%，而不良预后的预示值为30%。

血管再通
在一项包括五项小规模研究的系统回顾[28]中，CVT血管再通率在随访3个月时和1年时分别为84%和85%。观察到脑深部静脉和海绵窦血栓的再通率最高，而横窦血栓的再通率最低[193]。在成年人中，闭塞静脉窦的再通与CVT的预后无关[41,194]。

总结/进一步思考
本声明提供了一个对CVT的诊断和处理及其最常见的并发症有关文献广泛和评论性的综述。

硬脑膜窦或脑静脉血栓形成(CVT)占所有卒中的0.5% - 1%，最常累及年轻人和育龄妇女[1,4,6]。CVT病人通常表现为头痛，尽管一些病人有局灶性神经功能缺失、意识水平下降、抽搐发作或没有局灶性神经系体征的颅内压增高[1,4,6]。少见情况下，静息性起病可以给诊断带来挑战。大约三分之二的静脉窦血栓病人有一种促凝血因子或一个直接的病因。通常靠CT(CVT)或MRI(MRV)静脉造影检查显示由血栓所致的静脉窦或脑静脉的阻塞做出诊断[70,96]。CVT的处理包括对基础疾病的治疗、对症治疗、对颅内压增高、ICH或静脉梗死并发症的预防和治疗，特别是抗凝治疗。

卒中的诊断和治疗技术正处在不断演变之中。在对脑静脉窦血栓形成的病理生理的认识上已经取得了重要进展。然而，有前途的技术(血管内操作、用于处理有占位效应或ICH的难治性颅内压增高的偏侧开颅术等)在被广泛使用之前还需要经过严谨的评价。

尽管近年对CVT的研究取得了实质性的进展，但是大多数文献仍然是描述性的。CVT写作组为强调需要进一步研究的领域(如，更大规模随机临床试验以明确治疗性干预的益处)做出了努力并提供了反映当前标准临床实践的建议。一项旨在比较抗凝治疗和血管内溶栓的益处的随机临床试验(Thrombolysis Or Anticoagulation for Cerebral Venous Thrombosis, TO-ACT Trial)正在进行之中。TO-ACT的结果可能有助于改进CVT病人的急性期处理。

CVT的处理面对的困境可能是复杂的。鉴于文献中没有强有力的证据指导其中一些具有挑战性的临床决策，因此处理这类病人的医疗专业人员可能需要相关亚专业医师的协助。本声明不太可能终结关于CVT处理的争议。更确切地讲，本声明的内容应被视作对当前现有最佳证据的汇集。通过一个创新的研究和系统性评价的过程，诊断、处理和治疗方法将不断演变并因此而给CVT病人带来更好的预后。