CT and MRI Early Vessel Signs Reflect Clot Composition in Acute Stroke

David S. Liebeskind, MD; Nerses Sanossian, MD; William H. Yong, MD; Sidney Starkman, MD; Michael P. Tsang, BS; Antonio L. Moya, BS; David D. Zheng, BS; Anna M. Abolian, BS; Doojin Kim, MD; Latisha K. Ali, MD; Samir H. Shah, MD; Amytis Toffighi, MD; Bruce Ovbiagele, MD; Chelsea S. Kidwell, MD; Satoshi Tateshima, MD; Reza Jahan, MD; Gary R. Duckwiler, MD; Fernando Vinueza, MD; Noriko Salamon, MD; J. Pablo Villablanca, MD; Harry V. Vinters, MD; Victor J. Marder, MD; Jeffrey L. Saver, MD

Background and Purpose—The purpose of this study was to provide the first correlative study of the hyperdense middle cerebral artery sign (HMCAS) and gradient-echo MRI blooming artifact (BA) with pathology of retrieved thrombi in acute ischemic stroke.

Methods—Noncontrast CT and gradient-echo MRI studies before mechanical thrombectomy in 50 consecutive cases of acute middle cerebral artery ischemic stroke were reviewed blinded to clinical and pathology data. Occlusions retrieved by thrombectomy underwent histopathologic analysis, including automated quantitative and qualitative rating of proportion composed of red blood cells (RBCs), white blood cells, and fibrin on microscopy of sectioned thrombi.

Results—Among 50 patients, mean age was 66 years and 48% were female. Mean (SD) proportion was 61% (±21) fibrin, 34% (±21) RBCs, and 4% (±2) white blood cells. Of retrieved clots, 22 (44%) were fibrin-dominant, 13 (26%) RBC-dominant, and 15 (30%) mixed. HMCAS was identified in 10 of 20 middle cerebral artery stroke cases with CT with mean Hounsfield Unit density of 61 (±8 SD). BA occurred in 17 of 32 with gradient-echo MRI. HMCAS was more commonly seen with RBC-dominant and mixed than fibrin-dominant clots (100% versus 67% versus 20%, P=0.016). Mean percent RBC composition was higher in clots associated with HMCAS (47% versus 22%, P=0.016). BA was more common in RBC-dominant and mixed clots compared with fibrin-dominant clots (100% versus 63% versus 25%, P=0.002). Mean percent RBC was greater with BA (42% versus 23%, P=0.011).

Conclusions—CT HMCAS and gradient-echo MRI BA reflect pathology of occlusive thrombus. RBC content determines appearance of HMCAS and BA, whereas absence of HMCAS or BA may indicate fibrin-dominant occlusive thrombi. (Stroke. 2011;42:1237-1243.)

Key Words: cerebral ischemia ■ CT ■ MRI ■ stroke ■ thrombus

Acute ischemic stroke may result from a diverse range of underlying disorders, often culminating in obstruction of an artery. The pathophysiological mechanisms that lead to obstruction of a proximal intracranial artery and resultant downstream ischemia are rarely discerned in the acute phase; however, the role of thrombosis as a cause of obstruction is frequently noted during evaluation. Most therapeutic strategies for acute ischemic stroke focus on clot disruption or resolution of thrombosis.1 In fact, the only 2 Food and Drug Administration-approved therapies include pharmacological thrombolysis with intravenous tissue plasminogen activator and endovascular thrombectomy with various devices.2–4 Intravenous tissue plasminogen activator does not depend on overt delineation of thrombus, yet subtle neuroimaging findings suggesting thrombosis in proximal intracranial arteries are often viewed as confirmatory evidence of a potentially extensive or destructive event that warrants aggressive treatment.5–7 Before most endovascular revascularization procedures for stroke, noninvasive imaging in the form of CT or MRI may similarly reveal features suggestive of a proximal occlusion, yet characterizing such an occlusion typically relies on other approaches. A unique aspect of thrombectomy or clot retrieval from an intracranial artery in the setting of acute ischemic stroke is the opportunity to directly investigate clot composition or the nature of thrombosis or any material that has blocked flow to critically dependent downstream regions of the brain.8–10

Prior studies have analyzed the presence of early vessel signs on CT and MRI suggestive of thrombosis, including the hyperdense middle cerebral artery sign (HMCAS) on CT.
and blooming artifact (BA) on gradient-echo or other susceptibility-weighted MRI sequences. Many of these studies have correlated these findings as a poor prognostic factor in clinical outcome and diminished likelihood of revascularization. Most of the studies, however, have not shown angiographic correlation or actual pathological correlation with the features of the underlying occlusive lesion.

We previously described the initial series of pathological changes in thrombi retrieved from the proximal intracranial arterial circulation in acute stroke and now provide the first neuroimaging correlative study that may be used to predict clot composition. This report describes the unique opportunity to investigate plaque or thrombus constituents that underlie the presence and characteristics of early vessel signs, including HMCAS and BA.

Methods

During the period from May 2001 through March 2007, 85 consecutive cases of acute ischemic stroke were evaluated with CT or MRI before endovascular thrombectomy at our center. Noninvasive imaging with CT or MRI was acquired per standard algorithm for acute stroke cases with noncontrast CT or a dual-energy protocol including gradient-recalled echo (GRE) sequences as previously described. GRE images were acquired with slice thickness of 5 mm and no gap, TR 800 ms, TE 15 ms, 30° flip angle, 240 field of view, and 256×144 matrix size. Selection criteria for this study included acute middle cerebral artery (MCA) occlusions with available noncontrast CT or GRE MRI data acquired immediately before endovascular thrombectomy and available thrombus pathology resulting from any retrieved specimen. CT studies acquired at outside institutions before transfer to our center were not included due to incomplete availability, poor quality, and inability to measure Hounsfield Unit (HU) density on non-DICOM (Digital-Imaging-and-Communications-in-Medicine) format images. As a result, cases without CT or MRI acquired at our center and thrombectomies that did not yield a pathological specimen were excluded from our analyses.

Clinical, radiographic, and detailed angiographic data were prospectively acquired as part of ongoing work at our center. These data are routinely acquired and archived in a centralized database. Two board-certified vascular neurologists with accreditation in neuroimaging retrospectively reviewed the noncontrast CT or GRE sequences acquired immediately before endovascular thrombectomy blinded to clinical and angiographic variables as well as the results of pathological study. The presence or absence of HMCAS was scored on consensus reading by the 2 neuroimaging experts based on visual inspection. Conciseness or increased density of the MCA in an asymmetrical fashion was used to categorize the HMCAS, although specific measures of HU density were not used in this determination. After HMCAS rating, HU density measures were obtained of bilateral segments of the MCA. Axial GRE MRI scans were also reviewed in a consensus fashion to determine the presence or absence of BA based on visual inspection. BA was defined as an area of hypointensity or signal loss in the proximal MCA, often distorting the margins of the vessel. If CT or MRI artifacts obscured delineation of HMCAS or BA, then the associated imaging data set of that case was excluded from our analyses.

Digital subtraction angiography was used to confirm the diagnosis of MCA occlusion before thrombectomy. MCA occlusions with extension of clot into the ipsilateral internal carotid or anterior cerebral arteries were included in our analyses. Angiographic techniques and the thrombectomy procedure have been described elsewhere. Thrombectomy cases included in our analyses were conducted as part of the Mechanical Embolus Removal in Cerebral Ischemia (MERCi) and Multi MERCi trials and as part of routine clinical care following the US Food and Drug Administration clearance of the Merci Retriever System. The MERCi and Multi MERCi trials evaluated the safety and efficacy of endovascular thrombectomy with the Merci Retrieval System (Concentric Medical, Inc, Mountain View, CA) in the treatment of proximal intracranial arterial occlusions performed within 8 hours of stroke symptom onset. Mechanical thrombectomy was performed with the Merci Retriever System and subsequent generation devices in all cases of this report. Serial angiography from the initial diagnostic run throughout the procedure until completion of thrombectomy was reviewed to assess features of arterial occlusion and corresponding collateral flow. The presence of occlusion and extent of antegrade perfusion in the downstream territory was measured with the Thrombolysis in Cerebral Infarction scale, and collateral perfusion was graded with the American Society of Interventional and Therapeutic Neuroradiology/Society of Interventional Radiology (ASITN/SIR) collateral flow grading system.

Clot retrieval occurred sequentially throughout the thrombectomy procedure with variable amounts of thrombus extracted at each stage. After each pass of the device that appeared to reduce clot burden, the catheter was withdrawn and the distal aspect of the helical coil inspected for the presence of thrombus or any particulate material. If no discrete thrombus was identified, the aspirated material was then gently flushed with saline to uncover any smaller fragments that may be obscured. Photographs documented the relationship of thrombotic material with respect to the distal thrombectomy catheter and architecture of the retained clot. Thrombi were then placed on gauze or surgical dressing and photographed from multiple perspectives. Gross measurements of linear thrombus dimensions were taken using a guide. Thrombus material was immediately fixed in 10% phosphate-buffered formalin. Formalin-fixed specimens were embedded in paraffin, cut at 8-μm thickness, and stained with hematoxylin and eosin. Histological sections were photographed with an Olympus BX41 microscope with an attached MicroFire digital camera (Model S99809). Histological examination was performed without knowledge of the clinical findings and was based on feature-detection analysis of functionally distinct processes, including platelet:fibrin accumulations (thrombosis in flowing blood), linear neutrophil and monocyte deposits (surface adherence interactions), and erythrocyte-rich accumulations (whole-blood coagulation). Clot composition was also categorized as red blood cell (RBC)-dominant, fibrin-dominant, or mixed by light microscopy.

Further histopathologic analysis included semiautomated quantitative and qualitative measurements for the proportion of RBCs), white blood cells (WBCs), and fibrin composition from digitized whole slide digital images. Hematoxylin and eosin-stained slides were scanned in at 400× magnification using an Aperio Scanscope XT digital scanner (Aperio, Vista, CA). The resulting individual digital image files were large, ranging from 200 MB to 5 GB, and required processing to smaller file sizes so that image analysis software could be used to quantify proportions of components. This processing was done using Adobe Photoshop CS3 (Adobe Systems, San Jose, CA) to assign pseudocolors to fibrin, RBCs, and nucleated WBCs. Pseudocolorization was conducted with a look-up table and automated thresholds to assign specific colors to imaging features of each clot component for calculation of specific content. Image J software (National Institutes of Health, Bethesda, MD) was then used to quantify the percentage of RBCs, WBCs, and fibrin by area. These pathology studies were repeated for each fragment of clot retrieved from the entire procedure. When multiple clot fragments were retrieved for analysis, the mean values across fragments were used for clot constituents (ie, RBC, WBC, fibrin).

Descriptive statistical analyses were performed on all clinical, radiographic, angiographic, and pathological data. The presence or absence of early vessel signs, including the HMCAS and BA, and the qualitative descriptions of clot pathology were treated as categorical variables in the statistical analyses. Percentages of each specific clot component were treated as continuous variables. The relationship between early vessel signs of thrombosis on CT and MRI and clot composition was probed using both χ² and analysis of variance statistics with significance noted below the P=0.05 level. Statistical analyses were performed with the use of SPSS software (Version 16.0; SPSS, Inc, Chicago, IL).
Results

Among 50 patients who fulfilled entry criteria, the mean age was 66 years, 48% were female, and 82% were white. Clinical characteristics are summarized in the Table. Angiography demonstrated occlusions of the internal carotid artery in 52% and MCA in 48%. The Merci Retriever System was used either alone (78%) or in combination with intravenous (14%) or other treatments (intra-arterial tissue plasminogen activator [2%], angioplasty, stenting). The final median Thrombolysis in Cerebral Infarction score for patients included in this analysis was 2 (2% Thrombolysis in Cerebral Infarction 0, 22% 1, 40% 2, 36% 3).

A total of 20 CT scans was included for analysis of which 10 demonstrated HMCAS (Figure 1). The HMCAS revealed a mean HU of 61 (±21) across all cases. There were 32 MRI scans reviewed with 17 (53%) demonstrating BA (Figure 2). The 2 patients who had both CT and MRI at our institution before angiography were found to have both HMCAS and BA, respectively. Acquisition of CT before MRI was used for screening purposes in cases in which MRI contraindications could not be immediately assessed. In these cases, the vessel signs were situated in the exact same vascular anatomic location.

Extracted thrombi were occasionally retrieved as a single mass, although most were retrieved in multiple fragments. These multiple retrieval specimens were obtained at various stages of each procedure and the time to clot retrieval varied extensively. There was no correlation between the amount of thrombus retrieved and recanalization or reperfusion status. The orientation of the occlusive thrombus within the vessel could not be unequivocally established due to the nature of the clot retrieval procedure and catheter manipulation. In some cases, however, intact clots on gross examination and histopathology could be readily oriented in space.

<table>
<thead>
<tr>
<th>Clinical Characteristic</th>
<th>Population Variable (n=50)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years, mean±SD</td>
<td>66±21</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>48%</td>
</tr>
<tr>
<td>Race</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>82%</td>
</tr>
<tr>
<td>Black</td>
<td>10%</td>
</tr>
<tr>
<td>Asian</td>
<td>6%</td>
</tr>
<tr>
<td>Hispanic</td>
<td>2%</td>
</tr>
<tr>
<td>Diabetes</td>
<td>12%</td>
</tr>
<tr>
<td>History of hypertension</td>
<td>66%</td>
</tr>
<tr>
<td>Coronary artery disease</td>
<td>26%</td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td>14%</td>
</tr>
<tr>
<td>History of smoking</td>
<td>12%</td>
</tr>
<tr>
<td>Baseline NIHSS score</td>
<td>Median 19 (IQR, 15–22)</td>
</tr>
<tr>
<td>Intravenous tPA</td>
<td>14%</td>
</tr>
<tr>
<td>Intra-arterial tPA</td>
<td>2%</td>
</tr>
<tr>
<td>Day 90 mRS</td>
<td>Median 3 (IQR, 1–5)</td>
</tr>
</tbody>
</table>

NIHSS indicates National Institutes of Health Stroke Scale; tPA, tissue plasminogen activator; mRS, modified Rankin Scale; IQR, interquartile range.

Figure 1. Noncontrast CT scan of the head reveals a right hyperdense middle cerebral artery sign (HMCAS, arrow) associated with acute left hemiparesis.

Figure 2. Gradient-echo MRI demonstrates blooming artifact (BA, arrow) in the left middle cerebral artery.
15 (30%) mixed (Figure 3). A broad distribution of pathology was noted across all cases as depicted in Figure 4. WBC composition was consistently marginal across all cases. In cases with multiple fragments obtained, there was no change in composition with successive clots retrieved. Over the 6-year period of this study, from the first retrieval case ever performed with the Merci Retriever System to a period >2 years after introduction to clinical practice, there was no change in pathological findings that may have implicated potential variation in technical aspects of the endovascular procedure. We have recently published an autopsy study describing patients with poor outcomes after this procedure.27 No correlation was noted between the type of baseline imaging modality (ie, CT or MRI) and gross or histopathologic findings. There were also no differences between the timeline between baseline diagnostic imaging acquisition to clot retrieval (mean±SD, 86±32 minutes) and the resultant thrombus constituents or composition.

HMCAS on CT was more commonly seen with RBC-dominant and mixed than fibrin-dominant clot pathology (100% versus 67% versus 20%, P=0.016). Mean percent RBC composition was higher in clots with HMCAS (47% versus 22%, P=0.016), although HU density was not correlated with clot composition. BA was also more common in
RBC-dominant and mixed clots compared with fibrin-dominant clots (100% versus 63% versus 25%, \(P < 0.002 \)). The consistently low percentage of WBC content across all cases was not a determinant of HMCAS or BA. Mean percent RBC was greater with BA (42% versus 23%, \(P = 0.011 \)). The presence of either early vessel sign (ie, HMCAS or BA) did not correlate with clinical or radiographic factors. Multivariate regression analyses did not identify predictors of HMCAS or BA other than RBC content (Figure 5). In the 2 cases with both CT and MRI, the complete concordance of HMCAS and BA was associated with RBC-dominant clots with elevated RBC composition on quantitative analyses. Absence of HMCAS or BA was more common with small, fibrin-rich specimens.

Our analyses revealed no correlation between imaging findings (HMCAS or BA) or thrombus histopathology with baseline variables, including stroke severity, or subsequent outcomes. Thrombus histopathology was unrelated to final determination of stroke etiology or mechanism (eg, cardioembolism or atherosclerosis) and was not predictive for successful extraction. Similarly, there were no differences in imaging or histopathologic features with respect to the timing of clot extraction.

Discussion

Noninvasive imaging modalities such as CT and MRI have delineated vessel abnormalities attributed to occlusive thrombus in acute ischemic stroke for \(> 20 \) years without pathological corroboration of the nature of the underlying thrombus.\(^5,15\) Our findings provide the initial radiological–pathological correlation that early vessel signs (including the HMCAS on CT and BA on GRE MRI) reflect underlying clot pathology. The HMCAS and BA were commonly encountered in the triage of patients with acute stroke, resulting in much speculation to date about the type or composition of intravascular thrombus and related expected outcome with various revascularization strategies. Definitive statements about clot composition such as our observations must rely on comprehensive evaluation of clinical variables, noninvasive imaging, angiography, and gross examination with histopathology.\(^8\) Furthermore, detailed pathological examination of the thrombus is possible only with mechanical thrombectomy, unlike the situation with intravenous or intra-arterial thrombolysis, aspiration, or angioplasty and stenting. Our findings reveal several novel observations about imaging of occlusive thrombus in acute ischemic stroke.

Acute MCA occlusion due to thrombus may reveal early vessel findings in only a fraction of cases and perhaps more importantly, the absence of such subtle imaging abnormalities does not rule out thrombotic occlusion. The HMCAS or BA was noted in approximately half of all our cases with successful thrombectomy. Initial descriptions of the HMCAS cited a much higher incidence, yet most successive studies reported detection rates of approximately 50%, consistent with our findings.\(^5,7,11\) HMCAS detection is undoubtedly influenced by variable methodology, including blinding, quantitative measures of HU, and other baseline factors.\(^20\) Our results are also consistent with previously reported detection rates for BA, although stroke mechanism differentiated by cardioembolism or large artery atherosclerosis may affect conspicuity of BA.\(^12,14\) Relatively greater thrombus burden associated with cardioembolism may increase BA conspicuity.\(^13\) Absence of BA in 47% of our cases was generally associated with fibrin-rich thrombi, a potential target for pharmacological fibrinolysis. Only limited data were available to correlate HMCAS with BA because primary use of MRI and rapid triage to thrombectomy often obviates the need for CT.\(^14\) HMCAS has been reported in as low as 15% of cases evaluated with routine use of CT alone before thrombolysis depending on case series and therapeutic benefit may be achieved irrespective of this finding.\(^28\) Early vessel findings in other territories such as the posterior cerebral artery still await pathological correlation.\(^10,13,14,29,30\)

The HMCAS and BA reflect RBC content, a thrombus constituent, yet not the principal target of fibrinolysis. Classification of thrombi as RBC-dominant was noted in every case in which either HMCAS or BA was identified. These early vessel findings were increasingly infrequent with fibrin-rich thrombi. The percentage of RBC was also closely linked with these imaging findings. Measurement of HU within the
HMCAS yielded values consistent with recently lodged emboli, although it remains difficult to ascribe these density changes to a particular clot constituent.10,20,31 Because we did not discern any correlation between HU density and RBC quantitative measures, one may conclude that the mere presence or absence of HMCAS using simple visual inspection is likely sufficient in distinguishing the presence of a RBC-rich clot or “red thrombus.” The susceptibility effect of BA on GRE MRI has been ascribed to local ferromagnetic field distortion associated with RBC components as well. The HMCAS and BA are therefore indirect markers of occlusive thrombi, reflecting trapped RBC more closely than the fibrin mesh targeted by most arterial revascularization procedures developed to date for stroke. It remains possible, however, that mechanical thrombectomy specimens ensnare additional constituents and adjacent red thrombi during the endovascular procedure itself.

The potential to distinguish “red thrombi” from “white thrombi” has been a longstanding and elusive expectation of diagnostic imaging modalities.32 Our previous findings on the initial analyses of clots causing ischemic stroke in humans questioned whether such traditional distinctions of “red versus white clots” are truly applicable, because much heterogeneity was observed among pathological specimens.8 A subsequent report also described marked heterogeneity in thrombi.9 Prediction of clot composition from CT or MRI may therefore be difficult, especially if one assumes that the HMCAS or BA reflects the original embolus rather than secondary components promoted by stasis proximal and distal to the occlusion site. Our findings on the HMCAS and BA that accentuate RBC content may also suggest that stasis and fresh thrombus are more common in such cases. Although it remains challenging to reconstruct the spatial orientation of the retrieved fragment with respect to the HMCAS or BA, limited reperfusion (Thrombolysis in Cerebral Infarction 0 or 1) in 24% of cases raises the possibility that RBC content was augmented by stasis. This hypothesis underscores the role of flow derangements in cerebral ischemia, up against the clot face, and in distal segments filled through collateral perfusion.25 Stasis has previously been invoked in determining thrombus composition at the embolic source yet not at the recipient site.10,33 Angiography may be indispensable in distinguishing such factors. Interestingly, we found no correlation between amount of clot retrieved and subsequent reperfusion, suggesting that other aspects of ischemic pathophysiology beyond thrombosis will be essential in future therapeutic strategies for stroke.

The prognostic significance of the HMCAS and BA in the setting of arterial revascularization may be inherently flawed without consideration of the interaction between flow and thrombi in cerebral arteries.25,26 Many studies have attempted to define prognostic aspects of early vessel findings or their predictive role in revascularization, yet such outcomes are likely multifactorial, including considerations of how thrombus composition is not just the cause, but also the result of impaired flow.7,10,11,13,16–18 Despite an unequivocal link between the HMCAS and BA with RBC-dominant pathology, undue emphasis should not persuade clinicians to establish stroke etiology or plan revascularization strategies based on this finding alone. Our finding that imaging features of HMCAS or BA cannot alone predict successful clot extraction warrants investigation of other potential influential factors, because recanalization may be affected by many features in a given case. Further correlative studies should evaluate the impact of these imaging signs with various endovascular approaches, incorporating angiographic features to characterize flow.

The unique opportunity that permitted this comprehensive analysis of early vessel findings with thrombus pathological findings also imposed several limitations. Availability and quality of baseline imaging immediately before angiography resulted in further selection of a cohort already limited to candidates deemed suitable for mechanical thrombectomy. Our findings are limited by significant bias associated with excluding many cases, because the results relate only to clots in the proximal MCA that could be retrieved. Resilient occlusions and those with complete disintegration could not be studied and were thereby excluded from our analyses. It remains possible that some thrombi reflected changes of intravenous tissue plasminogen activator before angiography or even changes associated with standard procedural heparin administration. As noted, the orientation of clot fragments is speculative and other retained fragments may have differed in composition. Finally, our classification of clot types is also imperfect because most specimens were heterogeneous in nature with considerable variation across cases.

Conclusions

Our novel observations provide the first correlative study of early vessel signs in acute ischemic stroke with underlying clot composition. The HMCAS and BA are not ubiquitous in thrombotic MCA occlusion and failure to discern these subtle findings should not deter arterial revascularization strategies. Further studies are underway to delineate more detailed aspects of clot composition, including molecular features and architecture with respect to flow.

Sources of Funding

This work has been funded by National Institutes of Health–National Institute of Neurological Disorders and Stroke Awards K23 NS054084 (D.S.L.) and P50 NS044378.

Disclosures

All authors were employed by the University of California (UC), which holds a patent on the retriever devices for stroke, at the time of this work. The UC Regents received payments based on the clinical trial contracts for the number of subjects enrolled in the MR and Recanalization of Stroke Clots Using Embolectomy MR (MR RESCUE) multicenter clinical trial and the Concentric Merci Registry. D.S.L. is a scientific consultant regarding trial design and conduct to Concentric Medical (modest) and CoAxia (modest). C.S.K. is Principal Investigator of the National Institutes of Health-funded MR RESCUE trial (P50 NS044378). S.T. is a scientific advisor of Reverse Medical (modest), which makes a device to treat acute stroke. G.R.D. is a medical advisor and stockholder of Concentric Medical. H.V.V. is supported in part by the Daljit S. and Elaine Sarkaria Chair in Diagnostic Medicine. J.L.S. is a scientific consultant to AGA Medical (modest). Boehringer Ingelheim (modest), Bristol Myers Squibb (modest), CoAxia (modest), Concentric Medical (modest), Ev3 (modest), FibroGen (modest), ImaRx (modest), Sanofi Aventis (modest), and Talecris (modest). He receives support for editorial work in MedReviews (modest).
References

CT and MRI Early Vessel Signs Reflect Clot Composition in Acute Stroke

Stroke. 2011;42:1237-1243; originally published online March 10, 2011;
doi: 10.1161/STROKEAHA.110.605576

Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2011 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/42/5/1237

Data Supplement (unedited) at:
http://stroke.ahajournals.org/content/suppl/2012/03/12/STROKEAHA.110.605576.DC1
http://stroke.ahajournals.org/content/suppl/2016/03/31/STROKEAHA.110.605576.DC2

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Stroke* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Stroke* is online at:
http://stroke.ahajournals.org/subscriptions/
Full Article

급성 뇌졸중에서 혈전 성상을 반영하는
CT와 MRI의 조기 혈관 징후

CT and MRI Early Vessel Signs Reflect Clot Composition in Acute Stroke

David S. Liebeskind, MD; Nerses Sanossian, MD; William H. Yong, MD; Sidney Starkman, MD; Michael P. Tsang, BS; Antonio L. Moya, BS; David D. Zheng, BS; Anna M. Abolian, BS; Doojin Kim, MD; Latisha K. Ali, MD; Samir H. Shah, MD; Amytis Towfighi, MD; Bruce Ovbiagele, MD; Chelsea S. Kidwell, MD; Satoshi Tateshima, MD; Reza Jahan, MD; Gary R. Duckwiler, MD; Fernando Viñuela, MD; Noriko Salamon, MD; J. Pablo Villablanca, MD; Harry V. Vinters, MD; Victor J. Marder, MD; Jeffrey L. Saver, MD

(Stroke. 2011;42:1237-1243.)

Key Words: cerebral ischemia ■ CT ■ MRI ■ stroke ■ thrombus

배경과 목적: 본 연구는 CT의 고밀도 중대뇌동맥 징후(hyperdense middle cerebral artery sign, HMCAS)와 가용기에로 (gradient–echo) MRI의 색변안 인공목연(blooming artifact, BA)의 급성 혈혈뇌졸중에서 얻어진 혈전의 병리학적 특성과의 연관성을 보기 위한 첫 상관 관계 연구이다.

방법: 급성 중대뇌동맥 혈혈뇌졸중 근래 50개의, 기계적 혈전제거술 시행 이전에 완전한 비조영증강(noncontrast) CT와 기울 기료로 MRI 영상을 입상 자료 및 병리학적 자료를 모조로 상대적으로 분석하였다. 혈전제거술을 시행한 혈액 부위의 혈전에 대하여 조직병리학적 분석을 시행하였는데, 절개한 혈전을 현미경으로 관찰하여 적혈구(red blood cell, RBC), 백혈구(white blood cell, WBC), 섬유소(fibrin)의 구성 비율을 자동화된 방법으로 정성, 정량적 분석하였다.

결과: 환자 50명의 평균 연령은 66세였고, 48%가 여성이었다. 혈전의 평균(표준편차) 구성은 섬유소 61% (± 21), RBC 34% (± 21), WBC 4% (± 2)였다. 제거된 혈전 중에서, 22개(44%)의 주성분은 섬유소였고 13개(26%)는 RBC였으며, 15개(30%)는 혼합 형이었다. HMCAS는 CT를 활용한 20명의 중대뇌동맥 뇌졸중 환자 중 10명에서 관찰되었으며, 평균 Hounsfield Unit 율도는 61 (±8 SD)이었다. BA는 기울기에서 MRI 검사 32건 중 17건에서 관찰되었다. HMCAS는 섬유소가 주된 성분인 혈전보다 RBC가 주성분이거나 혼합형인 경우에 더 흔히 관찰되었다(100% vs. 67% vs. 20%, P=0.016). RBC의 평균 비율은 HMCAS와 연관된 혈전에서 더 높았(47% vs. 22%, P=0.016). BA는 섬유소가 주성분인 혈전과 비교하였을 때 RBC가 주성분이거나 혼 혼합형인 경우에 더 흔히 관찰되었다(100% vs. 63% vs. 25%, P=0.002). BA와 연관된 혈전에서 평균 RBC 비율이 더 컸다(42% vs. 23%, P=0.011).

결론: CT상의 HMCAS와 기울기로 MRI에서의 BA는 혈전 패턴을 유도한 혈전의 병리학적 특성을 반영한다. RBC 성분이 HMCAS와 BA의 발현을 결정하는 것으로 보이며, HMCAS나 BA가 관찰되지 않는 경우는 아마도 섬유소가 주된 성분인 혈전을 시사하는 것으로 생각된다.

From the University of California–Los Angeles Stroke Center, Los Angeles, CA. Correspondence to David S. Liebeskind, MD, UCLA Stroke Center, 710 Westwood Plaza, Los Angeles, CA 90095. E-mail davidliebeskind@yahoo.com © 2011 American Heart Association, Inc.
급성기에는 거의 포착되지 않으며. 그러나, 패색의 원인으로 혈전 생성 역할을 하는 점에 대하여서는 뇌졸중 검사나 평가를 시행하는 동안 종종 관찰되었다. 급성 혈전증증의 대부분의 치료적 방법은 혈전을 파괴하거나 혈전 생성을 해결하는 데 초점을 맞추고 있다. 일부, 정맥내 조작플라스미노판화효소(tissue plasminogen activator, tPA)를 사용한 약물적 혈전용해제와 여러 가지 기구를 이용한 혈관내 혈전제거술 두 가지 치료방안이 심장의약국(Food and Drug Administration)에 승인을 받았다. 근위부 두개뇌사구의 혈전 생성을 시사하는 피험과 미세한 신경영상 조건이 적절한 치료를 필요로 하는 경우, 또는 파괴적인 사라의 확장적인 증상 중생강하기는 하나, 정맥내 tPA의 두여는 혈전이 퍼짐하게 관찰되는데도 여부에 따르지 않는다는.

뇌졸증에서 혈관내 혈관재개통술(endovascular revascularization procedure) 이전에 CT나 MRI가 같은 비침습적 영상에서 근위부 패색을 시사하는 조건이 나타난다. 그러나, 이러한 패색의 특징은 다른 방법에 의하여 확인되었다. 급성 혈전증증에서 두개뇌사구의 혈전제거술의 환자의 구성부분이나 혈전 생성의 성상, 또는 패색된 이후 부위의 혈관을 막는 긴소한 질병에 대하여도 적절한 분석이 가능하다는 것이 특별한 점 중 하나이다.

이런 연구에서 혈전 생성을 시사하는 CT나 MRI에서는 조기 혈관 정후의 존재, 고밀도 두개뇌사구 정후(hyperdense middle cerebral artery sign, HMCSA)와 가을기표(gradi- dient-echo) MRI 또는 자하로 강조 MRI(susceptibility-weighted MRI) 영상의 섬명점 인공응영(blooming artifact, BA)이 연구되었다. 이들 연구 중 많은 수에서 이러한 정후가 임상적으로 나란 예측기자와 연관되며 혈관재개통의 효과를 감소시킬 가능성이 있다고 하였다. 그러나 대부분의 연구에서 혈관조영술 결과와의 연관이나 패색된 부위의 특성과 관련된 실제 방법학적 연관 관계는 보지 않았다.

본 연구자들은 급성 뇌졸중에서 근위부 두개뇌사구 순환에서 제거한 혈전의 방사학 변화를 기술할 바 있으며, 이변에는 혈전의 구성 성상을 예측하는 데 도움이 될 수 있는 신경영상 조건과 상관 연구를 보고하고자 한다. 이 연구 보고는 HMCS와 BA를 포함한 조기 혈관 정후의 존재 및 특성의 가치를 이루는 동맥경화변이나 혈전의 구성 요소나 분석한 결과를 기술하였다.

방법

2001년 5월~2007년 3월, 85명의 급성 혈전증증 환자가 본 센터에서 혈관내 혈전제거술을 시행받기 전에 CT나 MRI 검사를 시행하였다. CT나 MRI를 이용한 비침습적 영상은 비조영 CT나 가을기표 시퀀스(gradient- recalled echo, GRE)를 포함한 MRI 프로토콜에 따라 급성 뇌졸중 증상을 위한 표준 전달 알고리즘에 의하여 얻었고, 이는 이전에 기술한 바 있다. GRE 영상은 절편 두께 5 mm, 절편 간격 0, 반복 시간(TR) 800 ms, 반복 시간(TE) 15 ms, 전위각(flip angle) 30°, 관측 범위(field of view) 240, 매트릭스 크기 256X144의 조건으로 얻었다. 이연구의 대상 신경 조건은 급성 중대뇌사구(middle cerebral artery, MCA) 패색과 함께 혈관내 혈전제거술 전에 시행한 비조영 CT나 GRE MRI 결과가 있으며, 제거한 조건에서 혈전 폐색 결과를 얻을 수 있는 경우로 정하였다. 연구 센터로 이송되기 전에 다른 기관에서 CT를 시행한 경우는 부정한 유용성, 영상 질의 저하, DICOM (Digital-Imaging-and-Communications-in-Medicine) 형식의 영상이 아니어서 Hounsfield Unit (HU) 밀도를 측정할 수 없는 등의 이유로 제외하였다. 그 결과 CT나 MRI가 본 센터에서 시행되지 않고 혈전제거술에서 병기 조작을 얻을 수 없었던 경우가 연구 분석에서 제외되었다.

임상적, 방사선학적, 자세한 혈관영상학적 자료는 본 센터의 지속적인 연구의 일부로 향후적으로 수용되었다. 이를 연구 자료는 임상적으로 모든 뇌졸중 환자에 시행하여 얻어지고 중앙 데이터베이스에 기록된다. 신경영상 영상은 입원 두명이 있는 경맥 신경과 전문가가 혈관내 혈전제거술 시행 전에 시행한 비조영 CT나 GRE 영상을 입성, 혈관영상학적 변수 및 병리 분석 결과를 모으는 채 유형적으로 분석하였다. HMCSA의 존재 유무는 왜관 판찰에 따라 두명의 신경영상 신문기의 판독 의견 일치를 점수화하였다. 비활성적으로 MCA의 밀도가 증가하거나 높을 때 뇌의 두 HMCSA로 분류하였고, 이 결정에 HU 밀도 수치는 사용하지 않았다. HMCSA 유무를 점수화한 이후, HU 밀도 측정을 MCA의 양측 분석에서 시행하였다. 측 방향(axial) GRE MRI 또한 왜관 판찰 시 BA의 존재 유무를 의견 일치 방법으로 검토하였다. BA는 근위부 MCA에서 중동 혈관의 경계를 점화시키는, 지름도로 보이거나 음영 소실로 보이는 부분으로 정의하였다. 만약 CT나 MRI의 인공물(artifact)로 인하여 HMCS이나 BA의 존재 유무 판단이 적합할 경우에는, 관련 영상 자료를 본 분석에서 제외하였다.

혈전제거술 시행 이전에 단일 감사 혈관조영술로 MCA 패색을 확인하였다. MCA의 혈전이 동측의 내경동맥(internal carotid artery)이나 전대뇌사구(anterior cerebral artery)까지 파져 연결되어 있는 경우도 분석에 포함시켰다. 혈관조영술 방법과 혈전제거술 과정에 대하여는 다른 곳에 기술하였다. 이 연구 분석이 포함된 혈전제거술 중재는 Mechanical Embolus Removal in Cerebral Ischemia (MERCI) 연구와 Multi MERCI 연구의 일부로, 그리고 Merci Retriever System의 미국 식품의약품청 이후 이래는 임상적 연구의 일부로 진행되었다. MERCI와 Multi MERCI 연구는 뇌졸중 발생 8시간 이내에 근위부 두개뇌사구 패색 치료에서
Table. Clinical Characteristics of Study Population

<table>
<thead>
<tr>
<th>Clinical Characteristic</th>
<th>Population Variable (n=50)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years, mean±SD</td>
<td>66±21</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>48%</td>
</tr>
<tr>
<td>Race</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>82%</td>
</tr>
<tr>
<td>Black</td>
<td>10%</td>
</tr>
<tr>
<td>Asian</td>
<td>6%</td>
</tr>
<tr>
<td>Hispanic</td>
<td>2%</td>
</tr>
<tr>
<td>Diabetes</td>
<td>12%</td>
</tr>
<tr>
<td>History of hypertension</td>
<td>66%</td>
</tr>
<tr>
<td>Coronary artery disease</td>
<td>26%</td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td>14%</td>
</tr>
<tr>
<td>History of smoking</td>
<td>12%</td>
</tr>
<tr>
<td>Baseline NIHSS score</td>
<td>Median 19 (IQR, 15–22)</td>
</tr>
<tr>
<td>Intravenous IPA</td>
<td>14%</td>
</tr>
<tr>
<td>Intra-arterial IPA</td>
<td>2%</td>
</tr>
<tr>
<td>Day 90 mRS</td>
<td>Median 3 (IQR, 1–5)</td>
</tr>
</tbody>
</table>

NIHSS indicates National Institutes of Health Stroke Scale; IPA, tissue plasminogen activator; mRS, modified Rankin Scale; IQR, interquartile range.

Merci Retrieval System (Concentric Medical, Inc., Mountain View, CA)의 혈관내 혈전제거술의 안전성과 효용성을 평가하였다. 본 연구에서 시행된 기계적 혈전제거술은 Merci Retriever System과 그 이후 세대의 기구들을 사용하여 이루어졌다. 혈관조영술을 이용한 혈관 폐색 진단부터 혈전제거술이 완료된 뒤까지의 모든 과정에 대한 순차적인 혈관조영 사진을 동영상의 특성 및 관련된 결손환을 평가하기 위해 검토하였다. 폐색 유무 및 폐색 부위 이후 양의 폐색 부위 전방향 관류의 범위를 Thrombolysis in Cerebral Infarction 스케일을 이용하여 측정하였으며, 결손환을 측정하는 American Society of Interventional and Therapeutic Neuroradiology/Society of Interventional Radiology (ASITN/SIR)의 결손환 평가 시스템을 사용하여 측정하였다.

각 단계별로 다양한 양의 혈전이 추출되면서 혈전제거술 과정이 진행되어, 혈전 제거는 순차적으로 이루어졌다. 기구가 동과함에 따라 혈전의 크기는 점차 줄어들고, 카테터를 제거하고 helical coil의 원위부로 혈전이나 특정 물질의 존재를 감지한다. 만약 별개의 혈전이 동정되지 않으면, 흔드린 물질들은 두드러게 생리시험수로 세척하여 불분명한 작은 물질들을 확인한다. 원위부 혈전제거 카테터와 제거된 혈전의 구성에 따라서 혈전성 물질과의 관계를 사진으로 기록하였다. 혈전은 이후 각각 수술용 소독포에 옮겨 후 여러 관점에서 사진을 촬영하였다. 혈전의 길이를 지표(guido)를 이용하여 측정하였다. 이후 혈전 물질은 10% phosphate-buffered formalin에 고정하였다. 포르말린 고정한 조직은 파라핀에 넣어 고정한 후

Figure 1. Noncontrast CT scan of the head reveals a right hyperdense middle cerebral artery sign (HMCAS, arrow) associated with acute left hemiparesis.

8 am 두께로 절단하여 hematoxylin and eosin (H&E) 염색을 시행하였다. 각 조직 절편을 Olympus BX41 microscope with an attached MicroFire digital camera (Model

Figure 2. Gradient-echo MRI demonstrates blooming artifact (BA, arrow) in the left middle cerebral artery.
S99809)을 사용하여 촬영하였다. 이후 조직학적 분석을 입상 양상에 대한 정보 없이, 기능적 차이가 있는 과정들에 대한 특징 추출 분석(Feature-detection analysis) 방법으로 시행하였다. 분석 대상 과정들은 혈소판:심유소 축적(혈액에서의 혈전 생성), 심혈 중성구와 단핵구 침착(표면 흉착 상호 작용), 적혈구 과다 축적(전혈 응고)이 포함되었다. 또한, 광학 현미경을 이용하여 혈전의 구성물 적혈구(red blood cell, RBC)-우성형, 심유소-우성형, 또는 혼합형으로 분류하였다. 추가적으로 RBC, 백혈구(white blood cell, WBC), 심유소 구성의 반자동 정성, 정량 분석을 digitized whole slide digital images를 이용하여 시행하였다. H&E 염색된 슬라이드는 Aperio Scanscope XT digital scanner (Aperio, Vista, CA)를 사용하여 400배로 경밀 촬영하였다. 각각의 디지털 영상 파일은 200 MB에서 5 GB에 이르는 크기로, 영상 분석 소프트웨어로 분석하기 위하여 작은 파일 크기로의 전환을 필요로 하였다. 이 과정은 Adobe Photoshop CS3 (Adobe Systems, San Jose, CA)를 이용하여 심유소, RBC, 그리고 유핵 WBC를 유사 색상(pseudocolor)으로 변화시켜 시행하였다. 유사 색상화는 look-up table과 특정 성분의 계산을 통해 자동 판계점을 사용하여 각 혈전 구성 요소의 영상

Figure 3. Classification of retrieved thrombi as red blood cell-dominant (A) and fibrin-dominant (B).

Figure 4. Clot composition based on histopathology, including red blood cell (RBC), white blood cell (WBC), and fibrin percentage. Retrieved clots are numbered from 1 to 50 in order of historical entry into our study.
Stroke 한국어판 Vol. 4, No. 3

결과

선정 조건을 만족시킨 환자 50명의 평균 연령은 66세였고 48%가 여성이었으며, 82%가 백인이었다. 임상적 특성은 Table에 기술하였다. 혈관조영술에서 내경동맥 폐색은 52%, MCA 폐색은 48%에서 관찰되었다. Merci Retriever System 만 사용한 경우(78%)와, 정맥내 치료를 함께 받은 경우(14%), 그 외 다른 치료(경동맥 tPA 투여[2%], 혈관감상형, 스테트 삽입술)를 함께 시행한 경우가 있었다. 본 연구에 포함된 환자의 최종 Thrombolysis in Cerebral Infarction 점수의 중앙값은 2였다(2% Thrombolysis in Cerebral Infarction 0, 22% 1, 40% 2, 36% 3).

총 20건의 CT 결과가 분석에 포함되었으며, 10건에서 HMCAS가 관찰되었다(Figure 1). HMCAS의 평균 HU는 61 (±8 SD)이었다. 32건의 MRI 결과를 검토한 결과, 17건(53%)에서 BA가 관찰되었다(Figure 2). 2명의 환자는 본 연구 기관에서 혈관조영술 시행 전에 CT와 MRI를 모두 시행하였으며, HMCAS와 BA가 모두 관찰되었다. MRI 점도의 급지 사유 여부를 즉시 평가할 수 없을 때, 신경 병리로 HMCAS 검사에 이전에 CT를 시행하였다. 이들 중에서, 혈관 정상은 정확한 같은 혈관의 해부학적 위치에서 관찰되었다.

추출된 혈관은 때때로 하나의 패턴이었으나 대부분은 여러 개의 조각으로 나누어졌다. 이들 여러 개의 조각들은 각 시술 과정의 다양한 단계에서 얻어졌으며, 혈관이 제거된 시기도 다를뿐이었다. 혈관의 양과 재판관 또는 재강화 상태와 관련성이 없었다. 혈관내에서 패색은 일으킨 혈관의 기원은 혈전제거술과 카테터 조작 특성상 명확하게 평가할 수 없었다. 그러나 일부 증례에서는, 윤곽 검사와 조직병리학적 검사상 쉽게 혈관 기원의 위치를 판별할 수 있었다.

제거된 혈관 중에서, 섬유소는 61% (±21), RBC는 34% (±21), WBC는 4% (±21)의 평균 구성 비율을 보였다. 제거된 혈관 중에서, 2개(44%)가 섬유소-우성으로 분류되었으며, 13개(36%)는 RBC-우성, 15개(30%)는 혼합형으로 분류되었다 (Figure 3). 전반적인 병리학적 분포는 Figure 4에 표시한 대로 모든 증례에 걸쳐 관찰되었다. WBC 구조물은 모든 증례에 일관적으로 미미하였다. 여러 조각으로 나뉘어진 증례에서도, 성공적으로 혈관이 제거된 경우와 그 구조가 다르지 않았다. 본 연구 기간 6년 중, Merci Retriever System을 이용하여 첫 혈관재个交易이 이루어지고 실제 혈관 안에 소개되기까지 2년, 혈관내 시술의 기술적인 면의 다양성을 인하여 야기될 수 있는 병리학적인 소견의 변화는 없었다. 본 연구자들은 최근 이 시술 과정 이후 나온 예후를 보면 환자들의 특성을 기술한 부감 연구 결과를 발표하였다. ¹

영상 검사 기법(CT 또는 MRI)과 윤곽 검사 결과 또는 조직 병리학적 검사 결과의 연관성은 관찰되지 않았다. 점진적 영상 결과를 일으킨 시점에 제거된 시간 간의 시간(평균±SD, 86±32분)과 혈관 성분 및 구성이 결과의 차이가 있었다.

CT상의 HMCAS는 RBC-우성 또는 혼합형 혈관에서 섬유소-우성 환자에서보다 더 잘 관찰되었다(100% vs. 67% vs. 20%, P=0,016). 평균 RBC 구성 비율은 HMCAS가 관찰된 경우에서 더 높았으나(47% vs. 22%, P=0,016), HU 밀도는 혈관의 구조와 관계가 없었다. BA 또한 RBC-우성 또는 혼합형 혈관에서 섬유소-우성 혈관에서보다 더 자주 관찰되었다 (100% vs. 63% vs. 25%, P=0,002), 모든 증례에 일관적으로 낮은 비율을 보인 WBC 성분은 HMCAS나 BA의 존재와 관계가 없었다. BA에서 평균 RBC 비율이 더 높았다(42% vs. 23%, P=0,011). 조기 혈관 정상(HMCAS 또는 BA)의 존재 유무는 임상적 특성 또는 방사선학적 요인과 관계가 없었다. 다변량 회귀 분석 결과 RBC 구성 비율은 제외하고는 HMCAS나 BA의 예측인자로 작용하지 않았다(Figure 5). CT와 MRI를 모두 활용한 두 증례에서, HMCAS와 BA의 관련성 여부를 정량 분석에서 RBC의 구성 비율이 증가한 RBC-우성 혈관과 연관되어 있었다. HMCAS나 BA가 없는 경우는 작고 섬유소가 많은 혈관조직에서 조금 더 흔하다.

본 연구 결과에서 영상 검사 결과(HMCAS나 BA), 또는 혈전의 조직병리학적 특성과 뇌증후군의 중증도 또는 이후의 예후와 연관관계는 없었다. 혈전의 조직병리학적 특성은 뇌증후군의 원인이나 기전(심장조직증(cardioembolism) 또는 즉장 동맥증(atherosclerosis)과도 관련되어 있지 않았고, 성공적인 추출 가능성과도 관계가 없었다. 이와 유사하게, 영상 결과 또는 조직병리학적 특성은 혈전제거 시점에 대하여도 차이가 없었다.
고찰

급성 혈栓성중에서 CT나 MRI와 같은 비침습적 영상 검사 방법의 혈관 이상 소견은, 20년 이상의 기간 동안 혈관 성장의 병리학적 확인 없이 혈관 패색을 유발한 혈전의 결과로 기술되어 왔다. 본 연구 결과에서 CT상의 HMCAS와 GRE MRI상의 BA를 포함한 조기 혈관 정후가 그 혈전의 병리학적 특성을 반영한다는 초기 방사선학적-병리학적 결과의 연관 관계를 보여주었다. HMCAS와 BA는 급성 뇌졸중 환자의 치료 우선 순위를 정하는 과정에서 자주 관찰되며, 혈관내 혈전의 구성이나 종류에 대하여 추측하고, 다양한 혈관재생능력을 이용할 때의 예후 예측에 영향을 준다. 본 연구에서 관찰한 결과와 같은 혈전 구성에 대한 정확한 기술은 임상적 특성, 비침습적 영상 검사, 혈관조영술, 조직병리학적 육안 검사 등에 기초하여 이루어져야 한다. 해부학적 연구에서 급성 혈램에서 혈관 패색은 일으킨 혈전의 영상 검사에 대한 여러 가지 중요한 관찰 결과를 확인하였다.

혈전으로 인한 급성 MCA 패색 시 조기 혈관 정후는 일부 환자에서만 관찰되며, 이러한 비침습적 이상 소견이 관찰되지 않는다고 해서 혈전성 패색 가능성을 제외시키지 않는 것의 타협으로서 필요하다. HMCAS나 BA는 성공적으로 혈관재생을 시도한 연구 대상 중의 반 이상에서 관찰되었다. HMCAS를 처음 기술하였을 때에는 조금 더 높은 발생률을 보고하였으나, 대부분의 성공적인 연구들에서는 발생율을 50% 가량으로 보고하였고, 이는 이번 연구 결과와 비슷하다. HMCAS의 발견은 HU의 형광학적 측정이나 다른 요인들을 포함한 방법적 변화에 의하여 영향을 받는다. 심인성성절증 또는 큰대맥 증 상경화증으로 구별되는 뇌졸중의 발생 기전이 BA가 잘 발견된 데 영향을 주였을 수 있으나, 이번 연구에서도 이전에 보고된 것과 같은 BA 발견율을 보였다. 심인성성절증과 연관되어 상대적으로 큰 혈관이 BA가 더 잘 보이도록 하였음을 알 수 있었다. 이번 연구의 추세 중 47%에서 BA가 관찰되지 않았는데, 이는 일반적으로 섬유소가 많은 혈관과 관찰되었으며, 이는 환자들을 이용한 섬유소감염(fibrinolysis)의 잠재적 대상이 될 수 있다. HMCAS와 BA의 연관성을 본 연구는 재현한 자료만이 있는데, 이는 MRI의 임상적 사용과 혈관재생의 본질은 뇌 전신성질환에서 절제의 커다란 선도 주요 약물이자, 후대뇌경색(posterior cerebral artery)과 같은 다른 영역에서도 조기 혈관 정후에 대하여는 병리학적 연구에 대한 연구가 필요하다. HMCAS와 BA는 혈관의 구성 요소, RBC 성분을 반영하는 데, 이런 각성 소화와의 주된 목표는 아니다. RBC-우성으로 혈전 분류는 HMCAS나 BA가 동정된 경우 모두에서 관찰되었다. 이들 조기 혈관 정후는 섬유소가 많은 혈관에서는 드물었다. RBC의 비율은 이 영상 소견과 밀접하게 관련되어 있었다. HMCAS 내의 HU의 측정은 최근에 발생한 섬유과 관련되었으나, 이 밀도의 변화를 특정 혈관 구성 성분의 밑으로 생각하기는 어렵다. HU 밀도와 RBC의 정량학적 측정을 통해 HMCAS의 발생을 확인하기 위하여, RBC가 많은 혈관 또는 "적색 혈전(red thrombus)"의 존재를 가리키는 데 있어서 HMCAS의 유무를 단순히 육안으로 시행하는 외관 검사만으로 충분할 것으로 보인다. GRE MRI상의 BA의 감수성 효과(susceptibility effect)는 RBC 성분과 연관된 국소적 철자성 장의 왜곡 (ferromagnetic field distortion)과 관련된 것으로 보인다. 그러므로, HMCAS와 BA는 지금까지 뇌졸중의 동맥 재생능이의 대부분에서 목표로 삼고 있는 섬유소 맡(fibrin mesh)보다 RBC 망어를 조금 더 반영하는 혈전의 간접적 표지자이다. 그러나, 혈관내 시술 동안 기계적 혈관재생술의 조작이 추가적
인 구성 성분과 주변의 저성 백혈질을 함께 격리하게 하는 것이 라는 가능성도 여전히 남아 있다.

진단적 영상 방법을 이용하여 ‘적색 혈전’과 ‘백색 혈전 (white thrombi)’을 구분하고자 하는 시도는 다년간 이루어져 봤으나 답은되지 않았다.26 혈관내피증을 일으킨 혈전의 조기 분석 결과, ‘적색 혈전과 백색 혈전’의 진정적 구분이 정밀로 적용 가능한지에 대한 의문이 생겼으며, 이는 병리학적 조직에서 다양한 결과가 관찰되기 때문이었다.27 이온은 연구 결과 및 혈전에서 주목받던 다양한 것을 보고하였다.28 아마도 그런 이유로 인하여 CT나 MRI를 통한 혈전 성상의 예측은 어려울 것이며, 특히 HMCAS가 BA가 패혈 부위 근위부와 원위부의 저혈류에 의하여 유도된 이차적 구성 성분보다는 신경의 근위를 반영한다고 가정하면 더욱 그러한 것이다. HMCAS와 BA가 RBC 성분을 감소한다는 이번 연구 결과 또한 그러한 중재에서 저혈류가 발생된 혈전이 조금 더 혼란을 준다는 것을 시사할 수 있다. HMCAS나 BA에 대하여 제거된 혈전 조직들의 공간적 근위를 재구성하는 것이 어려울지라도, 24%의 정중에서 제거된 재관류(Thrombolysis in Cerebral Infarction 0 또는 1번)이 이루어졌다는 것은 RBC 성분이 저혈류에 의하여 증가한 것이니 있는 가능성을 제기한다. 이러한 가설은 대뇌혈류 (cerebral ischemia)에서의 혈류 저항의 역할을 강조하는데, 이를 혈전 면에 부딪히고, 원위부는 결손한 관류를 통해 치명적이다.25 저류는 혈전이 혈관 패혈을 일으키는 부위이 아니며 혈전 생성의 원위 부위에서 혈전의 생성을 결정한다고 언급되어 왔다.26,27 혈관조영술은 그러한 요인을 구분하는 데 필수적이다.

홍미롭게도, 제거된 혈전의 양과 이후 순차적인 재관류의 연관성은 발견되지 못하였는데, 이는 혈전 생성의 또 다른 혈액의 복합생물학적 배경을 시사하며, 이는 미래의 연구를 위한 많은 양의 학문을 할 것이다.

대뇌동맥의 혈류와 혈전의 상호 관계에 대한 고려 없이는 HMCAS와 BA를 이용하여 혈관내피증의 예후를 예측하는 데 내재적 해결책이 존재한다.28,29 많은 연구에서 초기 혈관 정중의 예후 예측이 혈관내피증에 대한 예측 도구를 규정하기 위해 시도하였으나, 이러한 예후의 혈전의 구성이 혈관의 원인으로서 떠나 결과로 되어 복잡하게 작용하는 여부를 포함한 여러 다양한 원인에 의하여 결정되는 것 같다.30,31,32,18 HMCAS가 BA와 RBC-우성 혈전의 범위 결과 간의 방향의 연관 관계에도 불구하고, 이러한 정중에 의존하여 뇌증의 원인을 결정하거나 혈관내피증 방법을 계획하는 것은 어렵다고 한다. HMCAS나 BA의 양성 인지로는 혈전의 생물학적 제거를 예측할 수 없다는 이번 연구 결과는, 영향을 줄 만한 다른 원인들에 대한 연구를 필요로 한다. 그것은, 재관류로 아마도 해당 증례의 여러 특성에 의하여 영향을 받기 때문이다. 추가적인 사전 관계 연구로 이들 영상 검사상의 정중과 혈류를 독성화하는 혈관조영술 결과의 특성을 포함하여 다양한 혈관내 접근 방법의 영향을 평가하여야 한다.

본 연구에서의 초기 혈관 정중 후과 혈전의 병리학적 특성간의 포괄적인 분석은 몇 가지 제한점을 가지고 있다. 혈관조영술 시행 직전에 검사한 초기 영상 검사 결과의 유무 및 영상 점의 평가가 이에 기계적 혈관내피증 적작한 환자로서 제한된 코호트와 가 추적적으로 결정되었다. 이번 연구 결과는 많은 증례를 개화함으로써 생긴 유의한 변화에 의하여 예측에 제한이 있다. 연구 결과가, 혈관내피증이 가능한 근위부 MCA에 혈전이 위치한 경우로 국한되기 때문이다. 혈관 패혈이 회복되는 경우나 완전하게 분해된 경우에는 연구를 진행할 수 없어서 분석에서 제외하였다. 혈관조영술 이전에 시행한 정맥내 I.P.A.로 일부 혈전에 변화가 생겼거나, 시술 중에 표준 과정으로 주입하는 해파린으로 인한 변화가 반영되었을 가능성도 남아있다. 이직 기술야한데, 혈전 조직의 근위는 추측될 뿐이고, 그 외 함유된 조직은 그 구성에서 차이가 날 수 있다. 마지막으로 대부분의 혈전 조직이 그 성상 면에서 다양했기 때문에 혈전 종류의 분류 또한 불안정화한다.

결론

이번 연구는 급성 혈관내피증에서 관찰되는 초기 혈관 정중 후, 가능한 혈관 구성과 연관된 최초 연구이다. HMCAS와 BA는 혈관성 MCA 패혈에서 혈관 내피증은 발생하지 않고, 이 미세한 소견은 확인하지 못했고, 하고 동맥 재관류를 시 행하지 않았다는 연구이다. 혈류에 대한 구성 및 분자생물학적 특성을 포함한 혈전 구성의 조건 더 자세한 면에 대한 후속 연구가 진행 중이다.

Sources of Funding
This work has been funded by National Institutes of Health—National Institute of Neurological Disorders and Stroke Awards K23 NS054084 (D.S.L.) and P50 NS044378.

Disclosures
All authors were employed by the University of California (UC), which holds a patent on the retriever devices for stroke, at the time of this work. The UC Regents received payments based on the clinical trial contracts for the number of subjects enrolled in the MR and Recanalization of Stroke Clots Using Embolectomy MR (MR RESCUE) multicenter clinical trial and the Concentric Merci Registry. D.S.L. is a scientific consultant regarding trial design and conduct to Concentric Medical (modest) and CoAxia (modest). C.S.K. is Principal Investigator of the National Institutes of Health-funded MR RESCUE trial (P50 NS044378). S.T. is a scientific advisor of Reverse Medical (modest), which makes a device to treat acute stroke. G.R.D. is a medical advisor and stockholder of Concentric Medical. H.V. is supported in part by the Daljit S. and Elaine Sarkaria Chair in Diagnostic Medicine. J.L.S. is a scientific consultant to AGA Medical (modest), Boehringer Ingelheim (modest), Bristol Myers Squibb (modest), CoAxia (modest), Concentric Medical (modest), Evi3 (modest), FibroGen (modest), ImaRx (modest), Sanofi Aventis (modest), and Talecris (modest). He receives support for editorial work in MedReviews (modest).
References

缺血性卒中 CT 及 MRI 早期血管征象反映血栓成分

CT and MRI Early Vessel Signs Reflect Clot Composition in Acute Stroke

David S. Liebeskind, MD; Nerses Sanossian, MD; William H. Yong, MD; Sidney Starkman, MD; Michael P. Tsang, BS; Antonio L. Moya, BS; David D. Zheng, BS; Anna M. Abolian, BS; Doojin Kim, MD; Latisha K. Ali, MD; Samir H. Shah, MD; Amytis Towfighi, MD; Chelsea S. Kidwell, MD; Satoshi Tateshima, MD; Reza Jahan, MD; Gary R. Duckwiler, MD; Fernando Vinuela, MD; Noriko Salamon, MD; J. Pablo Villablanca, MD; Harry V. Vinters, MD; Victor J. Marder, MD; Jeffrey L. Saver, MD

背景与目的：本研究首次对缺血性卒中大脑中动脉高密度征（hyperdense middle cerebral artery sign, HMCAS）以及 MRI 梯度回波序列开花伪像（blooming artifact, BA）与血栓病理的相关性进行研究。

方法：连续纳入 50 例大脑中动脉缺血性卒中患者，在进行血栓取栓术前，进行非增强 CT 及 MRI 梯度回波序列检查，在临床信息及血栓病理双盲的情况下阅片，然后将血栓取栓术所得血栓切片后在显微镜下进行组织病理学分析，包括全自动定量及成分定量分级，这些成分包括红细胞、白细胞及纤维蛋白。

结果：纳入的 50 名患者的平均年龄为 66 岁，48% 为女性，平均（标准差 [SD]）成分为 61%（±21）的纤维蛋白，34%（±21）的红细胞，以及 4%（±2）的白细胞。在 50 例患者血栓中，22 例（44%）以纤维蛋白为主，13 例（26%）以红细胞为主，15 例（30%）为混合型。20 例大脑中动脉卒中患者中有 10 例出现 HMCAS，平均 HU (Hounsfield Unit) 密度值为 61（±8 SD）。而在 32 例行 MRI 梯度回波序列的患者中有 17 例出现 BA。以红细胞为主型及混合型血栓比以纤维蛋白为主型血栓更常出现 HMCAS（100% vs 67% vs 20%，P=0.016）。出现 HMCAS 的血栓平均红细胞含量更高（47% vs 22%，P=0.016）。红细胞型及混合型血栓比纤维蛋白型血栓更常出现 BA（100% vs 63% vs 25%，P=0.002）。出现 BA 的血栓红细胞含量更高（42% vs 23%，P=0.011）。

结论：HMCAS 及 BA 能够反映闭塞性血栓的病理类型。红细胞的含量决定是否出现 HMCAS 及 BA，如果两者均未出现，提示血栓成分可能以纤维蛋白为主。

关键词：脑梗塞，CT，MRI，卒中，血栓

(Stroke. 2011;42:1237-1243. 郑州大学附属第一医院神经内科 高远 宋波 译 许予明 校)
心85名缺血性卒中患者，在进行血管内取栓术前进行CT或MRI评估，使用非增强CT及MRI，包含MRI梯度回波序列(GRE)，获取每位患者的标准图像([19]，GRE序列无间隙扫描，层厚5mm，重复时间800ms，回波时间15ms，翻转角度30°，256×144矩阵。入选标准包括急性大脑中动脉(MCA)闭塞，能够获得非增强CT或GRE MRI影像，其后行血管内血栓取栓术，并能够成功获得血栓病理结果。在转到我们中心之前于外院做的CT检查，因为缺乏实用性，质量不高，而且无法在非医学数字化影像及通讯(Digital Imaging and Communications in Medicine, DICOM)格式图像上测量HU(Hounsfield Unit)密度值，因此，未在我们中心行CT或MRI检查以及取栓术未获得血栓病理标本的病例均排除在外。

本中心前瞻性纳入患者的临床、放射学及详细的血管造影信息，这些数据被常规记录并保存在中心数据库。取栓术之前获得的GRE MRI影像由两位血管神经病学专家在临床、造影信息及血栓病理双盲的情况下进行回顾性的分析，他们均通过资格认证同时神经影像学鉴定合格。两位神经影像专家经肉眼阅片意见一致后才能确认HMCAS存在，以MCA区域非对称性的明显或显著增高的密度影来对HMCAS进行分级，不使用HU密度值进行特异性测量([20])。在完成HMCAS的分级后，测量双侧MCA段HU密度值，用相同的模式进行GRE MRI扫描，通过肉眼分辨是否出现BA，BA被定义为MCA近端低信号影或信号丢失区，血管的边缘常常扭曲。若HMCAS及BA存在伪影而不清晰，该病例即被排除。

在取栓术前使用数字减影血管呈像(DSA)明确MCA闭塞的诊断。血栓扩展至同侧颅内动脉或大脑前动脉的MCA闭塞也纳入到分析之内。造影技术及取栓术的具体方案另外详述([3])。纳入分析的取栓术的病例也包括在MERCI (Mechanical Embolus Removal in Cerebral Ischemia)及联合MERCI临床试验之中，病人的纳入是日常临床工作的一部分，使用FDA批准的Merci取栓系统进行取栓([21-23])。MERCI及联合MERCI临床试验评价发病8小时内近端颅内动脉闭塞使用MERCI取栓系统(Concentric Medical, Inc, Mountain View, CA)进行血管内取栓的安全性及有效性([22,23])。在所有报道的病例中均使用MERCI取栓系统及其后延伸设备进行机械取栓。从诊断到取栓术后一系列的血管造影数据被保存并用以分析动脉闭塞的特点及侧枝循环的血流([24,25])。使用脑卒中溶栓量表(Thrombolysis in Cerebral Infarction scale)评价阻塞的程度及下游灌注情况，侧枝灌注情况使用美国介入及神经放射治疗学会/介入放射学会(AISTN/SIR)侧枝血流评级系统([23])进行评价。

在整个取栓术的不同时间相继取出不同数量的血栓，在完成多次取栓并显示血栓负荷下降后，拔出导管，螺旋线圈的远端则用来检查是否还存在血栓及其他栓塞物。如果未发现分离的血栓，使用生理盐水轻轻冲洗吸出血栓以显示不易发现的小栓子碎片。照相记录血栓与远端取栓导管的关系及取出血栓的形状。然后将血栓置于纱布或手术衣之上，多视角拍照，使用标记帮助显示血栓的大体三维度量。然后立即使用10%的磷酸缓冲福尔马林液血栓样本固定，石蜡包埋固定，然后以8μm厚度切片，苏木精-伊红染色液染色。固定MicroFire数码相机(Model S99809)的Olympus BX41于显微镜进行拍照。组织学检查过程中不接触相关的临床数据，完全基于形态学分析，包括血小板聚集(流动血液中血栓形成)、线样中性粒细胞及单核细胞沉积(表面粘附聚集)、富红细胞聚集体(全血凝固)，血栓成分在光镜下也分为红细胞为主、纤维蛋白为主及混合型。使用全幅数字影像进一步进行组织病理分析，包括半自动定量及定量测量红细胞(RBC)、白细胞(WBC)及纤维蛋白含量。使用Aperio Scanscope XT数字扫描仪(Aperio, Vista, CA)扫描放大400倍的苏木精-伊红染色液切片。获得的单幅数字图像文件非常大，从200MB至5GB不等，需要处理成小幅尺寸以便图像分析软件能够对成分含量进行量化。过程中使用Adobe Photoshop CS3(Adobe Systems, San Jose, CA)给纤维蛋白、红细胞及有核白细胞附以伪彩，使用颜色查找表及全自动阈值为每种血栓成分附上特定伪彩来计算各种成分的含量，然后使用Image J软件计算红细胞、白细胞及纤维蛋白含量。使用Aperio Scanscope XT数字扫描仪(Aperio, Vista, CA)扫描放大400倍的苏木精-伊红染色液切片。获得的单幅数字图像文件非常大，从200MB至5GB不等，需要处理成小幅尺寸以便图像分析软件能够对成分含量进行量化。过程中使用Adobe Photoshop CS3(Adobe Systems, San Jose, CA)给纤维蛋白、红细胞及有核白细胞附以伪彩，使用颜色查找表及全自动阈值为每种血栓成分附上特定伪彩来计算各种成分的含量，然后使用Image J软件(National Institutes of Health, Bethesda, MD)定量各区域的红细胞、白细胞及纤维蛋白。用同样的方法对整个过程中取得的所有血栓片段进行定量，最后计算所有血栓片段的平均值以及平均血栓成分含量(包括红细胞、白细胞及纤维蛋白)。描述性数据分析广泛应用于各种临床血管造影及病例数据分析。早期血管征的出现与否、血栓病理的定量描述在数据分析中均使用等级变量进行分析，每种血栓成分含量的百分比使用连续变量，血栓在CT及MRI上早期血管征象及血栓成分之间关系使用卡方检验，变量数据分析有意义界定于...
结果

在满足纳入条件的50名患者中，平均年龄为66岁，48%为女性，82%为白人，临床特征见上表。血管造影证实颈内动脉闭塞占52%，MCA闭塞占48%。治疗方法有单用MERCI治疗（78%）、MERCI联合静脉溶栓治疗（14%）、MERCI联合其他治疗（动脉内tPA[2%]，血管成形术，支架植入术）。本研究中患者最终脑梗塞溶栓评分（Thrombolysis in Cerebral Infarction score，TCIS）中位数为2（TCIS评分0分的占2%，1分占22%，2分占40%，3分占38%）。

在本项研究纳入的20例CT扫描中，有10例出现了HMCAS（如图1）。所有出现的HMCAS平均HU密度值为61±8。在32例MRI扫描中，有17例（53%）出现了BA（如图2）。共2位患者既有HMCAS，也有BA。对于不能很快评估是否有MRI禁忌的病人，可以在做MRI前进行CT检查作为筛查。

在这些病例中，早期血管征象都出现在近乎相同的血管解剖位置上。取栓的血栓偶尔为一个整块，大部分为多个碎片。这些不同的标本在每项操作的不同时间段取出，而且血栓取出的时间也存在很多差异。取栓量与血管再通或再灌注之间没有联系。由于取栓术及本身及导管操作的特性，不能精确对血管内闭塞血栓进行空间定位。然而，在一些病例中，肉眼观察及组

<table>
<thead>
<tr>
<th>表</th>
<th>研究样本临床特征</th>
<th>样本变量 (n=50)</th>
</tr>
</thead>
<tbody>
<tr>
<td>年龄， 岁，平均值±标准差</td>
<td>66±21</td>
<td></td>
</tr>
<tr>
<td>性别</td>
<td>女性</td>
<td>48%</td>
</tr>
<tr>
<td>种族</td>
<td>白种人</td>
<td>82%</td>
</tr>
<tr>
<td></td>
<td>黑种人</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>亚洲人</td>
<td>6%</td>
</tr>
<tr>
<td></td>
<td>西班牙人</td>
<td>2%</td>
</tr>
<tr>
<td></td>
<td>糖尿病</td>
<td>12%</td>
</tr>
<tr>
<td></td>
<td>高血压病</td>
<td>66%</td>
</tr>
<tr>
<td></td>
<td>冠心病</td>
<td>26%</td>
</tr>
<tr>
<td></td>
<td>房颤</td>
<td>14%</td>
</tr>
<tr>
<td></td>
<td>吸烟史</td>
<td>12%</td>
</tr>
<tr>
<td>基线NIHSS</td>
<td>中位数 19 (四分位间距 15-22)</td>
<td></td>
</tr>
<tr>
<td>静脉tPA</td>
<td>14%</td>
<td></td>
</tr>
<tr>
<td>动脉tPA</td>
<td>2%</td>
<td></td>
</tr>
<tr>
<td>90天的mRS</td>
<td>中位数 3 (四分位间距 1-5)</td>
<td></td>
</tr>
</tbody>
</table>

图像说明：
图1 头颅非增强CT显示右侧大脑中动脉高密度征（HMCAS）伴随左侧肢体无力。
图2 梯度回波序列MRI显示左侧大脑中动脉开花伪像（BA，箭头）。
在50例患者血栓中，22例（44%）以纤维蛋白为主，13例（26%）以红细胞为主，15例（30%）为混合型（图3）。如图4展示，血栓中各种病理类型分布广泛，WBC在各种成分中始终含量最低。获取的多片段血栓，在成分上与完整血栓是一致的。在进行该研究的6年中，从MERCI取栓系统应用于临床获取第一例患者血栓到临床应用超过两年的时间里，未发现可能提示潜在的手术技术层面变化的病理改变。我们最近发表了一项尸检研究，描述了进行该术后预后不佳的一组病人[27]。

基线影像模式（比如CT或MRI），与大体或组织病理学发现之间未发现明显联系。基线影像获取至取栓时间（平均数±标准差，86±32分钟）、血栓组分及成分含量未见明显差异。

CT上所见到的HMCAS更常见于以红细胞为主的血栓及混合型的血栓，而不是纤维蛋白为主的血栓（100% vs 67% vs 20%，P=0.016）。尽管HU密度值与血栓成分并不相关，但出现HMCAS时平均红细胞含量较高（47% vs 22%，P=0.016）。BA也较常见于红细胞为主及混合型的血栓，而不是纤维蛋白
Liebeskind et al. CT, MRI, and Pathology of Clots in Acute Stroke

The blood clots were type-specific with a higher prevalence of HMCAS (100% vs 63% vs 25%, P=0.002). Neutrophils were consistently found in all cases and were not determined by HMCAS or BA. The presence of BA was associated with a higher percentage of red blood cells (42% vs 23%, P=0.011). Regardless of whether HMCAS or BA were present, they were not correlated with clinical radiological factors. Multivariate analysis showed that the percentage of red blood cells was the only predictor of HMCAS or BA (Fig. 5).

Two patients who underwent CT and MRI had a high prevalence of HMCAS or BA. In contrast, smaller fibrinoid clots were less common. Analysis showed that the imaging findings (HMCAS or BA) and clot pathology were not correlated with baseline variables such as stroke severity or outcome. The pathology of the clot was not related to stroke mechanisms such as atrial fibrillation or large artery atherosclerosis. Similarly, the imaging and pathology features were not correlated with the time of clot retrieval.

Discussion

Non-invasive imaging modalities such as CT and MRI can display obstructive clots in the blood vessels of the brain. However, there has been no attempt to correlate the imaging findings with the actual pathologic characteristics of the clot [5,15]. This study aimed to investigate the correlation between imaging findings and the pathologic characteristics of clots in acute stroke patients. The authors found that the percentage of red blood cells in the clot was the only predictor of HMCAS or BA. The presence of BA was associated with a higher percentage of red blood cells. Regardless of whether HMCAS or BA were present, they were not correlated with clinical radiological factors. Multivariate analysis showed that the percentage of red blood cells was the only predictor of HMCAS or BA (Fig. 5).

graphical abstract

HMCAS and BA are associated with a higher percentage of red blood cells. In contrast, smaller fibrinoid clots were less common. Analysis showed that the imaging findings (HMCAS or BA) and clot pathology were not correlated with baseline variables such as stroke severity or outcome. The pathology of the clot was not related to stroke mechanisms such as atrial fibrillation or large artery atherosclerosis. Similarly, the imaging and pathology features were not correlated with the time of clot retrieval.
种血栓成分 [10,20,31]。由于未明确 HU 密度值与 RBC 计量之间存在什么关系，故不能使用 HU 值来代表红细胞的含量 [10,20,31]。仅用肉眼判断 HMCAS 的出现可能已经足够用来区分红细胞为主的血栓或者说“红血栓”。BA 的磁敏效应也归因于红细胞成分引起的局部磁场扭曲。HMCAS 及 BA 是非阻塞性血栓的间接标志，它们主要与红细胞的聚集有关而不是纤维蛋白。然而也有可能，这其中的红细胞来自取栓过程中网罗的其他成分及相邻的红血栓。

长期以来人们期待通过影像诊断模式来分辨红白血栓 [32]。我们先前的研究发现缺血性卒中血栓标本存在极大的异质性 [8]，这使我们对传统的红白血栓的分类方法产生了质疑。随后的一项研究也显示血栓样本间存在明显的差异 [9]。使用 CT 及 MRI 来预测血栓成分因而变得困难，尤其是当人们认为 HMCAS 及 BA 反映的是最初的栓塞物而不是栓塞部位远端或近端血栓诱发起的继发成分时。我们发现红细胞成分对出现 HMCAS 及 BA 更为重要可能也提示血液淤滞及新鲜血栓在这些病例中更常见。尽管重建与 HMCAS 及 BA 相对应血栓的空间定位结构仍十分困难，24% 的患者存在溶栓后灌注低下，而有限的再灌注造成的血液淤滞使血栓中红细胞的成分比重变大。这一假说强调了血栓之外，血流恶化在大脑缺血及远端侧枝灌注中的重要作用 [21]。血流瘀滞以往一直被认为是决定心源性栓子的成分而不是原位血栓的成分 [10,31]。血流瘀滞可能成为识别这些影响因素不可或缺的手段。有趣的是我们并未发现取栓量与其后的再灌注存在明显相关，提示在血栓形成机制之外可能还存在其他的病理生理学机制，可能成为未来卒中治疗策略。

如果不考虑血流及血栓的相互作用，HMCAS 及 BA 对血管再通的预测价值可能会大打折扣 [25,26]。众多的研究尝试明确早期血管征象对卒中预后或对血管再通的预测价值，然而影响预后的因素众多，而血栓成分并非唯一因素，还要考虑血流受损 [7,10,11,13,16-18]。尽管 HMCAS 与 BA 同红细胞为主的病理类型关系明确，但临床医师不能仅仅依据这些发现来明确卒中病因或制定血管再通策略。我们发现显示影像学特征不能单独准确预测取栓效果，仍需探究其他潜在影响因素，毕竟血管再通受多方面因素影响。进一步的研究需要着眼于联合血管造影及血流特征的基础上评估这些影像特征对不同血管治疗手段的影响。

尽管这次机会难得，但也存在一些局限，造影的基线影像数据的可用性及质量已经导致了选择性偏倚，仅仅局限于适合做取栓术的患者。我们的研究中排除了许多病例而存在较大的偏倚，因为手术只能取到近端 MCA 血栓，而这些结论仅适用于该段的血栓。弹性血栓及崩解的血栓被排除在外。部分血栓有可能是反映了血管造影前静脉组织纤溶酶原激活的作用，甚至是标准肝素治疗的结果。正如上述，血栓片段位置上存在选择偏倚，而且血栓成分也可能存在其他的不同的。

结论

本研究首次进行缺血性卒中早期血管征象与血栓成分的相关研究。HMCAS 及 BA 在大脑中动脉血栓性闭塞出现并不普遍，并未证明这些征象可以作为溶栓的证据。需要进一步的研究阐明血栓成分的更多细节，包括分子特征及血流状况。

参考文献

