CT and MRI Early Vessel Signs Reflect Clot Composition in Acute Stroke

David S. Liebeskind, MD; Nerses Sanossian, MD; William H. Yong, MD; Sidney Starkman, MD; Michael P. Tsang, BS; Antonio L. Moya, BS; David D. Zheng, BS; Anna M. Abolian, BS; Doojin Kim, MD; Latisha K. Ali, MD; Samir H. Shah, MD; Amytis Towfighi, MD; Bruce Ovbiagele, MD; Chelsea S. Kidwell, MD; Satoshi Tateshima, MD; Reza Jahan, MD; Gary R. Duckwiler, MD; Fernando Vinue, MD; Noriko Salamon, MD; J. Pablo Villablanca, MD; Harry V. Vinters, MD; Victor J. Marder, MD; Jeffrey L. Saver, MD

Background and Purpose—The purpose of this study was to provide the first correlative study of the hyperdense middle cerebral artery sign (HMCAS) and gradient-echo MRI blooming artifact (BA) with pathology of retrieved thrombi in acute ischemic stroke.

Methods—Noncontrast CT and gradient-echo MRI studies before mechanical thrombectomy in 50 consecutive cases of acute ischemic stroke were reviewed blinded to clinical and pathology data. Occlusions retrieved by thrombectomy underwent histopathologic analysis, including automated quantitative and qualitative rating of proportion composed of red blood cells (RBCs), white blood cells, and fibrin on microscopy of sectioned thrombi.

Results—Among 50 patients, mean age was 66 years and 48% were female. Mean (SD) proportion was 61% (±21) fibrin, 34% (±21) RBCs, and 4% (±2) white blood cells. Of retrieved clots, 22 (44%) were fibrin-dominant, 13 (26%) RBC-dominant, and 15 (30%) mixed. HMCAS was identified in 10 of 20 middle cerebral artery stroke cases with CT with mean Hounsfield Unit density of 61 (±8 SD). BA occurred in 17 of 32 with gradient-echo MRI. HMCAS was more commonly seen with RBC-dominant and mixed than fibrin-dominant clots (100% versus 67% versus 20%, P=0.016). Mean percent RBC composition was higher in clots associated with HMCAS (47% versus 22%, P=0.016). BA was more common in RBC-dominant and mixed clots compared with fibrin-dominant clots (100% versus 63% versus 25%, P=0.002). Mean percent RBC was greater with BA (42% versus 23%, P=0.011).

Conclusions—CT HMCAS and gradient-echo MRI BA reflect pathology of occlusive thrombus. RBC content determines appearance of HMCAS and BA, whereas absence of HMCAS or BA may indicate fibrin-dominant occlusive thrombi. (Stroke. 2011;42:1237-1243.)

Key Words: cerebral ischemia ■ CT ■ MRI ■ stroke ■ thrombus

Acute ischemic stroke may result from a diverse range of underlying disorders, often culminating in obstruction of an artery. The pathophysiological mechanisms that lead to obstruction of a proximal intracranial artery and resultant downstream ischemia are rarely discerned in the acute phase; however, the role of thrombosis as a cause of obstruction is often noted during evaluation. Most therapeutic strategies for acute ischemic stroke focus on clot disruption or resolution of thrombosis.1 In fact, the only 2 Food and Drug Administration-approved therapies include pharmacological thrombolysis with intravenous tissue plasminogen activator and endovascular thrombectomy with various devices.2-4 Intravenous tissue plasminogen activator does not depend on overt delineation of thrombus, yet subtle neuroimaging findings suggesting thrombosis in proximal intracranial arteries are often viewed as confirmatory evidence of a potentially extensive or destructive event that warrants aggressive treatment.5-7 Before most endovascular revascularization procedures for stroke, noninvasive imaging in the form of CT or MRI may similarly reveal features suggestive of a proximal occlusion, yet characterizing such an occlusion typically relies on other approaches. A unique aspect of thrombectomy or clot retrieval from an intracranial artery in the setting of acute ischemic stroke is the opportunity to directly investigate clot composition or the nature of thrombosis or any material that has blocked flow to critically dependent downstream regions of the brain.8-10

Prior studies have analyzed the presence of early vessel signs on CT and MRI suggestive of thrombosis, including the hyperdense middle cerebral artery sign (HMCAS) on CT...
and blooming artifact (BA) on gradient-echo or other susceptibility-weighted MRI sequences. Many of these studies have correlated these findings as a poor prognostic factor in clinical outcome and diminished likelihood of revascularization. Most of the studies, however, have not shown angiographic correlation or actual pathological correlation with the features of the underlying occlusive lesion.

We previously described the initial series of pathological changes in thrombi retrieved from the proximal intracranial arterial circulation in acute stroke and now provide the first neuroimaging correlative study that may be used to predict clot composition. This report describes the unique opportunity to investigate plaque or thrombus constituents that underlie the presence and characteristics of early vessel signs, including HMCAS and BA.

Methods

During the period from May 2001 through March 2007, 85 consecutive cases of acute ischemic stroke were evaluated with CT or MRI before endovascular thrombectomy at our center. Noninvasive imaging with CT or MRI was acquired per standard algorithm for acute stroke cases with noncontrast CT or a MRI protocol including gradient-recalled echo (GRE) sequences as previously described. GRE images were acquired with slice thickness of 5 mm and no gap. TR 800 ms, TE 15 ms, 30° flip angle, 240 field of view, and 256×144 matrix size. Selection criteria for this study included acute middle cerebral artery (MCA) occlusions with available noncontrast CT or GRE MRI data acquired immediately before endovascular thrombectomy and available thrombus pathology resulting from any retrieved specimen. CT studies acquired at outside institutions before transfer to our center were not included due to incomplete availability, image quality, and inability to measure Hounsfield Unit (HU) density on non-DICOM (Digital-Imaging-and-Communications-in-Medicine) format images. As a result, cases without CT or MRI acquired at our center and thrombectomies that did not yield a pathological specimen were excluded from our analyses.

Clinical, radiographic, and detailed angiographic data were prospectively acquired as part of ongoing work at our center. These data are routinely acquired and archived in a centralized database. Two board-certified vascular neurologists with accreditation in neuroimaging retrospectively reviewed the noncontrast CT and GRE sequences acquired immediately before endovascular thrombectomy blinded to clinical and angiographic variables as well as the results of pathological study. The presence or absence of HMCAS was scored on consensus reading by the 2 neuroimaging experts based on visual inspection. Conciseness or increased density of the MCA in an asymmetrical fashion was used to categorize the HMCAS, although specific measures of HU density were not used in this determination. After HMCAS rating, HU density measures were obtained of bilateral segments of the MCA. Axial GRE MRI scans were also reviewed in a consensus fashion to determine the presence or absence of BA based on visual inspection. BA was defined as an area of hypointensity or signal loss in the proximal MCA, often disturbing the margins of the vessel. If CT or MRI artifacts obscured delineation of HMCAS or BA, then the associated imaging data set of that case was excluded from our analyses.

Digital subtraction angiography was used to confirm the diagnosis of MCA occlusion before thrombectomy. MCA occlusions with extension of clot into the ipsilateral internal carotid or anterior cerebral arteries were included in our analyses. Angiographic techniques and the thrombectomy procedure have been described elsewhere. Thrombectomy cases included in our analyses were conducted as part of the Mechanical Embolus Removal in Cerebral Ischemia (MERCi) and Multi MERCi trials and as part of routine clinical care following the US Food and Drug Administration clearance of the Merci Retriever System. The MERCi and Multi MERCi trials evaluated the safety and efficacy of endovascular thrombectomy with the Merci Retrieval System (Concentric Medical, Inc, Mountain View, CA) in the treatment of proximal intracranial arterial occlusions performed within 8 hours of stroke symptom onset. Mechanical thrombectomy was performed with the Merci Retriever System and subsequent generation devices in all cases of this report. Serial angiography from the initial diagnostic run throughout the procedure until completion of thrombectomy was reviewed to assess features of arterial occlusion and corresponding collateralflow. The presence of occlusion and extent of antegrade perfusion in the downstream territory was measured with the Thrombolysis in Cerebral Infarction scale, and collateral perfusion was graded with the American Society of Interventional and Therapeutic Neuroradiology/Society of Interventional Radiology (ASITN/SIR) collateral flow grading system. Clot retrieval occurred sequentially throughout the thrombectomy procedure with variable amounts of thrombus extracted at each stage. After each pass of the device that appeared to reduce clot burden, the catheter was withdrawn and the distal aspect of the helical-coil device inspected for the presence of thrombus or any particulate material. If no discrete thrombus was identified, the aspirated material was then gently flushed with saline to uncover any smaller fragments that may be obscured. Photographs documented the relationship of thrombotic material with respect to the distal thrombectomy catheter and architecture of the retained clot. Thrombi were then placed on gauze or surgical dressing and photographed from multiple perspectives. Gross measurements of linear thrombus dimensions were taken using a guide. Thrombus material was immediately fixed in 10% phosphate-buffered formalin. Formalin-fixed specimens were embedded in paraffin, cut at 8-μm thickness, and stained with hematoxylin and eosin. Histological sections were photographed with an Olympus BX41 microscope with an attached MicroFire digital camera (Model S99809). Histological examination was performed without knowledge of the clinical findings and was based on feature-detection analysis of functionally distinct processes, including platelet:fibrin accumulations (thrombosis in flowing blood), linear neutrophil and monocyte deposits (surface adherence interactions), and erythrocyte-rich accumulations (whole-blood coagulation). Clot composition was also categorized as red blood cell (RBC)-dominant, fibrin-dominant, or mixed by light microscopy. Further histopathologic analysis included semiautomated quantitative and qualitative measurements for the proportion of RBCs, white blood cells (WBCs), and fibrin composition from digitized whole slide digital images. Hematoxylin and eosin-stained slides were scanned in at 400× magnification using an Aperio Scanscope XT digital scanner (Aperio, Vista, CA). The resulting individual digital image files were large, ranging from 200 MB to 5 GB, and required processing to smaller file sizes so that image analysis software could be used to quantify proportions of components. This processing was done using Adobe Photoshop CS3 (Adobe Systems, San Jose, CA) to assign pseudocolors to fibrin, RBCs, and nucleated WBCs. Pseudocolorization was conducted with a look-up table and automated thresholds to assign specific colors to imaging features of each clot component for calculation of specific content. Image J software (National Institutes of Health, Bethesda, MD) was then used to quantify the percentage of RBCs, WBCs, and fibrin by area. These pathology studies were repeated for each fragment of clot retrieved from the entire procedure. When multiple clot fragments were retrieved for analysis, the mean values across fragments were used for clot constituents (ie, RBC, WBC, fibrin).

Descriptive statistical analyses were performed on all clinical, radiographic, angiographic, and pathological data. The presence or absence of early vessel signs, including the HMCAS and BA, and the qualitative descriptions of clot pathology were treated as categorical variables in the statistical analyses. Percentages of each specific clot component were treated as continuous variables. The relationship between early vessel signs of thrombosis on CT and MRI and clot composition was probed using both χ² and analysis of variance statistics with significance noted below the P<0.05 level. Statistical analyses were performed with the use of SPSS software (Version 16.0; SPSS, Inc, Chicago, IL).
Results

Among 50 patients who fulfilled entry criteria, the mean age was 66 years, 48% were female, and 82% were white. Clinical characteristics are summarized in the Table. Angiography demonstrated occlusions of the internal carotid artery in 52% and MCA in 48%. The Merci Retriever System was used either alone (78%) or in combination with intravenous (14%) or other treatments (intra-arterial tissue plasminogen activator [2%], angioplasty, stenting). The final median Thrombolysis in Cerebral Infarction score for patients included in this analysis was 2 (2% Thrombolysis in Cerebral Infarction 0, 22% 1, 40% 2, 36% 3).

A total of 20 CT scans was included for analysis of which 10 demonstrated HMCAS (Figure 1). The HMCAS revealed a mean HU of 61 (± 8 SD) across all cases. There were 32 MRI scans reviewed with 17 (53%) demonstrating BA (Figure 2). The 2 patients who had both CT and MRI at our institution before angiography were found to have both HMCAS and BA, respectively. Acquisition of CT before MRI was used for screening purposes in cases in which MRI contraindications could not be immediately assessed. In these cases, the vessel signs were situated in the exact same vascular anatomic location.

Extracted thrombi were occasionally retrieved as a single mass, although most were retrieved in multiple fragments. These multiple retrieval specimens were obtained at various stages of each procedure and the time to clot retrieval varied extensively. There was no correlation between the amount of thrombus retrieved and recanalization or reperfusion status. The orientation of the occlusive thrombus within the vessel could not be unequivocally established due to the nature of the clot retrieval procedure and catheter manipulation. In some cases, however, intact clots on gross examination and histopathology could be readily oriented in space.

Table. Clinical Characteristics of Study Population

<table>
<thead>
<tr>
<th>Clinical Characteristic</th>
<th>Population Variable (n=50)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years, mean±SD</td>
<td>66±21</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>48%</td>
</tr>
<tr>
<td>Race</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>82%</td>
</tr>
<tr>
<td>Black</td>
<td>10%</td>
</tr>
<tr>
<td>Asian</td>
<td>6%</td>
</tr>
<tr>
<td>Hispanic</td>
<td>2%</td>
</tr>
<tr>
<td>Diabetes</td>
<td>12%</td>
</tr>
<tr>
<td>History of hypertension</td>
<td>66%</td>
</tr>
<tr>
<td>Coronary artery disease</td>
<td>26%</td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td>14%</td>
</tr>
<tr>
<td>History of smoking</td>
<td>12%</td>
</tr>
<tr>
<td>Baseline NIHSS score</td>
<td>Median 19 (IQR, 15–22)</td>
</tr>
<tr>
<td>Intravenous tPA</td>
<td>14%</td>
</tr>
<tr>
<td>Intra-arterial tPA</td>
<td>2%</td>
</tr>
<tr>
<td>Day 90 mRS</td>
<td>Median 3 (IQR, 1–5)</td>
</tr>
</tbody>
</table>

NIHSS indicates National Institutes of Health Stroke Scale; tPA, tissue plasminogen activator; mRS, modified Rankin Scale; IQR, interquartile range.

Across all retrieved thrombi, mean (SD) proportion of components was 61% (±21) fibrin, 34% (±21) RBCs, and 4% (±2) WBCs. Of the retrieved clots, 22 (44%) were classified as fibrin-dominant, 13 (26%) RBC-dominant, and

![Figure 1. Noncontrast CT scan of the head reveals a right hyperdense middle cerebral artery sign (HMCAS, arrow) associated with acute left hemiparesis.](http://stroke.ahajournals.org/)

![Figure 2. Gradient-echo MRI demonstrates blooming artifact (BA, arrow) in the left middle cerebral artery.](http://stroke.ahajournals.org/)
15 (30%) mixed (Figure 3). A broad distribution of pathology was noted across all cases as depicted in Figure 4. WBC composition was consistently marginal across all cases. In cases with multiple fragments obtained, there was no change in composition with successive clots retrieved. Over the 6-year period of this study, from the first retrieval case ever performed with the Merci Retriever System to a period >2 years after introduction to clinical practice, there was no change in pathological findings that may have implicated potential variation in technical aspects of the endovascular procedure. We have recently published an autopsy study describing patients with poor outcomes after this procedure.27

No correlation was noted between the type of baseline imaging modality (ie, CT or MRI) and gross or histopathologic findings. There were also no differences between the timeline between baseline diagnostic imaging acquisition to clot retrieval (mean±SD, 86±32 minutes) and the resultant thrombus constituents or composition.

HMCAS on CT was more commonly seen with RBC-dominant and mixed than fibrin-dominant clot pathology (100% versus 67% versus 20%, \(P=0.016\)). Mean percent RBC composition was higher in clots with HMCAS (47% versus 22%, \(P=0.016\)), although HU density was not correlated with clot composition. BA was also more common in
RBC-dominant and mixed clots compared with fibrin-dominant clots (100% versus 63% versus 25%, P<0.002). The consistently low percentage of WBC content across all cases was not a determinant of HMCAS or BA. Mean percent RBC was greater with BA (42% versus 23%, P=0.011). The presence of either early vessel sign (ie, HMCAS or BA) did not correlate with clinical or radiographic factors. Multivariate regression analyses did not identify predictors of HMCAS or BA other than RBC content (Figure 5). In the 2 cases with both CT and MRI, the complete concordance of HMCAS and BA was associated with RBC-dominant clots with elevated RBC composition on quantitative analyses. Absence of HMCAS or BA was more common with small, fibrin-rich specimens.

Our analyses revealed no correlation between imaging findings (HMCAS or BA) or thrombus histopathology with baseline variables, including stroke severity, or subsequent outcomes. Thrombus histopathology was unrelated to final determination of stroke etiology or mechanism (eg, cardioembolism or atherosclerosis) and was not predictive for successful extraction. Similarly, there were no differences in imaging or histopathologic features with respect to the timing of clot extraction.

Discussion

Noninvasive imaging modalities such as CT and MRI have delineated vessel abnormalities attributed to occlusive thrombus in acute ischemic stroke for >20 years without pathological corroboration of the nature of the underlying thrombus. Our findings provide the initial radiological–pathological correlation that early vessel signs (including the HMCAS on CT and BA on GRE MRI) reflect underlying clot pathology. The HMCAS and BA are commonly encountered in the triage of patients with acute stroke, resulting in much speculation to date about the type or composition of intravascular thrombus and related expected outcome with various revascularization strategies. Definitive statements about clot composition such as our observations must rely on comprehensive evaluation of clinical variables, noninvasive imaging, angiography, and gross examination with histopathology. Furthermore, detailed pathological examination of the thrombus is possible only with mechanical thrombectomy, unlike the situation with intravenous or intra-arterial thrombolysis, aspiration, or angioplasty and stenting. Our findings reveal several novel observations about imaging of occlusive thrombus in acute ischemic stroke.

Acute MCA occlusion due to thrombus may reveal early vessel findings in only a fraction of cases and perhaps more importantly, the absence of such subtle imaging abnormalities does not rule out thrombotic occlusion. The HMCAS or BA was noted in approximately half of all our cases with successful thrombectomy. Initial descriptions of the HMCAS cited a much higher incidence, yet most successive studies reported detection rates of approximately 50%, consistent with our findings. HMCAS detection is undoubtedly influenced by variable methodology, including blinding, quantitative measures of HU, and other baseline factors. Our results are also consistent with previously reported detection rates for BA, although stroke mechanism differentiated by cardioembolism or large artery atherosclerosis may affect conspicuity of BA. Relatively greater thrombus burden associated with cardioembolism may increase BA conspicuity. Absence of BA in 47% of our cases was generally associated with fibrin-rich thrombi, a potential target for pharmacological fibrinolysis. Only limited data were available to correlate HMCAS with BA because primary use of MRI and rapid triage to thrombectomy often obviate the need for CT. HMCAS has been reported in as low as 15% of cases evaluated with routine use of CT alone before thrombolysis depending on case series and therapeutic benefit may be achieved irrespective of this finding. Early vessel findings in other territories such as the posterior cerebral artery still await pathological correlation.

The HMCAS and BA reflect RBC content, a thrombus constituent, yet not the principal target of fibrinolysis. Classification of thrombi as RBC-dominant was noted in every case in which either HMCAS or BA was identified. These early vessel findings were increasingly infrequent with fibrin-rich thrombi. The percentage of RBC was also closely linked with these imaging findings. Measurement of HU within the
HMCAS yielded values consistent with recently lodged emboli, although it remains difficult to ascribe these density changes to a particular clot constituent.10,20,31 Because we did not discern any correlation between HU density and RBC quantitative measures, one may conclude that the mere presence or absence of HMCAS using simple visual inspection is likely sufficient in distinguishing the presence of a RBC-rich clot or “red thrombus.”7 The susceptibility effect of BA on GRE MRI has been ascribed to local ferromagnetic field distortion associated with RBC components as well. The HMCAS and BA are therefore indirect markers of occlusive thrombi, reflecting trapped RBC more closely than the fibrin mesh targeted by most arterial revascularization procedures developed to date for stroke. It remains possible, however, that mechanical thrombectomy specimens ensnare additional constituents and adjacent red thrombi during the endovascular procedure itself.

The potential to distinguish “red thrombi” from “white thrombi” has been a longstanding and elusive expectation of diagnostic imaging modalities.32 Our previous findings on the initial analyses of clots causing ischemic stroke in humans questioned whether such traditional distinctions of “red versus white clots” are truly applicable, because much heterogeneity was observed among pathological specimens.8 A subsequent report also described marked heterogeneity in thrombi.9 Prediction of clot composition from CT or MRI imaging is likely sufficient in distinguishing the presence of a RBC-rich clot or “red thrombus.”7 The susceptibility effect of BA on GRE MRI has been ascribed to local ferromagnetic field distortion associated with RBC components as well. The HMCAS and BA are therefore indirect markers of occlusive thrombi, reflecting trapped RBC more closely than the fibrin mesh targeted by most arterial revascularization procedures developed to date for stroke. It remains possible, however, that mechanical thrombectomy specimens ensnare additional constituents and adjacent red thrombi during the endovascular procedure itself.

The potential to distinguish “red thrombi” from “white thrombi” has been a longstanding and elusive expectation of diagnostic imaging modalities.32 Our previous findings on the initial analyses of clots causing ischemic stroke in humans questioned whether such traditional distinctions of “red versus white clots” are truly applicable, because much heterogeneity was observed among pathological specimens.8 A subsequent report also described marked heterogeneity in thrombi.9 Prediction of clot composition from CT or MRI may therefore be difficult, especially if one assumes that the HMCAS or BA reflects the original embolus rather than secondary components promoted by stasis proximal and distal to the occlusion site. Our findings on the HMCAS and BA that accentuate RBC content may also suggest that stasis and fresh thrombus are more common in such cases. Although it remains challenging to reconstruct the spatial orientation of the retrieved fragment with respect to the HMCAS or BA, limited reperfusion (Thrombolysis in Cerebral Infarction 0 or 1) in 24% of cases raises the possibility that RBC content was augmented by stasis. This hypothesis underscores the role of flow derangements in cerebral ischemia, up against the clot face, and in distal segments filled through collateral perfusion.25 Stasis has previously been invoked in determining thrombus composition at the embolic source yet not at the recipient site.10,33 Angiography may be indispensable in distinguishing such factors. Interestingly, we found no correlation between amount of clot retrieved and subsequent reperfusion, suggesting that other aspects of ischemic pathophysiology beyond thrombosis will be essential in future therapeutic strategies for stroke.

The prognostic significance of the HMCAS and BA in the setting of arterial revascularization may be inherently flawed without consideration of the interaction between flow and thrombi in cerebral arteries.25,26 Many studies have attempted to define prognostic aspects of early vessel findings or their predictive role in revascularization, yet such outcomes are likely multifactorial, including considerations of how thrombus composition is not just the cause, but also the result of impaired flow.7,10,11,13,16–18 Despite an unequivocal link between the HMCAS and BA with RBC-dominant pathology, undue emphasis should not persuade clinicians to establish stroke etiology or plan revascularization strategies based on this finding alone. Our finding that imaging features of HMCAS or BA cannot alone predict successful clot extraction warrants investigation of other potential influential factors, because recanalization may be affected by many features in a given case. Further correlative studies should evaluate the impact of these imaging signs with various endovascular approaches, incorporating angiographic features to characterize flow.

The unique opportunity that permitted this comprehensive analysis of early vessel findings with thrombus pathological findings also imposed several limitations. Availability and quality of baseline imaging immediately before angiography resulted in further selection of a cohort already limited to candidates deemed suitable for mechanical thrombectomy. Our findings are limited by significant bias associated with excluding many cases, because the results relate only to clots in the proximal MCA that could be retrieved. Resilient occlusions and those with complete disintegration could not be studied and were thereby excluded from our analyses. It remains possible that some thrombi reflected changes of intravenous tissue plasminogen activator before angiography or even changes associated with standard procedural heparin administration. As noted, the orientation of clot fragments is speculative and other retained fragments may have differed in composition. Finally, our classification of clot types is also imperfect because most specimens were heterogeneous in nature with considerable variation across cases.

Conclusions

Our novel observations provide the first correlative study of early vessel signs in acute ischemic stroke with underlying clot composition. The HMCAS and BA are not ubiquitous in thrombotic MCA occlusion and failure to discern these subtle findings should not deter arterial revascularization strategies. Further studies are underway to delineate more detailed aspects of clot composition, including molecular features and architecture with respect to flow.

Sources of Funding

This work has been funded by National Institutes of Health–National Institute of Neurological Disorders and Stroke Awards K23 NS054084 (D.S.L.) and P50 NS044378.

Disclosures

All authors were employed by the University of California (UC), which holds a patent on the retriever devices for stroke, at the time of this work. The UC Regents received payments based on the clinical trial contracts for the number of subjects enrolled in the MR and Recanalization of Stroke Clots Using Embolectomy MR (MR RESCUE) multicenter clinical trial and the Concentric Merci Registry. D.S.L. is a scientific consultant regarding trial design and conduct to Concentric Medical (modest) and CoAxia (modest). C.S.K. is Principal Investigator of the National Institutes of Health-funded MR RESCUE trial (P50 NS044378). S.T. is a scientific advisor of Reverse Medical (modest), which makes a device to treat acute stroke. G.R.D. is a medical advisor and stockholder of Concentric Medical. H.V.V. is supported in part by the Daljit S. and Elaine Sarkaria Chair in Diagnostic Medicine. J.L.S. is a scientific consultant to AGA Medical (modest), Boehringer Ingelheim (modest), Bristol Myers Squibb (modest), CoAxia (modest), Concentric Medical (modest), Ev3 (modest), FibroGen (modest), ImaRx (modest), Sanofi Aventis (modest), and Talecris (modest). He receives support for editorial work in MedReviews (modest).
CT and MRI Early Vessel Signs Reflect Clot Composition in Acute Stroke

Stroke. 2011;42:1237-1243; originally published online March 10, 2011;
doi: 10.1161/STROKEAHA.110.605576

Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2011 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://stroke.ahajournals.org/content/42/5/1237

Data Supplement (unedited) at:
http://stroke.ahajournals.org/content/suppl/2012/03/12/STROKEAHA.110.605576.DC1
http://stroke.ahajournals.org/content/suppl/2016/03/31/STROKEAHA.110.605576.DC2

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org/subscriptions/
급성 뇌졸중에서 혈전 성상을 반영하는
CT와 MRI의 조기 혈관 징후

CT and MRI Early Vessel Signs Reflect Clot Composition in Acute Stroke

David S. Liebeskind, MD; Nerses Sanossian, MD; William H. Yong, MD; Sidney Starkman, MD; Michael P. Tsang, BS; Antonio L. Moya, BS; David D. Zheng, BS; Anna M. Abolian, BS; Doojin Kim, MD; Latisha K. Ali, MD; Samir H. Shah, MD; Amyitis Towfighi, MD; Bruce Ovbiagele, MD; Chelsea S. Kidwell, MD; Satoshi Tateshima, MD; Reza Jahan, MD; Gary R. Duckwiler, MD; Fernando Viñuela, MD; Noriko Salamon, MD; J. Pablo Villablanca, MD; Harry V. Vinters, MD; Victor J. Marder, MD; Jeffrey L. Saver, MD

(Stroke. 2011;42:1237-1243.)

Key Words: cerebral ischemia ■ CT ■ MRI ■ stroke ■ thrombus

배경과 목적: 본 연구는 CT의 고밀도중대뇌동맥 징후(hyperdense middle cerebral artery sign, HMCAS)와 같음기록(gradient–echo) MRI의 색변감 응공음영(blooming artifact, BA)의 급성 뇌혈전증에서 얻어진 혈전의 병리학적 특성과의 연관성을 보기 위한 첫 상관 관계 연구이다.

방법: 급성 중대뇌동맥 혈혈전증 중재 50개의, 기계적 혈전제거술 시행 이전에 촬영한 비조영증강(noncontrast) CT와 같은 기록으로서 구조적 병리학적 자료를 모는 상태로 분석하였다. 혈전제거술을 시행한 병색 부위의 혈전에 대하여 조직병리학적 분석을 시행하였는데, 침대한 혈전을 현미경으로 관찰하여 적혈구(red blood cell, RBC), 백혈구(white blood cell, WBC), 삼유소(fibrin)의 구성 비율을 자동화된 방법으로 정성, 정량적 분석하였다.

결과: 환자 50명의 평균 연령은 66세였고, 48%가 여성이었다. 혈전의 평균(표준편차) 구성은 삼유소 61% (±21), RBC 34% (±21), WBC 4% (±2)였다. 재험한 혈전 중에서, 22개(44%)의 주성분은 삼유소였고 13개(26%)는 RBC였으며, 15개(30%)는 혼합형이었다. HMCAS는 CT를 활용한 20명의 중대뇌동맥 뇌졸중 환자 중 10명에서 관찰되었으며, 평균 Hounsfield Unit 평균은 61 (±8 SD)이었다. BA는 기술기기와 MRI 검사 32건 중 17건에서 관찰되었다. HMCAS는 삼유소가 주된 성분인 혈전보다 RBC가 주성분이기 때문에 혈전 형성은 더 흔히 관찰되었다(100% vs. 67% vs. 20%, P=0.016). RBC의 평균 비율은 HMCAS와 연관된 혈전에서 더 높았다(47% vs. 22%, P=0.016). BA는 삼유소가 주성분인 혈전과 비교하였을 때 RBC가 주성분이기 때문에 혈전 형성은 더 흔히 관찰되었다(100% vs. 63% vs. 25%, P=0.002). BA와 연관된 혈전에서 평균 RBC 비율이 더 높았다(42% vs. 23%, P=0.011).

결론: CT상의 HMCAS와 같은 기록으로서의 BA는 혈전 배색을 유도한 혈전의 병리학적 특성을 반영한다. RBC 성분이 HMCAS와 BA의 발현을 결정하는 것으로 보이며, HMCAS나 BA가 관찰되지 않는 경우에도 삼유소가 주된 성분인 혈전을 시사하는 것으로 생각된다.

성 혈혈전증(ischemic stroke)은 다양한 기저 질환의 결과로, 침대 한 동맥이 막혀서 발생한다. 근위부 두개내동맥(proximal intracranial artery)의 배색과 그 이후 단계적으로 발생하는 혈전 과정의 병리생리학적 기전은

From the University of California–Los Angeles Stroke Center, Los Angeles, CA.
Correspondence to David S. Liebeskind, MD, UCLA Stroke Center, 710 Westwood Plaza, Los Angeles, CA 90095. E-mail davidliebeskind@yahoo.com
© 2011 American Heart Association, Inc.
급성기에는 거의 포착된 적이 없다. 그러나, 패색의 원인으로 혈전 생성 역할을 한다는 점에 대해서는 뇌졸중 검사나 평가를 시행하는 동안 종종 관찰되었다. 급성 혈전증증의 대부분의 치료적 방법은 혈전을 파괴하거나 혈전 생성을 해결하는 데 초점을 맞추어져 있다. 1,11 사망, 정맥내 조절프로필스미노관합성체(tissue plasminogen activator, tPA)를 사용한 약물학적 혈전용해술과 여러 가지 기구를 이용한 혈관내 혈전제거술 두 가지 치료방안이 심장의약국(Food and Drug Administration)의 승인을 받았다. 1,12 근위부 두개내동맥의 혈전 생성을 시사하는 피막과 미세혈관상 경가는 혈전성 부종, 혈전성 부종의 경가는 혈전생성의 성상, 또는 패색된 이후 부위로의 혈류를 막는 것처럼 생물에 대하여서도 직접적인 관점이 가능한 것이 특별한 점 중 하나이다. 1,11,12

이전의 연구에서 혈전 생성을 시사하는 CT와 MRI에서의 조기 혈전 정후의 존재, 고밀도 증례내동맥 정후(hyperdense middle cerebral artery sign, HMCA)와 가스영적 gra-dient-echo MRI 또는 좌하부 강조 MRI(susceptibility-weighted MRI) 영상의 채변영(blooming artifact, BA)이 연구되었다. 1,11,16,17 이들 연구 중 많은 수에서 이러한 정후가 흔히 나타나며, 혈관내피증의 효과를 감소시킬 가능성이 있다고 하였다. 1,11,16,17,18 그러나 대부분의 연구에서 혈관조영술 결과와의 연관성을 밝혀한 부위의 특성과 관련된 실제 병리학적 연관 관계는 보지 않았다.

본 연구자들은 급성 뇌졸중에서 근위부 두개내동맥 순환에서 제거한 혈전의 방사선학적 변화를 기술한 바 있으며, 이번에는 혈전의 구성 성상을 예측하는 데 도움이 될 수 있는 선형병 상 조건과 상관 연구를 보고하고자 한다. 1 이번 보고는 HMCA와 BA를 포함한 조기 혈전 정후의 존재 및 특성의 가치를 이루는 동맥경화반이나 혈전의 구성 요소를 분석한 결과를 기술하였다.

방법

2001년 5월~2007년 3월, 85명의 급성 혈혈전증 환자가 본 센터에서 혈관내 혈전제거술을 시행받기 전에 CT나 MRI 검사를 시행하였다. CT나 MRI를 이용한 비침습적 영상은 비 조영 CT나 가스영적 사전(nuclear carotid artery)이나 테라카르도 머리혈관(external carotid artery)까지 파져 연결되어 있는 경우도 분석에 포함했다. 혈관조영술 방법과 혈전제거술 과정에 대하여는 다른 곳에 기술하였다. 1,16,17 이번 연구 분석에 포함된 혈전제거술 증례는 Mechanical Embolus Removal in Cerebral Ischemia (MERC) 연구와 Multi MERC 연구의 일부로, 그리고 Merci Retriever System의 미국 심장의약국 승인 이후 일상적인 입상 치료의 일부로 진행되었다. 1,16,17 MERC와 Multi MERC 연구의 뇌졸중 발생 8시간 이내에 근위부 두개내동맥 패색 치료에서
Merci Retrieval System (Concentric Medical, Inc, Mountain View, CA)의 혈관내 혈전제거술의 안전성과 효용성을 평가하였다.3,18,22 본 연구에서 시행된 기계적 혈전제거술은 Merci Retriever System과 그 이후 세대의 기구들을 사용하여 이루어졌다. 혈관조영술을 이용한 혈관 폐색 진단부터 혈전제거술이 완전히 끝날 때까지의 모든 과정에 대한 순차적인 혈관조영 사진을 동맥 폐색의 특성 및 관련된 결과를 평가하기 위해 검토하였다.3,10 폐색 유무 및 폐색 부위 이후 영역의 폐색 부위 전방향 관류의 방위를 Thrombolysis in Cerebral Infarction 스키메를 이용하여 측정하였으며, 결과를 통한 관류는 American Society of Interventional and Therapeutic Neuroradiology/Society of Interventional Radiology (ASITN/SIR)의 결과는 평가 시스템을 사용하여 측정하였다.34

각 단계별로 다양한 양의 혈전이 추출되면서 혈전제거술 과정이 진행되며, 혈전 제거는 순차적으로 이루어졌다. 기구가 동파함에 따라 혈전의 크기는 점차 줄어들고, 카테터를 제거하고 helical coil의 원위부로 혈전이나 특정 물질의 존재를 감지한다. 만약 별개의 혈전이 동정되지 않으면, 흔인된 물질들은 무드럽게 생리시험수로 세척하여 분명한 작은 물질들을 확인한다. 원위부 혈전제거 카테터와 제거된 혈전의 구성에 대하여 혈전성 물질과의 관계를 사진으로 기록하였다. 혈전은 이후 기초 수술용 소독제에 울긴 후 여러 관점에서 사진을 활용하였다. 혈전의 길이를 지표(guido)를 이용하여 측정하였다. 이후 혈전 물질은 즉시 10% phosphate-buffered formalin에 고정하였다. 포르말린 고정한 조직은 파라핀에 넣어 고정한 후

Table. Clinical Characteristics of Study Population

<table>
<thead>
<tr>
<th>Clinical Characteristic</th>
<th>Population Variable (n=50)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years, mean±SD</td>
<td>66±21</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>46%</td>
</tr>
<tr>
<td>Race</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>82%</td>
</tr>
<tr>
<td>Black</td>
<td>10%</td>
</tr>
<tr>
<td>Asian</td>
<td>6%</td>
</tr>
<tr>
<td>Hispanic</td>
<td>2%</td>
</tr>
<tr>
<td>Diabetes</td>
<td>12%</td>
</tr>
<tr>
<td>History of hypertension</td>
<td>66%</td>
</tr>
<tr>
<td>Coronary artery disease</td>
<td>26%</td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td>14%</td>
</tr>
<tr>
<td>History of smoking</td>
<td>12%</td>
</tr>
<tr>
<td>Baseline NIHSS score</td>
<td>Median 19 (IQR, 15–22)</td>
</tr>
<tr>
<td>Intravenous IPA</td>
<td>14%</td>
</tr>
<tr>
<td>Intra-arterial IPA</td>
<td>2%</td>
</tr>
<tr>
<td>Day 90 mRS</td>
<td>Median 3 (IQR, 1–5)</td>
</tr>
</tbody>
</table>

NIHSS indicates National Institutes of Health Stroke Scale; IPA, tissue plasminogen activator; mRS, modified Rankin Scale; IQR, interquartile range.

Figure 1. Noncontrast CT scan of the head reveals a right hyperdense middle cerebral artery sign (HMCAS, arrow) associated with acute left hemiparesis.

8 am 두께로 점착하여 hematoxylin and eosin (H&E) 염색을 시행하였다. 각 조직 절편을 Olympus BX41 microscope with an attached MicroFire digital camera (Model

Figure 2. Gradient-echo MRI demonstrates blooming artifact (BA, arrow) in the left middle cerebral artery.
S99809)을 사용하여 분석하였다. 이후 조직학적 분석을 이용하여 영상 양상에 대한 정보를 얻어, 조직적 차이가 있는 과정들에 대한 특징 추출 분석(feature-detection analysis) 방법으로 시행하였다. 분석 방법 과정들은 혈소판:섬유소 축적(로프는 혈액에서의 혈전 생성), 선형 중심구와 단핵구(표면 흔적 상호 작용), 적혈구 과다 축적(혈전 용고)이 포함되었다. 또한, 광학 현미경을 이용하여 혈전의 구성은 적혈구(red blood cell, RBC)-우성형, 섬유소-우성형, 또는 혼합형으로 분류하였다. 추가적으로 RBC, 백혈구(white blood cell, WBC), 섬유소 구성의 반자동 정성, 정량 분석을 digitized whole slide digital images를 이용하여 시행하였다. H&E 염색된 슬라이드는 Aperio Scanscope XT digital scanner (Aperio, Vista, CA)를 사용하여 400배로 정밀 촬영하였다. 각각의 디지털 영상 파일은 200 MB에서 5 GB에 이르는 크기로, 영상 분석 소프트웨어로 분석하기 위하여 작은 파일 크기로의 전환을 필요로 하였다. 이 과정은 Adobe Photoshop CS3 (Adobe Systems, San Jose, CA)를 이용하여 섬유소, RBC, 그리고 유리 WBC를 유사 색상(pseudocolor)으로 변화시켜 시행하였다. 유사 색상화는 look-up table과 특정 색상의 계산을 통해 자동 환계점을 사용하여 각 혈전 구성 요소의 영상

Figure 3. Classification of retrieved thrombi as red blood cell-dominant (A) and fibrin-dominant (B).

Figure 4. Clot composition based on histopathology, including red blood cell (RBC), white blood cell (WBC), and fibrin percentage. Retrieved clots are numbered from 1 to 50 in order of historical entry into our study.
특정에 특정 색상을 부여하는 방법으로 진행하였다. 그 다음에 RBC, WBC, 섬유소의 각 영역별 분율을 계산하기 위해 Image J software (National Institutes of Health, Bethesda, MD)를 사용하였다. 이러한 범리 분석은 전체 혈전 재기 과정을 통해 추출된 각각의 혈전 조각 분석에 이용되었으며, 여러 개의 혈전 조각이 추출되었을 경우에는 각 혈전의 구성 요소들(RBC, WBC, 섬유소)의 분석 결과 평균값을 사용하였다.

임상 자료, 심상진단적 및 혈관조영술 자료, 범리 분석 자료에 대하여 기술 통계 분석 방법을 시행하였다. HMCAS와 BA를 포함한 조기 혈전 정후의 존재 유무와 혈전 범리의 특성별 범주형 변수로 전환하여 통계 분석에 적용하였다. 각 특정 혈전 구성 요소의 분율은 연속형 변수로 간주하였다. CT와 MRI 상의 혈전 생성도 조기 혈전 정후 혈전 구성의 관계는 카이 제곱검정 및 분산 분석 방법을 사용하여 확인하였고, 유의 수준은 0.05 미만으로 정하였다. 통계 분석은 SPSS software (Version 16.0; SPSS, Inc, Chicago, I.L.)를 이용하였다.

결과

선정 조건을 만족시킨 화자 50명의 평균 연령은 66세였고 48%가 여성이었으며, 82%가 백인이었다. 임상적 특성은 Table 1에 기술하였다. 혈관조영술에서 내경동맥 범리율은 52%, MCA 범리율은 48%에서 관찰되었다. Merci Retriever System 만 사용한 경우(78%)와, 정맥내 치료를 함께 받은 경우(14%), 그 외 다른 치료(경동맥 tPA 두어2%, 혈관성형술, 스테트 삽입술)를 함께 시행한 경우가 있었다. 본 연구에 포함된 화자의 최종 Thrombolysis in Cerebral Infarction 점수의 중앙값은 2였다(Thrombolysis in Cerebral Infarction 0, 22% 1, 40% 2, 36% 3).

총 20건의 CT 결과가 분석에 포함되었으며, 10건에서 HMCAS가 관찰되었다(Figure 1). HMCAS의 평균 HU는 61 ± 8SD였다. 32건의 MRI 결과를 검토한 결과, 17건(53%)에서 BA가 관찰되었다(Figure 2). 2명의 화자는 본 연구 기관에서 혈관조영술 시행 전에 CT와 MRI를 모두 시행하였으며, HMCAS와 BA가 모두 관찰되었다. MRI 측정의 급지 사유 여부로 평가할 수 없을 때, 신병 목적으로 MRI 검사 이전에 CT를 시행하였다. 이들 중에서, 혈관 정후는 정확히 같은 혈관의 해부학적 위치에서 관찰되었다.

추출된 혈전은 빠르고 하나의 담아리인 경우도 있었으나 대부분은 여러 개의 조각으로 나뉘어졌다. 이들 여러 개의 조각들은 각 시술 과정의 다양한 단계에서 언어졌으며, 혈전이 재귀된 시기도 다양한였다. 혈전의 영역과 재판관 또는 재판관 상태와 관련성이 있었다. 혈관내에서 범리로 일으킨 혈전의 기원은 혈전재생골과 카테터 조각 특성상 명확하게 평가할 수 없었다. 그러나 일부 종족에서는, 육안 검사와 조직병리학적 검사상 쉽게 혈전 기원의 위치를 관찰할 수 있었다.

제거된 혈전 중에서, 섬유소는 61% (±21), RBC는 34% (±21), WBC는 4% (±2)의 평균 구성 비율을 보였다. 제거된 혈전 중에서, 2개(44%)가 섬유소-우성으로 분류되었으며, 13개(28%)는 RBC-우성, 15개(30%)는 혼합형으로 분류되었다(Figure 3). 전반적인 범리학적 분포는 Figure 4에 표시한 대로 모든 종족에 걸쳐 관찰되었다. WBC 구성은 모든 종족에 일관적으로 미미하였고, 여러 조각으로 나뉘어진 종족에서도, 성공적으로 혈전이 제거된 경우와 그 구성이 다르지 않았다. 본 연구 기간 6년 중, Merci Retriever System을 이용하여 첫 혈전제거가 이루어지고 실제 임상에 소개되기까지 2년간, 혈관내 시술의 기술적인 면의 다양성을 인하여 야기될 수 있는 범리학적인 소견의 변화는 없었다. 본 연구자들은 최근 이 시술 과정 이후 나온 예후를 보인 환자들의 특성을 기술한 부분은 연구 결과를 발표하였다.

영상 검사 기법(CT 또는 MRI)과 육안 검사 결과 또는 조직 범리학적 검사 결과의 연관성은 관찰되지 않았다. 진행적 영상 결과를 얻은 시점과 혈전이 제거된 시점 간의 시간(평균±SD, 86±32분)과 혈전 성분 및 구성의 결과의 차이는 없었다.

CT상의 HMCAS는 RBC-우성 또는 혼합형 혈전에서 섬유소-우성인 혈전에서보다 더 잘 관찰되었다(100% vs. 67% vs. 20%, P=0.016). 평균 RBC 구성 비율은 HMCAS가 관찰된 경우에서 더 높았으나(47% vs. 22%, P=0.016), HU 밀도는 혈전의 구성과 관계가 없었다. BA 또한 RBC-우성 또는 혼합형 혈전에서 섬유소-우성 혈전으로부터 더 자주 관찰되었다(100% vs. 63% vs. 25%, P=0.002). 모든 종족에 일관적으로 낮은 비율을 보인 WBC 성분은 HMCAS나 BA의 존재와 관계가 없었다. BA에서 평균 RBC 비율이 더 높았다(42% vs. 23%, P=0.011). 조기 혈전 정후(HMCAS 또는 BA)의 존재 유무는 임상적 특성 또는 방사선학적 요인과 관련이 없었다. 다른 화학 분석 결과 RBC 구성 비율을 계외하고는 HMCAS나 BA의 예측자는 없었다(Figure 5). CT와 MRI를 모두 환원한 두 환자에서, HMCAS와 BA의 완전한 일치가 정상 분석에서 RBC의 구성 비율이 증가한 RBC-우성 혈전과 연관되어 있었다. HMCAS나 BA가 없는 경우는 작고 섬유소가 많은 혈전 조직에서 조급 더 혼자 있다.

본 연구 결과에서 영상 검사 결과(HMCAS나 BA), 또는 혈전의 조직병리학적 특성과 뇌졸중의 증상도 또는 이후의 예후와의 연관 관계는 없었다. 혈전의 조직병리학적 특성은 뇌졸중의 원인이나 기전(심장성심전중[cardiomyembolism] 또는 성형성 화증atherosclerosis)과도 관련되어 있지 않았고, 성공적인 추출 가능성과도 관련이 없었다. 이와 유사하게, 영상 결과 또는 조직병리학적 특성은 혈전제거 시점에 대하여도 차이가 없었다.
Figure 5. Red blood cell (RBC) composition of retrieved clots correlates with early vessel signs, including (A) the hyperdense middle cerebral artery sign (HMCS) and (B) blooming artifact (BA).

고찰
급성 혈관뇌혈증에서 CT나 MRI와 같은 비침습적 영상 검사 방법의 혈관 이상 소견은, 20년 이상의 기간 동안 혈전 생성의 병리학적 확인 없이 혈관 세포의 유방한 혈전의 결과가 기술되어 왔다. 본 연구 결과에서 CT상의 HMCS와 GRE MRI상의 BA를 포함한 조기 혈관 정상과 그 혈전의 병리학적 특성을 방심하는 초기 방사선학적-병리학적 결과의 연관 관계를 보여 주었다. HMCS와 BA는 급성 뇌졸중 환자의 치료 우선 순위를 정하는 과정에서 자주 관찰되며, 혈관내 혈전의 구성이나 종류에 대하여 추측하고, 다양한 혈관재생동물에 이용할 때의 예후 예측에 영향을 줄 것이다. 본 연구에서 관찰된 것과 같은 혈전 구성에 대한 정확한 기술은 임상적 특성, 비침습적 영상 검사, 혈관조영술, 조직병리학적 육안 검사 등에 기초하여 이루어져야 한다. 하지만, 혈전의 세부적인 병리학적 검사는 기계적 혈전재생기능에서만 가능하며, 정맥응, 동맥내 혈전유발, 혈관, 또는 혈관조영상과 스캔 상입술에서 밝혀지지 않았다. 본 연구 결과에서 급성 혈관뇌혈증에서 혈관 해제물이 일으킨 혈전의 영상 검사에 대한 여러 가지 중요한 관관 결과를 확인하였다.

혈전으로 인한 급성 MCA 혈색의 조기 혈관 정상은 일부 환자에서만 관찰되며, 이러한 방사선학적 이상 소견이 관찰되지 않는다고 해서 혈전성 혈색 가능성을 제외시키지 않는 것이 더 중요할 것이다. HMCS나 BA는 성공적으로 혈관재생과 시행한 연구 대상 중 일부의 반 가량에서 관찰되었다. HMCS를 처음 기술하였을 때에는 조금 더 높은 발생률을 보고하였으나, 대부분의 성공적인 연구들에서는 발생율을 50% 가량으로 보고하였고, 이는 이번 연구 결과와 비슷하다. 심성상층증 또는 큰동맥 즉상정전증으로 구분되는 뇌졸중의 발생 기전이 BA가 잘 발견되는 데 영향을 주었을 수 있으며, 이번 연구에서도 이전에 보고된 것과 같은 BA 발견율을 보였다. 심성상층증과 연관되어 상대적으로 큰 혈전이 BA가 더 잘 보이도록 하였을 수 있겠다. 이번 연구의 중재 중 47%에서 BA가 관찰되지 않았는데, 이는 일반적으로 섬유소가 많은 혈관과 연관되어 있었고, 이는 약물 사용의 섬유소뇌혈(fibrinolysis)의 잠재적 대상이 될 수 있다. HMCS와 BA의 연관성을 본 연구는 제한된 자료만이 있는데, 이는 MRI의 임상적 사례와 혈관재생의 빠른 대상 선정이 중요한 CT를 적절히 필요가 없도록 하기 때문이 다. HMCS는 혈전유발을 이전에 CT만을 동상적으로 사용한 경우 15%까지 낮게 보이고, 치료적 이득은 이 결과와 특별한 관계 없이 얻어지는 것 같다. 후대뇌동맥(posterior cerebral artery)과 같은 다른 영역에서의 조기 혈관 정상에 대하여는 병리학적 연관성에 대한 연구가 필요하다. HMCS와 BA는 혈전의 구성 요소, RBC 성분을 반영하는 데, 이는 아직 섬유소뇌혈의 주된 목표는 아니다, RBC-우성으로의 혈전 분류는 HMCS나 BA가 동정된 경우 모두에서 관찰되었다. 이들 조기 혈관 정상은 섬유소가 많은 혈관에서는 드물다. RBC의 비율은 이 영상 소견과 밀접하게 관련되어 있었다. HMCS 내의 RBC의 측정은 최근에 발생한 색전과 관련되었으나, 이 밀도의 변화를 특정 혈전 성분의 밴드로 생각하기는 어렵다. HU 밀도와 RBC의 정량적 측정 간의 관계를 확인하기 못하였기 때문에, RBC가 많은 혈전 또는 '적색 혈전(red thrombus)'의 존재를 기술하는 데 있어서 HMCS의 유무를 단순히 육안으로 시행하는 외관 검사만으로 충분할 것으로 보인다. GRE MRI상의 BA의 감수성 효과(susceptibility effect)는 RBC 성분과 연관된 국소적 철자성 장의 해르(ferromagnetic field distortion)과 관련된 것으로 보인다. 그러므로, HMCS와 BA는 지금까지 뇌졸중의 동맥 재생동물의 대부분에서의 목표로 적합한 섬유소뇌혈(fibrin mesh)보다 RBC 둔화를 조금 더 반영하는 혈전의 간접적 표지자이다. 그러나, 혈관내 시술 동안 기계적 혈관재생술의 조작이 추가적

13
근절의 영상 방법을 이용하여 ‘적색 혈전’과 ‘백색 혈전 (white thrombi)’을 구분하고자 하는 시도는 다년간 이루어져 왔으나 성공하지 않았다.15 혈관폐류를 일으키는 혈전의 조기 통증 결과에서, ‘적색 혈전과 백색 혈전’의 전통적 구분이 정확성을 제공하는데 한계가 있어, 이는 병리학적 조직에서 다양한 결과가 관찰되기 때문이었다.16 이론적 연구 결과와 또한 혈전에서 주요한 만한 다양성을 보고하였다.17 아마도 그런 이유로 인하여 CT나 MRI를 통한 혈전 식별의 예측은 어려울 것이며, 특히 HMCAS나 BA가 패혈 부위와 패혈 부위의 재활에 의하여 유독한 이차적 구성 성분보다는 재해의 근본을 반영한다고 가정하고 더 그러한 것이다. HMCAS와 BA가 RBC 성분을 감소하는 이론 연구 결과 그리고 중요한 흉에서 재적인 패혈 발생 성장된 혈전이 조금 더 흔하다는 것을 시사할 수 있다. HMCAS나 BA에 대하여 재적인 혈전 조각들의 공간적 근거를 재구성하는 것이 어려울뿐더러, 24%의 증례에서 재적인 재관류(Thrombolysis in Cerebral Infarction 0 또는 1)만이 이루어졌다는 것은 RBC 성분이 재활에 의하여 증가하는 것이 가능성을 제기한다. 이러한 가설은 대뇌혈류 (cerebral ischemia)에서의 혈류 재활의 역할을 강조하는데, 이는 혈전 면에 부딪히고, 원위부는 절단된 재활을 통해 채워진다.18 재료는 혈류 가속을 일으키는 부여가 아니라 혈류 생성의 원위 부위에서 혈관의 생성을 결정한다고 언급이 있었 다.19,21 혈관조영술은 그러한 요인을 구분하는 데 필수적이다. 흉모공도, 재적인 혈전의 양과 이후 순차적인 재관류의 연관 성은 발견하지 못하였는데, 이는 혈전 생성이 더 다른 혈관의 복합생리학적 면을 시사하며, 이는 미래의 근증 치료 방법에 매우 중요한 역할을 할 것이다.

대뇌혈액의 혈류와 혈전의 상호 관계에 대한 고려 없이는 HMCAS와 BA를 이용하여 혈관재관류의 예후를 예측하는 데 내재적 결과가 존재한다.22,23 많은 연구에서 조기 혈관 전후의 예후 예측이 혈관재관류에 대한 예측 결과를 규정하기 위해 시도하였으나, 이러한 예후들은 혈관의 재관류의 원인으로써 빈 눈으로 외과적에 어떻게 작용하는지의 여부를 포함한 여러 다양한 원인에 의하여 결정되는 것이다.24,25,26,27,28,29 HMCAS와 BA와 RBC-우성 혈전의 복합 성과 간의 명백한 연관 관계에도 불구하고, 이러한 결과에서 의존하여 재관류의 원인을 결정하거나 혈관재관류 방법을 계획하는 것은 어렵다고 한다. HMCAS나 BA의 영상 특성만으로는 혈관의 성공적 재 관개를 예측할 수 없다는 이론 연구 결과는, 영향을 중 만한 다른 원인들에 대한 연구를 필요로 한다. 그것은, 재관류는 아마도 해당 증례의 여러 특징에 의하여 영향을 받기 때문이다. 추가 적인 상관 관계 연구로 이들 영상 검사를의 정확와 혈류를 특 성화하는 혈관조영술 결과의 특성을 포함하여 다양한 혈관내 접근 방법의 영향을 평가하여야 한다.

본 연구에서의 조기 혈관 전후와 혈전의 복합적 특성간의 포괄적인 분석은 몇 가지 제한점을 가지고 있다. 혈관조영술 시행 직전에 검사한 조기 영상 검사 결과의 유무 및 영상 질의 평가는 아마도 기계적 혈관재관류에 적당한 환자로서 재해된 헤로 트에서 추가적으로 결정되었다. 이 연구 결과는 많은 증례를 재활함으로써 생긴 유의한 관련(bias)에 의하여 해석에 제한이 있다. 연구 결과, 혈관재관류가 가능한 근위부 MCA에 혈전이 위치한 경우만으로 국한되기 때문이다. 혈관 재관류가 희박 되는 경우와 완벽하게 재관류된 경우에는 연구를 진행할 수 없어서 분석에서 제외하였다. 혈관조영술 이전에 시행한 정맥내 tPA로 입루 혈전에 변화가 생겼거나, 심습 증에 표현된 근본으로 주입하는 해파린으로 인한 변화가 관찰된 경우도 포함할 수 있다. 마지막으로 대부분의 혈전 조각은 그 성상 면에서 다양했기 때문에 혈전 종류의 분류 또한 희박한 것이다.

결론
이번 연구는 급성 혈관폐류중에서 관찰되는 조기 혈관 전후 를 가진 혈전 구성과 연관된 첫 번째 연구이다. HMCAS와 BA는 혈진단 MCA 패혈에서 흔히 나온다는 것은 아니고, 이 미세한 소견이 확인될 못했고 해서 동맥 재관류를 시 행하지 않아서는 안된다. 혈류에 대한 구성 및 분자생물학적 특성을 포함한 혈전 구성의 조금 더 자세한 면에 대한 후속 연구가 진행 중이다.

Sources of Funding
This work has been funded by National Institutes of Health—National Institute of Neurological Disorders and Stroke Awards K23 NS054084 (D.S.L.) and P50 NS044378.

Disclosures
All authors were employed by the University of California (UC), which holds a patent on the retriever devices for stroke, at the time of this work. The UC Regents received payments based on the clinical trial contracts for the number of subjects enrolled in the MR and Recanulation of Stroke Clots Using Embolectomy MR (MR RESCUE) multicenter clinical trial and the Concentric Merici Registry. D.S.L. is a scientific consultant regarding trial design and conduct to Concentric Medical (modest) and CoAxia (modest). C.S.K. is Principal Investigator of the National Institutes of Health-funded MR RESCUE trial (P50 NS044378). S.T. is a scientific advisor of Reverse Medical (modest), which makes a device to treat acute stroke. G.R.D. is a medical advisor and stockholder of Concentric Medical. H.V.V. is supported in part by the Daljit S. and Elaine Sarkaria Chair in Diagnostic Medicine. J.L.S. is a scientific consultant to AGA Medical (modest), Boehringer Ingelheim (modest), Bristol Myers Squibb (modest), CoAxia (modest), Concentric Medical (modest), Ev3 (modest), FibroGen (modest), ImaRx (modest), Sanofi Aventis (modest), and Takeda (modest). He receives support for editorial work in MedReviews (modest).
References

缺血性卒中 CT 及 MRI 早期血管征象反映血栓成分

CT and MRI Early Vessel Signs Reflect Clot Composition in Acute Stroke

David S. Liebeskind, MD; Nerses Sanossian, MD; William H. Yong, MD; Sidney Starkman, MD; Michael P. Tsang, BS; Antonio L. Moya, BS; David D. Zheng, BS; Anna M. Abolian, BS; Doojin Kim, MD; Latisha K. Ali, MD; Samir H. Shah, MD; Amytis Towfighi, MD; Chelsea S. Kidwell, MD; Satoshi Tateshima, MD; Reza Jahan, MD; Gary R. Duckwiler, MD; Fernando Viruela, MD; Noriko Salamon, MD; J. Pablo Villablanca, MD; Harry V. Vinters, MD; Victor J. Marder, MD; Jeffrey L. Saver, MD

背景与目的：本研究首次对缺血性卒中大脑中动脉高密度征（hyperdense middle cerebral artery sign, HMCAS）以及 MRI 梯度回波序列开花伪像（blooming artifact, BA）与血栓病理的相关性进行研究。

方法：连续纳入 50 例大脑中动脉缺血性卒中患者，在进行血栓取栓术前，进行非增强 CT 及 MRI 梯度回波序列检查，然后将血栓取栓术所得血栓切片后在显微镜下进行组织病理学分析，包括全自动定量及成分定量分级，这些成分包括红细胞、白细胞及纤维蛋白。

结果：纳入的 50 名患者的平均年龄为 66 岁，48% 为女性，平均 HU（Hounsfield Unit）密度值为 61（±8 SD）。而在 32 例行 MRI 梯度回波序列的患者中有 17 例出现 BA。以红细胞型及混合型血栓比以纤维蛋白型血栓更常出现 HMCAS（100% vs 67% vs 20%），P = 0.016），出现 HMCAS 的血栓平均红细胞含量更高（47% vs 22%，P = 0.016），红细胞型及混合型血栓比纤维蛋白型血栓更常出现 BA（100% vs 63% vs 25%，P = 0.002）。出现 BA 的血栓红细胞含量更高（42% vs 23%，P = 0.011）。

结论：HMCAS 及 BA 能够反映闭塞性血栓的病理类型。红细胞的含量决定是否出现 HMCAS 及 BA，如果两者均未出现，提示血栓成分可能以纤维蛋白为主。

关键词：脑梗塞，CT，MRI，卒中，血栓
Stroke May 2011

In 85 patients with ischemic stroke, predictable CT or MRI, containing MRA results, were performed before intravenous thrombolysis. An additional 32 patients underwent CT or MRI, containing MRA sequences, to assess for complications. The results of these studies were compared with the results of control patients who underwent CT or MRI, containing MRA sequences, without thrombolysis.

In conclusion, the use of CT or MRI, containing MRA sequences, in the assessment of complications of intravenous thrombolysis is feasible. The results of these studies can be used to guide future studies on the use of CT or MRI, containing MRA sequences, in the assessment of complications of intravenous thrombolysis.
P<0.05 水平。使用 SPSS 软件 (版本 16.0; SPSS, Inc, Chicago, I.L.) 进行统计分析。

结果

在满足纳入条件的 50 名患者中，平均年龄为 66 岁，48% 为女性，82% 为白人，临床特征见上表。血管造影证实颈内动脉闭塞占 52%，MCA 闭塞占 48%。治疗方式有单用 MERCI 治疗 (78%)、MERCI 联合静脉溶栓治疗 (14%)、MERCI 联合其他治疗 (动脉内 tPA[2%])。本研究中患者最终脑梗塞溶栓评分 (Thrombolysis in Cerebral Infarction score, TCIS) 中位数为分值 2(TCIS 评分 0 分的占 2%，1 分占 22%，2 分占 40%，3 分占 38%)。

1. 20 例 CT 扫描中，有 10 例出现了 HMCAS(如图 1)。所有出现的 HMCAS 平均 HU 密度值为 61(±8)。在 32 例 MRI 扫描中，有 17 例 (53%) 出现了 BA(如图 2)。共 2 位患者既有 HMCAS，也有 BA。对于不能很快评估是否有 MRI 禁忌的病人，可以在做 MRI 前进行 CT 检查作为筛选。在这些病例中，早期血管征象都出现在近乎相同的血管解剖位置上。取出的血栓偶尔为一个整块，大部分为多个碎片。这些不同的标本在每项操作的不同时段取出血栓的取血的时间也存在很多差异。取栓量与血管再通或再灌注之间没有联系。由于取栓术及本身及导管操作的特性，不能精确对血管内闭塞血栓进行空间定位。然而，在一些病例中，肉眼观察及组
在 50 例患者血栓中，22 例 (44%) 以纤维蛋白为主，13 例 (26%) 以红细胞为主，15 例 (30%) 为混合型 (图 3)。如图 4 所示，血栓中各种病理类型分布广泛。WBC 在各种成分中始终含量最低。获取的多片段血栓，在成分上与完整血栓是一致的。在进行该研究的 6 年中，从 MERCI 取栓系统应用于临床获取第一例患者血栓到临床应用超过两年的时间里，未发现可能提示潜在的手术技术层面变化的病理改变。我们最近发表了一项尸检研究，描述了进行该术后预后不佳的一组病人 [27]。

基线影像模式 (比如 CT 或 MRI)，与大体或组织病理发现之间未发现明显联系。基线影像获取至取栓时间 (平均数 ± 标准差，86±32 分钟)、血栓组分及成分含量未见明显差异。

CT 上所见到的 HMCAS 更常见于以红细胞为主的血栓及混合型的血栓，而不是纤维蛋白为主的血栓 (100% vs 67% vs 20%，P=0.016)。尽管 HU 密度值与血栓成分并不相关，但出现 HMCAS 时平均红细胞含量较高 (47% vs 22%，P=0.016)。BA 也较常见于红细胞为主及混合型的血栓，而不是纤维蛋白

图 3 红细胞为主的血栓 (A) 和纤维蛋白为主的血栓 (B)

图 4 血栓按 1 到 50 编号纳入，组织病理学成分包括红细胞、白细胞以及纤维蛋白。
型的血栓 (100% vs 63% vs 25%, P=0.002)。白细胞在所有病例中表现为一致的低含量，不是 HMCAS 及 BA 的决定因素。出现 BA 时血栓红细
胞的平均百分比高 (42% vs 23%, P=0.011)。不管是 HMCAS 还是 BA 均与临床放射影像因素不相关。多因素分析显示除了红细胞含量以外无其他
的 HMCAS 及 BA 预测因子。2 例同时行 CT 及 MRI 检查的患者，HMCAS 及 BA 的一致率与红细胞为主型血栓相关。小的纤维蛋白型血栓不常出现
HMCAS 及 BA。

分析显示影像学表现 (HMCAS 或 BA) 及血栓病理类型与基线变量包括卒中严重程度、预后等不相关。血栓的病理与最终的卒中发病机制不相关。多因素分析显示除了红细胞含量以外无其他
的 HMCAS 及 BA 预测因子 (图 5)。2 例同时行 CT 及 MRI 检查的患者，HMCAS 及 BA 的一致率与红细胞为主型血栓相关。小的纤维蛋白型血栓不常出现
HMCAS 及 BA。

识别 HMCAS 无疑受不同方法的影响，包括盲法、HU 值定量测量以及其他的基线因子。本研究 BA 的检出率与先前的研究相一致。心源性栓塞及动脉粥样硬化血栓形成等卒中不同的机制可能会影响 BA 显像的程度。相对来说，心源性栓塞的血栓负荷越重 BA 显示越清晰。47% 的研究病例中未显示 BA，这些血栓多以纤维蛋白为主，常是纤溶药物的潜在靶点。研究中同时观察到 HMCAS 与 BA 的病例较少，这是因为 MRI 的早期应用以及及时的血栓取栓术使 CT 检查变得并不必要。有研究报
道的连续纳入的患者溶栓前单使用常规 CT 扫描的 HMCAS 发现率只有 15%，对溶栓的治疗效果没有太大意义。其他区域比如后循环血管早期血管征象尚待病理的相关证据。HMCAS 及 BA 反映的是血栓的成分之一 (红细胞) 的含量，而不是溶栓的重要指证。在出现血管征象的几乎所有病例中，血栓成分都是以红细胞为主，而在纤维蛋白为主的血栓中血管早期征象出现的频率极低。红细胞的含量与这些血管征象关系密切。HMCAS 区域的

图 5 HMCAS 与红细胞含量的关系 (A) 及 BA 与红细胞含量的关系 (B)。
种血栓成分[10,20,31]。

由于未明确HU密度值与RBC计数之间存在什么关系，故不能使用HU值来代表红细胞的含量[10,20,31]。仅用肉眼判断HMCAS的出现可能已经足够用来区分红细胞为主的血栓或者说“红血栓”。BA的磁敏效应也归因于红细胞成分引起的局部磁场扭曲。HMCAS及BA是阻塞性血栓的间接标志，它们主要与红细胞的聚集有关而不是纤维蛋白。然而也有可能，这其中的红细胞来自取栓过程中网罗的其他的成分及相邻的红血栓。

长期以来人们期待通过影像诊断模式来分辨红白血栓[32]。我们先前的研究发现缺血性卒中血栓标本存在极大的异质性[8]，这使我们对传统的红白血栓的分类方法产生了质疑。随后的一项研究也显示血栓样本间存在明显的差异[9]。使用CT及MRI来预测血栓成分因而变得困难，尤其是当人们认为HMCAS及BA反映的是最初的栓塞物而不是栓塞部位远端或近端滞留诱发的继发成分时。我们发现红细胞成分对出现HMCAS及BA尤为重要可能也提示血液淤滞及新鲜血栓在这些病例中更常见。尽管这些发现已表明HMCAS及BA对血管再通的预测价值可能会大打折扣[25,26]。众多的研究尝试明确早期血管征象对卒中预后或对血管再通的预测价值，然而影响预后的因素众多，而血栓成分并非唯一因素，还要考虑血流受损[7,10,11,13,16-18]。尽管HMCAS与BA同红细胞为主的病理类型关系明确，但临床医师不能仅仅依据这些发现来明确卒中病因或制定血管再通策略。我们发现显示影像学特征不能单独准确预测取栓效果，仍需探究其他潜在影响因素，毕竟血管再通多方面因素影响。进一步的研究需要着眼于联合血管造影及血流特征的基础上评估这些影像特征对不同血管治疗手段的影响。

尽管这次机会难得，但也存在一些局限，造影的基线影像数据的可用性及质量已经导致了选择性偏倚，仅仅局限于适合做取栓术的患者。我们的研究中排除了许多病例而存在较大的偏倚，因为手术只能取到近端MCA血栓，而这些结论仅适用于该段的血栓。弹性血栓及崩解的血栓被排除在外。部分血栓可能是反映了血管造影前静脉组织纤溶酶原激活的作用，甚至是标准肝素治疗的结果。正如上述，血栓片段位置上存在选择偏倚，而且血栓成分也可能存在其他的不同。

结论

本研究首次进行缺血性卒中早期血管征象与血栓成分的相关研究。HMCAS及BA在大脑中动脉血栓性闭塞出现并不普遍，未证明这些征象可以作为溶栓的证据。需要进一步的研究阐明血栓成分的更多细节，包括分子特征及血流状况。

参考文献

