Letter by Kutlubaev and Mead Regarding Article, “Exertion Fatigue and Chronic Fatigue Are Two Distinct Constructs in People Post-Stroke”

To the Editor:

We read with interest the article by Tseng et al1 published in the December issue of Stroke. This study supports the concept that there are 2 types of fatigue after stroke—peripheral (neuromuscular) and central (cognitive).2,3 Authors demonstrated in chronic stroke patients that peak oxygen uptake was associated with exertional fatigue, whereas depression was associated with chronic fatigue. Exertion fatigue could be interpreted as a fatigue associated with neuromuscular impairment, whereas chronic fatigue is central in origin and may be related to failure to sustain attention.2

However, the relationship between these 2 types of fatigue could well be more complex. Population-based studies have demonstrated associations between depression and low levels of physical activity.4 Animal studies have showed that exercise may have similar effects on the brain as antidepressants do,5 and exercise improves depressive symptoms in humans.4 Functional neuroimaging studies reported that physical activity is associated with activation of prefrontal brain and insular and anterior cingular cortex.5 The same brain areas were implicated in the development of tiredness after stroke.6 Thus, physical activity, by activating the prefrontal circuits, may improve attention and therefore reduce fatigue. One plausible model for post-stroke fatigue is that reduced physical activity after stroke may lead to physical deconditioning and therefore exertional (neuromuscular) fatigue, and that exertional fatigue leads to avoidance of physical activity, which then contributes to the development of chronic (cognitive) fatigue.

As Tseng et al suggest,1 further larger studies are required to unpick the pathophysiology of fatigue after stroke. Longitudinal cohort studies are required, with measurements of physical activity, physical fitness, and mood at multiple time points to determine whether low levels of physical fitness might lead to both exertional and chronic fatigue.

Disclosures

None.

Mansur A. Kutlubaev, MD
Division of Clinical Neurosciences
University of Edinburgh
Scotland, UK

Gillian E. Mead, MBCh, MD, FRCP
Geriatric Medicine Unit
University of Edinburgh
Scotland, UK

Letter by Kutlubaev and Mead Regarding Article, "Exertion Fatigue and Chronic Fatigue Are Two Distinct Constructs in People Post-Stroke"
Mansur A. Kutlubaev and Gillian E. Mead

Stroke. 2011;42:e377; originally published online March 17, 2011;
doi: 10.1161/STROKEAHA.110.613018

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/42/5/e377

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org/subscriptions/