High NIHSS Values Predict Impairment of Cardiovascular Autonomic Control

Max Josef Hilz, MD; Sebastian Moeller, MD; Aynur Akhundova, MD; Harald Marthol, MD; Elisabeth Pauli, PhD; Philipp De Fina, MD; Stefan Schwab, MD

Background and Purpose—Stroke is frequently associated with autonomic dysfunction, which causes secondary cardiovascular complications. Early diagnosis of autonomic imbalance prevents complications, but it is only available at specialized centers. Widely available surrogate markers are needed. This study tested whether stroke severity, as assessed by National Institutes of Health Stroke Scale (NIHSS) scores, correlates with autonomic dysfunction and thus predicts risk of autonomic complications.

Methods—In 50 ischemic stroke patients, we assessed NIHSS scores and parameters of autonomic cardiovascular modulation within 24 hours after stroke onset and compared data with that of 32 healthy controls. We correlated NIHSS scores with parameters of total autonomic modulation (total powers of R-R interval [RRI] modulation; RRI standard deviation [RRI-SD], RRI coefficient of variation), parasympathetic modulation (square root of the mean squared differences of successive RRIs, RRI-high-frequency-powers), sympathetic modulation (normalized RRI-low-frequency-powers, blood pressure-low-frequency-powers), the index of sympatho-vagal balance (RRI-LF/HF-ratios), and baroreflex sensitivity.

Results—Patients had significantly higher blood pressure and respiration, but lower RRIs, RRI-SDs, RRI coefficient of variation, square root of the mean squared differences of successive RRIs, RRI-low-frequency-powers, RRI-high-frequency-powers, RRI-total powers, and baroreflex sensitivity than did controls. NIHSS scores correlated significantly with normalized RRI-low-frequency-powers and RRI-LF/HF-ratios, and indirectly with RRI-SDs, square root of the mean squared differences of successive RRIs, RRI-high-frequency-powers, normalized RRI-high-frequency-powers, RRI-total-powers, and baroreflex sensitivity. Spearman-Rho values ranged from 0.29 to 0.47.

Conclusions—Increasing stroke severity was associated with progressive loss of overall autonomic modulation, decline in parasympathetic tone, and baroreflex sensitivity, as well as progressive shift toward sympathetic dominance. All autonomic changes put patients with more severe stroke at increasing risk of cardiovascular complications and poor outcome. NIHSS scores are suited to predict risk of autonomic dysregulation and can be used as premonitory signs of autonomic failure. (Stroke. 2011;42:1528-1533.)

Key Words: acute stroke ■ autonomic imbalance ■ NIHSS ■ poststroke prognosis

Autonomic cardiovascular dysfunction is common after stroke.1–8 Sympathetic hyperactivity and parasympathetic dysfunction9 may cause tachy- or bradyarrhythmias,6,7 troponin T increase,10 myocardial infarction, or sudden death11,12 depending on brain area affected by the stroke.8,12,13

Altered or reduced heart rate variability during acute stroke may be prognostically unfavorable.9,14,15 Sykora et al16 showed reduced baroreflex sensitivity (BRS), ie, compromised autonomic adjustment of heart rate and vascular tone to sudden blood pressure (BP) changes, in acute and subacute stroke patients.5,17 They concluded that sympathetic overactivity and blunted BRS predict poor prognosis after stroke.5,15,18 Thus, early diagnosis of autonomic dysregulation has prognostic and therapeutic relevance in acute stroke.5,18

However, diagnosis of impaired autonomic BP and heart rate modulation requires specific techniques and expertise that is not widely available. Therefore, easily determined clinical surrogate markers of autonomic failure are desirable.

Based on previously reported correlations between autonomic impairment and clinical deficits,4,19 we hypothesize that readily available clinical stroke scale scores may serve as a surrogate measure of increased autonomic risk in acute stroke.

To determine whether acute clinical deficits reflect risk of autonomic cardiovascular dysregulation, we studied correla-
tions between parameters of autonomic modulation and the National Institutes of Health Stroke Scale (NIHSS) scores20 in acute stroke patients.

Patients and Methods

In 50 patients (25 women, 25 men; age 48–84 years; mean age, 66±13 years) with acute, first-ever ischemic stroke in the middle cerebral artery territory (28 left-hemispheric and 22 right-hemispheric strokes), we assessed clinical stroke severity by means of NIHSS (range, 0–42 points);20 we also monitored cardiovascular autonomic modulation within 50 minutes to 23 hours (mean, 589±44 minutes) after stroke onset. Patients with other diseases and medication that affect the autonomic nervous system were excluded from the study. Patient data were compared with those of 32 age-matched healthy controls (20 women, 12 men; mean age, 61±8 years). We recruited healthy volunteers among unaffected relatives and friends of patients and among members of our research team. The study was approved by the ethics committee of the University of Erlangen-Nuremberg.

To derive parameters of cardiovascular autonomic modulation, we recorded 5-minute time-series of R-R interval (RRI), BP, respiratory frequency, and transcutaneous oxygen saturation (SatO\textsubscript{2}). RRIs were recorded by conventional 3-lead electrocardiography. Beat-to-beat systolic and diastolic blood pressures (BP\textsubscript{sys}, BP\textsubscript{dia}) were measured noninvasively at the index or middle finger of the nonparetic hand, using the vascular unloading technique (CNATM, Dräger Medical), then were calibrated against ipsilateral brachial artery BP.21

Respiratory frequency was recorded by chest impedance measurements. SatO\textsubscript{2} was measured by pulse-oximetry (Drager Medical).

All signals were sampled at 200 Hz, digitized, and stored for analysis on a custom-designed data acquisition and analysis system (SUENempathTM, SUESS Medizin-Technik)22.

From 5-minute recordings without artifacts, we extracted the most stationary 90-second epochs, then calculated mean values and SD of all signals. To avoid a bias regarding the signal epoch selected for data analysis, we extracted the most stationary 90-second period from the 5-minute recordings while blinded to the participant’s status (eg, sex, age, healthy control or patient, NIHSS score).

As autonomic parameters, we determined the coefficient of variation of RRIs (RRI-CV). RRI-CV and RRI-SD reflect sympathetic and parasympathetic cardiac modulation.23,24 We calculated square root of the mean squared differences of successive RRIs (RRI-CV). RRI-CV and RRI-SD reflect sympathetic and parasympathetic cardiac modulation.23,24

We performed trigonometric regressive spectral analyses25 of slow, underlying RRI and BP oscillations in frequency ranges reflecting sympathetic and parasympathetic influences on RRI and BP.25

We identified peaks of oscillations in the so-called low-frequency (LF; 0.04–0.14 Hz) and high-frequency (HF; 0.15–0.50 Hz) ranges of RRI and BP modulation.23,24

LF oscillations of RRI at rest are considered to be mediated by sympathetic outflow and, to an undetermined degree, also by parasympathetic activity; meanwhile, LF oscillations of BP are related to sympathetic outflow only.23,24 HF oscillations in RRI reflect parasympathetic activity,23,24 whereas BP fluctuations in the HF range are primarily a mechanical consequence of respiration-induced fluctuations in venous return and cardiac output.23,24

The magnitude of LF and HF oscillations was determined as the integral under the power spectral density curves of RRI (ms2/Hz) and BP (mm Hg2/Hz) for the 2 frequency bands, and was expressed as LF- and HF-powers of RRI (ms2) and BP (mm Hg2).23,24

In addition, we calculated RRI-LF/HF-ratios as an index of sympatho-vagal balance, and the sum of LF- and HF-powers as an index of overall autonomic cardiac modulation.23,24 We normalized RRI-LF- and RRI-HF-powers to reduce effects of interindividual differences in total powers on absolute RRI-LF- and RRI-HF-powers,26 where RRI-LFnu=(RRI-LF/[RRI-LF+RRI-HF]×100\%), and RRI-HFnu=(RRI-HF/[RRI-LF+RRI-HF]×100\%).23,24 To determine BRS, the trigonometric regressive spectral software selected pairs of LF and HF oscillations of BP\textsubscript{sys}, and RRI with high coherence (>0.7).27 With high coherence, the sensitivity of the baroreflex loop (ms×mm Hg-1) can be derived as gain values from changes in RRIs (ms) in relation to changes in BP\textsubscript{sys}, (mm Hg).27

Statistics

For data analysis, we used a commercially available statistical program (SPSS 18.0, SPSS Inc.). We tested data for normal distribution by the Shapiro-Wilk test. For data analysis, we used a commercially available statistical program (SPSS 18.0, SPSS Inc.). We tested data for normal distribution by the Shapiro-Wilk test.

Results

In 50 stroke patients, NIHSS scores ranged from 1 to 21 (median, 5; lower quartile, 3; upper quartile, 11). Table 1 summarizes data of patients and controls.

<table>
<thead>
<tr>
<th>Parameter, Mean ± SD</th>
<th>MCA Stroke (n=50)</th>
<th>Control (n=32)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>65.8±12.7</td>
<td>61.9±7.6</td>
<td>0.085*</td>
</tr>
<tr>
<td>RRI, ms</td>
<td>779.1±141.1†</td>
<td>937.6±117.5†</td>
<td>0.000†</td>
</tr>
<tr>
<td>RRI-SD, ms</td>
<td>17.3±8.2†</td>
<td>24.4±8.3†</td>
<td>0.000†</td>
</tr>
<tr>
<td>RRI-CV, %</td>
<td>2.2±1.0†</td>
<td>2.6±0.9†</td>
<td>0.021†</td>
</tr>
<tr>
<td>RMSSD, ms</td>
<td>15.1±8.7†</td>
<td>19.2±9.5†</td>
<td>0.023†</td>
</tr>
<tr>
<td>BP\textsubscript{sys}, mm Hg</td>
<td>143.3±27.4†</td>
<td>132.2±18.6‡</td>
<td>0.048‡</td>
</tr>
<tr>
<td>BP\textsubscript{dia}, mm Hg</td>
<td>78.9±18.3</td>
<td>72.6±10.7</td>
<td>0.079‡</td>
</tr>
<tr>
<td>Respiratory frequency, min-1</td>
<td>17.0±3.5†</td>
<td>13.6±4.7†</td>
<td>0.000†</td>
</tr>
<tr>
<td>RRI-LF-powers, ms2</td>
<td>182.2±211.8†</td>
<td>296.8±208.4‡</td>
<td>0.000‡</td>
</tr>
<tr>
<td>RRI-LFnu-powers, %</td>
<td>68.5±19.7</td>
<td>70.0±13.5</td>
<td>0.716‡</td>
</tr>
<tr>
<td>RRI-HF-powers, ms2</td>
<td>69.2±61.5†</td>
<td>124.1±123.2‡</td>
<td>0.005‡</td>
</tr>
<tr>
<td>RRI-HFnu-powers, %</td>
<td>31.5±19.7</td>
<td>30.0±13.5</td>
<td>0.716‡</td>
</tr>
<tr>
<td>RRI-total powers, ms2</td>
<td>251.2±232.7†</td>
<td>421.0±277.8‡</td>
<td>0.001‡</td>
</tr>
<tr>
<td>BP\textsubscript{sys}-LF/HF-ratios, nu</td>
<td>5.0±6.5</td>
<td>3.5±3.3</td>
<td>0.909*</td>
</tr>
<tr>
<td>BP\textsubscript{sys}-HF-powers, mm Hg</td>
<td>8.2±7.6</td>
<td>7.7±7.0</td>
<td>0.879*</td>
</tr>
<tr>
<td>BP\textsubscript{sys}-HFnu-powers, %</td>
<td>3.0±6.1</td>
<td>1.6±1.9</td>
<td>0.463*</td>
</tr>
<tr>
<td>BRS, ms×mm Hg-1</td>
<td>5.3±2.8†</td>
<td>7.0±3.7†</td>
<td>0.023†</td>
</tr>
</tbody>
</table>

*P values derived from the nonparametric Mann-Whitney-test.
†Significant differences between patients and controls.
‡P values derived from t-tests.

Using the Spearman rank correlation test, we also calculated correlations between the interval from stroke onset to autonomic testing and the NIHSS scores, and we correlated the interval with values of the recorded bio-signals and with parameters of autonomic modulation. Significance was assumed for P<0.05.
Similarly, patients had lower RRI-LF-powers, RRI-HF-powers, RRI-total powers, and BRS than did controls (Table 1). BPdia values were not quite significantly higher in patients than in controls (P = 0.07), while BPsys-LF-powers, BPsys-HF-powers, normalized RRI-LF-powers, normalized RRI-HF-powers, and RRI-LF/HF-ratios did not differ between patients and controls (P > 0.05).

NIHSS scores correlated significantly with normalized RRI-LF-powers and RRI-LF/HF-ratios, while there were an inverse correlations between NIHSS scores and RRI-SDs, RMSSD, RRI-HF-powers, normalized RRI-HF-powers, RRI-total powers, and BRS (for Spearman-Rho-values, see Table 2).

There were no significant correlations between NIHSS scores and BPsys, BPdia, SatO2, respiratory frequency, RRI-CV, absolute RRI-LF-powers, and BPsys-LF-powers.

There was no significant correlation between NIHSS scores and the interval from stroke onset to autonomic testing (Spearman Rho, 0.218; P = 0.128).

Moreover, there were no significant correlations between this interval and RRI-SDs, BPsys-LF-powers, BRS, RRI-SDs, RRI-CVs, RRI-LF-powers, RRI-LF/HF-ratios, normalized RRI-LF- and RRI-HF-powers, BPsys-LF-powers, BPsys-HF-powers, and BRS. In contrast, the interval correlated with the parasympathetic indices RMSSD of RRI (Rho = 0.308; P = 0.029), RRI-HF-powers (Rho = 0.415; P = 0.003), and with the index of overall autonomic cardiac modulation, the sum of RRI-LF-powers and RRI-HF-powers (RRI-total powers; Rho = 0.284; P = 0.046).

Discussion

Our stroke patients had higher BP, heart rate, and respiratory frequency than did controls, indicating increased sympathetic cardiovascular modulation.6,7,9,28–30 However, the lower RRI-LF-powers, lower sympathetically and parasympathetically mediated RRI-SDs, RRI-CVs, and RRI-total powers23,24 in patients than in controls show a general loss of autonomic cardiac modulation; this has been reported in previous stroke studies.6,7,28 In contrast to the increase in BP, heart rate, and respiratory frequency of our patients, similar RRI-LF/HF-ratios between patients and controls seem to suggest that there is no major change in sympatho-vagal balance after stroke. Yet, increasing RRI-LF/HF-ratios in patients with higher NIHSS scores, as well as the lower RMSSDs and RRI-HF-powers in patients than in controls, confirm a loss in parasympathetic modulation after stroke, and predominant sympathetic tone with increasing stroke severity.

Previous studies support the conclusion that autonomic imbalance depends on stroke severity. Korpelainen et al4 report no increase in RRI-LF/HF-ratios in patients with higher NIHSS scores, as well as the lower RMSSDs and RRI-HF-powers in patients than in controls, confirm a loss in parasympathetic modulation after stroke, and predominant sympathetic tone with increasing stroke severity.

Figure. Correlations between individual NIHSS score values and A RR-intervals (RRI), B normalized RRI-LF-powers, C normalized RRI-HF-powers. RRI-LF indicates low-frequency RRI; RRI-HF, high-frequency RRI.
The correlations seen in our patients between NIHSS scores and parameters of autonomic modulation (Figure) indicate a higher risk of autonomic complications in patients with more severe strokes. Tokgozoglu et al observed an association between sudden death and reduced parasympathetic, but increased sympathetic activity in their 62 stroke patients. The 7 patients who died unexpectedly during hospitalization had higher RRI-LF/HF-ratios than did surviving patients. Among 44 stroke patients, Orlandi et al found increased RRI-LF/HF-ratios in the 31 patients with arrhythmias.

Sympathetic predominance increases the risk of poststroke tachyarrhythmias, myocardial infarctions, myofibrillary necrosis, perivascular and interstitial fibrosis, and myocyte vacuolization; it additionally increases the risk of secondary brain injury and edema caused by sympathetically driven inflammation with fever, hyperglycemia, polycythemia, and increased blood-brain barrier permeability. Consequently, increased sympathetic outflow compromises stroke outcome.

The progressive decline in parasympathetic activity in our patients with more severe strokes adds to the risk of cardiovascular and cerebral complications. Parasympathetic deficiency promotes malignant tachyarrhythmias and mortality. Reduced cerebral vasodilatation in animal stroke studies, and subsequently furthers cerebral vasoconstriction and secondary brain damage.

The overall loss in autonomic modulation, ie, the decreasing RRI-SDs and RRI-total powers in patients with higher NIHSS scores, is associated with a growing risk of cardiac complications and sudden death.

Declining autonomic modulation predicts poor outcome, as shown in patients with myocardial infarction, chronic heart failure, multiple organ dysfunction syndrome, and in ischemic stroke.

Progressive loss in autonomic modulation in patients with more severe stroke also causes deteriorating heart rate and BP adjustment to instantaneous changes of either parameter because of declining BRS. Sykora et al showed that BRS impairment depends on the volume of the stroke and involvement of the insula; they confirm the conclusions of Robinson et al that BRS deterioration after stroke reflects central autonomic dysfunction. Similar to our results, Sykora et al found correlations between decreasing BRS and increasing NIHSS scores.

Reduced BRS is associated with poor outcome in cardiac, renal, or metabolic diseases, and in stroke. According to Robinson et al, BRS impairment during acute stroke is associated with a 4.5-fold increase in mortality rates. Baroreflex failure results in increased BP fluctuations that may exceed cerebral autoregulation buffering capacity; this causes secondary cerebral lesions, particularly in patients with more severe stroke and more deficient BRS. BP fluctuations worsen stroke outcome, as they cause more severe end-organ damage than does nonfluctuating arterial hypertension.

In our patients, coefficients of correlation between increasing NIHSS scores and deteriorating autonomic parameters range from Spearman Rho values of 0.29 to 0.47. Still, the high consistency of correlations between stroke severity and all measures of autonomic dysregulation confirms that more severe stroke is associated with more pronounced autonomic failure and subsequent risk of secondary cardiovascular or cerebral complications.

Study Limitations

The rather wide interval between stroke onset and autonomic testing, from 50 minutes to 23 hours, might bias our results. However, NIHSS scores were not dependent on the interval between stroke onset and autonomic evaluation. In contrast, there seems to be inconsistent correlations between this interval and some of the autonomic parameters. Particularly, the positive correlation of the interval between stroke onset and autonomic testing with the parasympathetic parameters RMSSD and RRI-HF-powers suggests that parasympathetic modulation recovers with increasing time since stroke onset. Moreover, the correlation of the interval with overall autonomic modulation points toward the potential for regaining autonomic control over time. The findings encourage follow-up assessments of autonomic control to determine the duration and time course of autonomic dysfunction.

Although we found significant correlations between NIHSS scores and parameters of cardiovascular autonomic dysfunction, there is substantial variability within these correlations. We assume that this variability is because of the effects of age and sex on autonomic parameters, and because of the difference between discontinuous NIHSS scoring and continuous values of autonomic function.

In contrast to continuous values of autonomic parameters, the NIHSS is designed as a straightforward scoring system that assigns noncontinuous scores to the major clinical deficiencies without reflecting the entire scope of deficits in an individual stroke patient (eg, apraxias and neurocognitive deficits). Consequently, stroke severity may be categorized by the same NIHSS score in patients with a different extent or location of the neurological lesion. In contrast, involvement of different parts of the central autonomic network most likely accounts for differences in autonomic dysfunction and thus different values of parameters reflecting dysautonomia.

Moreover, most autonomic parameters vary with differences in age and sex, while NIHSS scores are independent of the patient’s sex or age. The age range of our patients was rather wide (48 to 84 years) and very likely contributed to the variation in autonomic parameters, regardless of NIHSS scores. Similarly, differences in sex, with 25 male and 25 female stroke patients, contribute to the variation in autonomic parameters, again regardless of the NIHSS score.

The variability of autonomic parameters demonstrates the need for refined autonomic testing in stroke patients. Yet, the methodology is not readily available. Despite the rather wide variability of autonomic parameters for a given NIHSS score, the consistency of correlations between the autonomic parameters and NIHSS scores still supports the conclusion that NIHSS scoring may serve as a coarse substitute for sophisticated autonomic assessment.

In summary and in conformity with previous studies, our results demonstrate the need for autonomic monitoring of...
stroke patients to prevent complications caused by autonomic failure.

However, autonomic monitoring is not widely available; and yet, NIHSS scores are easily taken. From the correlations seen in our patients, we suggest that NIHSS scores may serve as surrogate markers of progressive autonomic failure. Deteriorating NIHSS scores require close observation of heart rate, BP, and the variabilities of those measures. Loss of heart rate variability and increasing BP variability indicate growing autonomic risk and predict the need for interventions to stabilize the cardiovascular system.

Perspective

There are many reports about differences in autonomic dysfunction after left- and right-sided stroke.2,3,6,8,29,52 Although many studies found a shift toward more prominent sympathetic modulation after right-hemispheric stroke,4,5,11,29,52,53 there are also reports that only found a decrease in total autonomic modulation4 or a decrease in parasympathetic outflow after right-hemispheric stroke.2,54 Moreover, NIHSS scores are higher with left-sided than with right-sided stroke.48,55–59 Therefore, we assume that the correlations seen between NIHSS scores and autonomic parameters might be hemisphere-dependent. Hemispheric predominance of autonomic modulation29 might account for discrepancies of autonomic dysfunction and of its correlation with NIHSS scores between patients with right and left middle cerebral artery stroke. A preliminary analysis of our hemisphere-specific data suggests there are quite complex and intricate interactions between the side of the lesion and the dysautonomia. Yet, it is beyond the scope of this article to present and discuss the hemisphere-specific data. We, however, intend to provide a separate detailed analysis of hemisphere correlations and differences.

Sources of Funding

The study was supported by Sanofi-Aventis, GmbH, Germany, the Rolf und Hubertine Schiffbauer-Stiftung, Hof, Germany, and the International Brain Research Foundation, Edison, NJ.

Disclosures

None.

References

High NIHSS Values Predict Impairment of Cardiovascular Autonomic Control
Max Josef Hilz, Sebastian Moeller, Aynur Akhundova, Harald Marthol, Elisabeth Pauli, Philipp De Fina and Stefan Schwab

Stroke. 2011;42:1528-1533; originally published online April 14, 2011;
doi: 10.1161/STROKEAHA.110.607721
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2011 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://stroke.ahajournals.org/content/42/6/1528

Data Supplement (unedited) at:
http://stroke.ahajournals.org/content/suppl/2012/02/28/STROKEAHA.110.607721.DC1
http://stroke.ahajournals.org/content/suppl/2016/03/31/STROKEAHA.110.607721.DC2

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org/subscriptions/
High NIHSS Values Predict Impairment of Cardiovascular Autonomic Control

Max Josef Hilz, MD1,2; Sebastian Moeller, MD1; Aynur Akhundova, MD1; Harald Marthol, MD1; Elisabeth Pauli, PhD1; Philipp De Fina, MD3; Stefan Schwab, MD1

1 Department of Neurology, University of Erlangen-Nuremberg, Erlangen, Germany; 2 Departments of Neurology, Medicine, and Psychiatry, New York University, New York, NY; 3 International Brain Research Foundation, Edison, NJ

Stoke 2011; 42: 1528-1533

Background and Purpose: Stroke is often associated with autonomic dysfunction, which can be a cause of subsequent cardiovascular complications. Early diagnosis of autonomic dysfunction could prevent complications, which is possible only with specialized institutions, but a readily available marker is required. The study aimed to verify whether high NIHSS scores predict the severity of autonomic dysfunction and, therefore, cardiovascular complications.

Methods: 50 ischemic stroke patients were included in the study, with NIHSS scores and autonomic control parameters evaluated within 24 hours of stroke onset and compared with 32 healthy controls. Characteristics of autonomic function were assessed using R-R interval (RRI) regulation spectrum components, RRI standard deviation (RRI-SD), RRI coefficient of variation, high frequency (RRI-HF) and low frequency (RRI-LF) components, as well as the RRI-LF/HF ratio and baroreflex sensitivity.

Results: Patients had higher blood pressure and respiratory rates compared to controls, but a lower RRI, RRI-LF, RRI-HF, RRI-total, RRI-HF/RRR ratio, and lower baroreflex sensitivity. NIHSS scores were significantly associated with RRI-LF, RRI-HF, RRI-total, RRI-LF/HF ratio, and baroreflex sensitivity.

Conclusion: The severity of stroke is associated with progressive autonomic disorder, decreased vagal tone, and lower baroreflex sensitivity, as well as increased sympathetic dominance. Higher NIHSS scores are associated with increased cardiovascular and adverse outcomes. NIHSS scores are suitable for predicting autonomic dysfunction risk and may be used as a premonitory sign of autonomic dysfunction.
High NIHSS Values Predict Impairment of Cardiovascular Autonomic Control
Max Josef Hilz, MD; Sebastian Moeller, MD; Aynur Akhundova, MD; Harald Marthol, MD; Elisabeth Pauli, PhD; Philipp De Fina, MD; Stefan Schwab, MD

Background and Purpose: Stroke was associated with cardiovascular autonomic disturbance, thus causing secondary cardiovascular complications. Early diagnosis of autonomic dysfunction could prevent complications, but only specialized centers could do this. We need easily usable alternatives.

This study aims to confirm whether NIHSS score can predict the severity of cardiovascular autonomic dysfunction.

Methods: A total of 50 ischemic stroke patients were evaluated with NIHSS scores and autonomic parameters within 24 hours of onset and compared with 32 healthy controls. Autonomic parameters assessed included total R-R interval variability (RRI), RRI standard deviation (RRI-SD), RRI coefficient of variation, RRIs mean frequency, RRI low frequency, RRI high frequency, and sensitivity of arterial reflexes. Spearman-Rho values were calculated in the range of 0.29-0.47.

Results: Compared to controls, patients had higher systolic and diastolic pressure, but total R-R interval variability, RRI-SD, RRI related variables, RRIs mean frequency, RRI low frequency, RRI high frequency, and sensitivity of arterial reflexes were lower. NIHSS score was significantly correlated with normal RRI low frequency, RRI-LF/HF ratio, as well as with total R-R interval variability, RRI-SD, RRI related variables, RRIs mean frequency, RRI low frequency, RRI high frequency, and sensitivity of arterial reflexes.

Conclusion: Increasing stroke severity is associated with decreasing autonomic function, which is related to cardiovascular complications and poor outcomes. NIHSS score may predict autonomic dysfunction and serve as a proxy for autonomic failure.

Keywords: Acute Stroke, Autonomic Disorder, NIHSS, Stroke Prognosis

From the Department of Neurology (M.J.H., S.M., A.A., H.M., P.D.), University of Erlangen-Nuremberg, Erlangen, Germany; Departments of Neurology, Medicine, and Psychiatry (M.J.H.), New York University, New York, NY; International Brain Research Foundation (P.D.), Edison, NJ.

M.J.H. and S.M. contributed equally to this work.

Correspondence to Max J. Hilz, University of Erlangen-Nuremberg, Department of Neurology, Schwabacheranlage 6, D-91054 Erlangen, Germany. E-mail max.hilz@uk-erlangen.de

© 2011 American Heart Association, Inc.
脑中动脉供血区的急性缺血性卒中（28侧位于左侧大脑半球，22例位于右侧大脑半球）, 我们使用NIHSS评分代表卒中的严重程度（0-42分）；我们检测卒中发生50分钟至23小时（平均为589±444分钟）的心血管自主神经功能。合并能够影响自主神经系统的其他疾病或者药物的患者被排除。病人的数据与年龄匹配的32名健康对照组（女性20名，男性12名，年龄61±8岁）进行比较。该实验被Erlangen-Nuremberg的伦理委员会所通过。

为了得到心血管自主调节的参数，我们记录了以5分钟为时间段的连续的 R-R 间期 (RRI)、BP、呼吸频率和脑氧饱和度 (SatO2)。RRIs 通过常规的3导联的心电图记录。收缩压 (BPsys) 和舒张压 (BPdia) 通过使用血管装卸技术 (CNAP™, Dräger Medical) 取得。呼吸频率通过胸部抵抗测量。脑氧饱和度 (Dräger Medical) 通过脉冲血氧仪测量。收缩压和舒张压的低频振荡仅与交感神经的输

我们计算出连续5分钟记录中最静止的90秒，然后计算所有信号的平均值和标准差。考虑到为避免数据分析的信号时间选择的偏倚，对患者基本状态 (如性别、年龄、健康对照或患者、NIHSS) 采用盲法，并选择5分钟记录中最静止的90秒。

作为自主神经参数，我们确定了 RRIs 变异系数 (RRI-CV)。RRI-CV 及 RRI-SD 反映了交感神经及副交感神经的心脏调节 [23,24]。我们计算出连续 RRIs 均方的平方根 (RMSSD) , 其反应了副交感神经的心脏调节 [23,24]。

我们对慢的、潜在的 RRI 和 BP 振荡在频率范围内进行了三角函数倒退谱分析 [25]，反应了交感神经和副交感神经影响 RRI 和 BP [25]。

我们辨识了 RRI 和 BP 调节在所谓的低频 (LF, 0.04-0.14 Hz) 和高频 (HF, 0.15-0.50 Hz) 范围内的振荡高峰 [23,24]。

RRI 的低频振荡在休息时被认为是交感神经输出介导，并且在某种程度上，也受副交感神经的活性影响。同时，BP 的低频振荡仅与交感神经的输出相联系 [23,24]。RRI 的高频振荡反应了副交感神经的活动 [23,24], 而 BP 的高频振荡主要是呼吸诱导的静脉回流以及心脏输出机制的影响 [23,24]。

表 1 50名急性大脑中动脉区域的缺血性卒中患者及30名对照的数据均值及标准差

<table>
<thead>
<tr>
<th>参数</th>
<th>均值±标准差</th>
<th>大脑中动脉卒中 (n=50)</th>
<th>对照组 (n=32)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>年龄</td>
<td>48.8±10.7</td>
<td>48.9±10.7</td>
<td>50.2±10.2</td>
<td>0.985*</td>
</tr>
<tr>
<td>RRI</td>
<td>789.1±141.2</td>
<td>747.1±121.2</td>
<td>737.1±121.2</td>
<td>0.001†‡</td>
</tr>
<tr>
<td>RRI-SD</td>
<td>789.1±141.2</td>
<td>747.1±121.2</td>
<td>737.1±121.2</td>
<td>0.001†‡</td>
</tr>
<tr>
<td>RRI-CV</td>
<td>20.4±1.4</td>
<td>20.2±1.4</td>
<td>20.3±1.4</td>
<td>0.783*</td>
</tr>
<tr>
<td>RRI-LF</td>
<td>42.7±10.7</td>
<td>42.7±10.7</td>
<td>42.7±10.7</td>
<td>0.871*</td>
</tr>
<tr>
<td>RRI-HF</td>
<td>42.7±10.7</td>
<td>42.7±10.7</td>
<td>42.7±10.7</td>
<td>0.871*</td>
</tr>
<tr>
<td>BPsys</td>
<td>134.3±27.4</td>
<td>134.3±27.4</td>
<td>134.3±27.4</td>
<td>0.948‡</td>
</tr>
<tr>
<td>BRS</td>
<td>78.9±18.3</td>
<td>78.9±18.3</td>
<td>78.9±18.3</td>
<td>0.809‡</td>
</tr>
</tbody>
</table>

*P值来自非参数 Mann-Whitney 检验。
†P值来自t检验。
‡P值来自t检验。

低频和高频波动的幅度是由 RRI (ms²/Hz) 和 BP(mm Hg²/Hz) 的功率谱密度曲线的整合决定的，并且被表示为 RRI(ms²) 和 BP(mm Hg²) 的低频和高频功率 [23,24]。

另外，我们计算出 RRI-LF/HF 比率是交感神经驱动神经平衡的指数。为了得到心血管自主调节的参数，我们记录了以5分钟为时间段的连续的 R-R 间期 (RRI)、BP、呼吸频率和脑氧饱和度 (SatO2)。RRIs 通过常规的3导联的心电图记录。收缩压 (BPsys) 和舒张压 (BPdia) 通过使用血管装卸技术 (CNAP™, Dräger Medical) 取得。呼吸频率通过胸部抵抗测量。脑氧饱和度 (Dräger Medical) 通过脉冲血氧仪测量。收缩压和舒张压的低频振荡仅与交感神经的输

我们计算出连续 RRIs 均方的平方根 (RMSSD) , 其反应了副交感神经的心脏调节 [23,24]。

我们对慢的、潜在的 RRI 和 BP 振荡在频率范围内进行了三角函数倒退谱分析 [25]，反应了交感神经和副交感神经影响 RRI 和 BP [25]。

我们辨识了 RRI 和 BP 调节在所谓的低频 (LF, 0.04-0.14 Hz) 和高频 (HF, 0.15-0.50 Hz) 范围内的振荡高峰 [23,24]。

RRI 的低频振荡在休息时被认为是交感神经输出介导，并且在某种程度上，也受副交感神经的活性影响。同时，BP 的低频振荡仅与交感神经的输出相联系 [23,24]。RRI 的高频振荡反应了副交感神经的活动 [23,24], 而 BP 的高频振荡主要是呼吸诱导的静脉回流以及心脏输出机制的影响 [23,24]。

统计分析

对于数据分析，我们使用了商业适用统计程序 (SPSS 18.0, SPSS Inc.)。使用 Shapiro-Wilk 检验来检测数据是否呈正态分布。
正态分布的患者以及对照数据使用 t 检验比较。
非正态分布的数据使用 Mann-Whitney U 检验。
NIHSS 及生物信号的联系以及自主神经参数和 BRS 的联系使用 Spearman 相关检验。
我们同样使用 Spearman 相关检验计算了卒中发生到自主神经测试间隔及 NIHSS 评分的联系。并且，我们计算了记录生物信号值及自主神经调节参数间隔的联系。P<0.05 表示有统计学意义。

结果
在 50 个卒中患者中，NIHSS 评分在 1-21 分之间 (均数，5；下四分位，3；上四分位，11)。表 1 概述了患者及对照组的数据。

患者的 BPsys 及呼吸频率明显高于对照组，而 RRIs、RRI-SD、RRI-CV 以及 RMSSD 在患者组低于对照组 (见表 1)。

相同的，患者组较对照组有较低的 RRI-LF 功率、RRI-HF 功率、RRI 总功率以及 BRS。

BPsys 值在患者组中没有明显高于对照组 (P=0.07)，而 BPsys-LF 功率、BPsys-HF 功率、正常化的 RRI-LF 功率、正常化的 RRI-HF 功率以及 RRI-LF/ HF 比率在患者组及对照组中没有差别 (P>0.05)。

NIHSS 评分与正常化的 RRI-LF 功率及 RRI-LF/ HF 比率相关明显。而 NIHSS 评分与 RRIs、RRI-SDs、RMSSD、RRI-HF 功率、正常化的 RRI-HF 功率、RRI 总功率以及 BRS 成负相关 (Spearman Rho 值见表 2)。

NIHSS 评分与 BPsys、BPdia、SatO2、呼吸频率、RRI-CV、完全的 RRI-LF 功率以及 BPsys-LF 功率没有明显联系。

NIHSS 评分与卒中发生后至自主神经测试间隔没有明显相关 (Spearman Rho，0.218；P=0.128)。

而且，卒中发生后至自主神经测试间隔与 RRIs、BPsys、BPdia、呼吸频率、SatO2、RRI-SDs、RRI-CVs、RRI-LF 功率、RRI-LF/HF 比率、正常化的 RRI-LF 功率以及 RRI-HF 功率、BPsys-LF 功率、BPsys-HF 功率以及 BRS 之间没有明显联系。相反的，此间隔与 RRIs 的副交感神经指数的 RMSSD (Rho=0.308；P=0.029)、RRI-HF 功率 (Rho=0.415；P=0.003) 相关，并且与总体自主神经心脏调节指数、RRI-LF 功率及 RRI-HF 功率总和相关 (RRI 总功率；Rho=0.284；P=0.046)。
讨论

与对照组相比，卒中患者有较高的血压、心率及呼吸频率，表明了增加的交感神经心血管调节 [6,7,9,28-30]。然而，患者组较低的 RRI-LF 功率、较低的交感神经和副交感神经介导的 RRI-SDs、RRI-CVs 以及 RRI 总功率 [23,24] 表明自主神经心脏调节的缺失；这在以前的卒中杂志中也有报道 [6,7,28]。患者组与对照组对比，有增高的血压、心率及呼吸频率。患者组与对照组有类似的 RRI-LF/HF 比率，表明卒中后交感神经 - 迷走神经平衡并没有很大的改变。尽管如此，在患者组，增高的 RRI-LF/HF 比率、高 NIHSS 评分以及较低的 RMSSD 及 RRI-HF 功率，证实了卒中后交感神经调节失调，并且随着卒中的严重性增加，交感神经调节占主导作用。

在同一研究中，增高了的 NIHSS 评分与恶化的自我调节参数之间的关联，Spearman Rho 值在 0.29-0.47 之间。然而，在卒中的严重性与自主神经调节失调的所有测量间的高度一致性证实，更严重的卒中与更明显的自主调节功能失败及随后的二级心血管 [6,7,10,12,18,29,30] 或脑并发症相关 [18,33,37,38]。

研究不足

卒中发作到自我调节测试之间相对较宽的时间间隔，从 50 分钟到 23 小时，可能使我们的结果产生偏倚。然而，NIHSS 评分并不依赖于卒中发作到自主调节测试之间的间隔。相比之下，在此间隔与一些自主调节参数之间没有一致的联系。尤其是，卒中发作到自主调节测试之间的间隔与副交感神经参数 RMSSD 及 RRI-HF 功率的正相关显示，随着卒中发生后时间的增加，副交感神经调节复苏。而且，此间隔与总体自主神经调节的关联指向了重获自主调节控制的潜在性。这些发现鼓舞了进一步行自主调节控制的评估，来确定自主调节紊乱的持续时间。

尽管我们发现 NIHSS 评分与心血管自主调节紊乱参数之间的明显关联，但是这些关联中仍然有很大的变异性。我们假定这种变异性是由于年龄及性别对自主调节参数的影响，并且由于非持续的 NIHSS 评分及持续的自主调节功能值之间的差异。与持续的自主调节参数值相比，NIHSS 设计为一个较直接的评分系统，分配一些非持续性的分数
给主要的临床缺陷，而没有反应个体卒中患者（如失用症、神经认知缺损）的整体性 [20,48] 的不足。因此，卒中的严重性可以由相同的 NIHSS 评分但不同程度或不同部位的神经功能缺损而分类。相比之下，不同部分的中央自主神经调节网的参与很可能导致自主调节功能紊乱的不同以及反应自主调节失衡参数值的不同 [49]。

然而，大部分自主调节参数值因年龄及性别的不同而有差异 [50,51]，而 NIHSS 评分独立于患者的性格或年龄。除了 NIHSS 评分外，我们的患者年龄范围较广（48-84 岁），可能对自主调节参数的变异有影响。同理除了 NIHSS 评分外，类似的性别的不同，25 个男性及 25 个女性卒中患者可能对自主调节参数的变异也有影响 [50,51]。

自主调节参数的变异表明了对卒中患者进一步精确自主调节测试的必要性。然而，方法学上是不可行的。尽管对一个给定的 NIHSS 分数，自主神经调节参数变异范围较大，但是，自主调节参数与 NIHSS 评分之间的高度一致性仍然支持了这个结论：NIHSS 评分可以作为复杂的自主调节评价的替代方法。

总之，与先前研究一致 [4,7,14,15,28]，我们的结果表明了卒中患者进行自主神经功能监测的必要性，以进一步阻止因自主神经调节失败导致严重的并发症。

尽管如此，自主神经功能监测并不是广泛适用的。但是，NIHSS 评分是容易获得的。从我们患者的相关性来看，对于进展性的自主神经调节失败，NIHSS 评分可以作为一种替代方法。恶化的 NIHSS 评分需要更密切的关注心率、BP 以及这些值的差异。心率变异的下降以及血压变异的增加表明了增加的自主调节风险，并且预示着对心血管系统采取干预措施。

展望

在左半球或者右半球卒中后，有许多的研究报道了自主神经功能紊乱的不同 [2,6,8,29,52]。尽管许多的研究发现，右半球卒中后，交感神经调节占主导地位 [8,11,29,52,53]；但是，仍有报道称，在右半球卒中后，不仅发现总的自主调节的下降或副交感输出下降 [24]。然而，NIHSS 评分在左半球卒中的患者较右半球卒中的患者高 [48,55,59]。

因此，我们假设 NIHSS 评分与自主神经功能参数可能是有半球差异的。自主神经功能调节的半球优势 [35] 可能导致自主神经功能紊乱的差异，以及它们的联系对于 NIHSS 评分在右侧大脑中动脉或左侧大脑中动脉卒中患者的差异。我们的一项半球特异性的数据的初步分析显示，损伤半球与自主调节失衡的相互关系是错综复杂的。然而，它超出了此文章的范围并且讨论了半球特异性数据。我们将提供一份独立的详细的半球联系及差异的分析。

参考文献

21. Bogert LW, van Lieshout JJ. Non-invasive pulsatile arterial pressure and stroke

53. Hilt et al High NIHSS Predicts Impaired CV Control