Letters to the Editor

Stroke welcomes Letters to the Editor and will publish them, if suitable, as space permits. Letters must reference a Stroke published-ahead-of-print article or an article printed within the past 3 weeks. The maximum length is 750 words including no more than 5 references and 3 authors. Please submit letters typed double-spaced. Letters may be shortened or edited. Include a completed copyright transfer agreement form (available online at http://stroke.ahajournals.org and http://submit-stroke.ahajournals.org).

Letter by Munin et al Regarding Article, “Botulinum Toxin for the Upper Limb After Stroke (BoTULS) Trial: Effect on Impairment, Activity Limitation, and Pain”

To the Editor:

We read the article by Shaw et al1 with great interest. Their trial examined whether abobotulinumtoxinA and task practice therapy could improve upper limb function after spastic hemiparesis more than therapy alone in controls based on changes in the Action Research Arm Test (ARAT).1 There are several points that may explain why the investigators saw only improvements in patient-rated basic upper limb functional activities rather than observed ARAT scores in treated subjects.

When injecting botulinum toxin, the clinicians used surface localization to identify forearm muscles instead of more accurate guidance from ultrasound with electromyography or nerve stimulation. We demonstrated that ultrasound guidance during botulinum toxin injections is more accurate than surface localization when targeting forearm muscles that have a complex pattern of overlapping anatomy with superficial and deep layers.2 Using ultrasound guidance, muscles with several bellies (eg, flexor digitorum superficialis) can be administered doses individually to target specific spastic patterns in each belly. Confirmation of accurate drug placement can be attained by targeting end plate regions or visually ensuring that the injectate stays within fascial borders, and not by assuming that local diffusion of toxin would be sufficient for delivery.

The methodology was also hindered by using low median doses of abobotulinumtoxinA between 200 and 300 total units. In previous upper limb stroke spasticity studies, mean doses ranged between 500 and 1000 units.3 The majority of subjects had spasticity affecting the shoulder, elbow, wrist, and hand, indicating that many muscles required treatment. Although up to 9 different muscles could be injected based on clinical assessment, many muscles required treatment. Although up to 9 different muscles could be injected based on clinical assessment, that may explain why the investigators saw only improvements in patient-rated basic upper limb functional activities rather than observed ARAT scores in treated subjects.

When injecting botulinum toxin, the clinicians used surface localization to identify forearm muscles instead of more accurate guidance from ultrasound with electromyography or nerve stimulation. We demonstrated that ultrasound guidance during botulinum toxin injections is more accurate than surface localization when targeting forearm muscles that have a complex pattern of overlapping anatomy with superficial and deep layers. Using ultrasound guidance, muscles with several bellies (eg, flexor digitorum superficialis) can be administered doses individually to target specific spastic patterns in each belly. Confirmation of accurate drug placement can be attained by targeting end plate regions or visually ensuring that the injectate stays within fascial borders, and not by assuming that local diffusion of toxin would be sufficient for delivery.

The Botulinum Toxin for the Upper Limb After Stroke study enrolled a majority of subjects with very low, if any, distal hand function at baseline (ARAT score, 0–3). Participants in the Botulinum Toxin for the Upper Limb After Stroke trial with some retained active upper limb function (ARAT score, 4–56) were more likely to experience a predefined successful outcome compared to the larger number of participants with no retained upper limb function (ARAT score, 0–3). Therefore, with severe baseline weakness in a majority of subjects, it is not surprising that botulinum toxin injections that block neuromuscular transmission and cause selective muscle weakening did not improve active functional movement as measured by the ARAT. Measuring upper limb function is clearly more difficult than studying a more precisely defined construct like blood pressure. The authors of the article1 note that ~30% of subjects had improved ARAT scores at 3 months, although toxin injections did not affect this relationship. Our findings also demonstrated a gain in ARAT scores at 3 months in subjects administered a combination of onabotulinumtoxinA and task practice training, with and without functional electric stimulation.4 In the Botulinum Toxin for the Upper Limb After Stroke trial, significantly more abobotulinumtoxinA patients had improvement in subject-reported daily tasks, like opening the palm for cleaning and cutting nails and putting an arm through a coat sleeve. These findings indicate that different measures give us different information about the effectiveness of interventions on upper limb function and pose the question, which measures are best for measuring changes in upper limb spasticity after stroke? We appreciate the investigators’ contribution to the literature with this large, multicenter, randomized trial, and we hope that our comments further the discussion.

Disclosure

None.

Michael C. Munin, MD
Douglas J. Weber, PhD
Department of Physical Medicine and Rehabilitation
University of Pittsburgh School of Medicine
Pittsburgh, PA

Elizabeth R. Skidmore, PhD, OTR/L
Department of Occupational Therapy
University of Pittsburgh School of Medicine
Pittsburgh, PA


Stroke is available at http://stroke.ahajournals.org

DOI: 10.1161/STROKEAHA.111.621219
Letter by Munin et al Regarding Article, "Botulinum Toxin for the Upper Limb After Stroke (BoTULS) Trial: Effect on Impairment, Activity Limitation, and Pain"
Michael C. Munin, Douglas J. Weber and Elizabeth R. Skidmore

Stroke. 2011;42:e412; originally published online June 2, 2011;
doi: 10.1161/STROKEAHA.111.621219
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2011 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://stroke.ahajournals.org/content/42/7/e412

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/