Outcomes of Intravenous Thrombolysis in Posterior Versus Anterior Circulation Stroke

Hakan Sarikaya, MD; Marcel Arnold, MD; Stefan T. Engelter, MD; Philippe A. Lyrer, MD; Heinrich P. Mattle, MD; Dimitrios Georgiadis, MD; Leo H. Bonati, MD; Felix Fluri, MD; Urs Fischer, MD; Oliver Findling, MD; Pietro Ballinari, PhD; Ralf W. Baumgartner, MD

Background and Purpose—Intravenous thrombolysis is an approved treatment for anterior (ACS) and posterior (PCS) circulation stroke. However, no randomized controlled trial has investigated safety and efficacy of intravenous thrombolysis according to stroke territory, although PCS is assumed to differ from ACS in many ways. We aimed to compare the safety and clinical outcome of intravenous thrombolysis applied to patients with PCS and ACS.

Methods—Prospectively collected data of 883 consecutive patients with acute ischemic stroke (788 ACS, 95 PCS) treated with intravenous thrombolysis in 3 Swiss stroke centers were analyzed. Presenting characteristics, symptomatic intracranial hemorrhage, mortality, and favorable outcome (modified Rankin scale 0 or 1) at 3 months were compared between patients with PCS and ACS.

Results—As compared with patients with ACS, those with PCS were younger (mean age, 63 versus 67 years, \(P=0.012\)) and had a lower mean baseline National Institutes of Health Stroke Scale score (9 versus 12, \(P<0.001\)). Patients with PCS less often had symptomatic intracranial hemorrhage (0% versus 5%, \(P=0.026\)) and had more often a favorable outcome (66% versus 47%, \(P<0.001\)). Mortality was similar in the 2 groups (PCS, 9%; ACS, 13%; \(P=0.243\)). After multivariable adjustment, PCS was an independent predictor of lower symptomatic intracranial hemorrhage frequency (\(P=0.001\)), whereas stroke territory was not associated either with favorable outcome (\(P=0.177\)) or with mortality (\(P=0.251\)).

Conclusions—Our study suggests that PCS is associated with a lower risk of symptomatic intracranial hemorrhage after intravenous thrombolysis as compared with ACS, whereas favorable outcome and mortality were similar in the 2 stroke territories. (Stroke. 2011;42:2498-2502.)

Key Words: anterior circulation ■ ischemia ■ posterior circulation ■ thrombolysis

Intravenous thrombolysis (IVT) is an approved treatment of acute ischemic stroke in anterior (ACS) and posterior (PCS) cerebral circulation. However, PCS differs from ACS in stroke etiology and outcome, because PCS is more often due to atherosclerosis,\(^1,2\) and prognosis is assumed to be worse with higher morbidity and mortality rates,\(^3\) the latter reaching up to 54% after basilar artery occlusion.\(^4\) Despite these presumed differences, knowledge about safety and efficacy of IVT in PCS is sparse for several reasons: (1) no randomized controlled trial or Phase IV study has investigated safety and efficacy of IVT according to stroke territory\(^5–10\); (2) just 5% of patients from the National Institutes of Neurological Diseases and Stroke (NINDS) study had PCS, although approximately 20% to 25% of all ischemic strokes are localized in the posterior circulation\(^5,11,12\); (3) The European Cooperative Acute Stroke Study (ECASS) I and II trials included only patients with hemispheric stroke syndromes,\(^6,7\) whereas the Alteplase Thrombolytic for Acute Noninterventional Therapy in Ischemic Stroke (ATLANTIS) and the ECASS III trials did not report on the number of patients with PCS.\(^8,9,13\)

We undertook this multicenter, observational study to compare safety and clinical outcome of IVT according to stroke territory.

Patients and Methods

We studied prospectively collected data of consecutive patients with acute ischemic stroke who underwent IVT with alteplase but no other or additional thrombolytic treatment in the stroke centers of the University Hospitals Basel, Bern, and Zurich from June 1998 to December 2008. Baseline investigations included neurological and physical examination, assessment of stroke severity by using the National Institutes of Health Stroke Scale (NIHSS),\(^14\) routine blood analysis, 12-lead electrocardiography, brain CT and/or MRI. The following variables were ascertained: age, gender, baseline NIHSS score, vascular risk factors according to predefined criteria,\(^15\) atrial fibrillation, history for coronary artery disease, antithrombotic med-
Classification of PCS and ACS

PCS was defined as a symptomatic infarct in the territory of the vertebral, the cerebellar, or the posterior cerebral arteries or the basilar artery.\(^1\) ACS was defined as a symptomatic infarct in the territory of the middle or anterior cerebral artery or both. Lesions that were asymptomatic or not congruous with the clinical presentation were not considered. The classification of stroke territory was performed by 1 experienced senior stroke physician in each center (Basel, S.T.E.; Bern, M.A.; Zurich, R.W.B.) by using both clinical and radiological findings.

Outcome Parameters

All intracranial hemorrhages were ascertained on follow-up CT or MRI obtained within 48 hours after IVT and additional scans in case of clinical deterioration. Symptomatic intracranial hemorrhage (sICH) was defined as any intracranial bleed temporally related to a neurological deterioration (NINDS criteria).\(^3\) In addition, we also used the more conservative definition from the ECASS II trial.\(^2\) Clinical outcomes were all-cause mortality and the level of independence measured by modified Rankin Scale score at 3 months, with favorable outcome defined as a score of 0 to 1 and unfavorable as a score of 2 to 6. The modified Rankin Scale scores were assessed by certified neurologists by clinical examination or structured telephone interview with the patient or caregiver.

Statistical Analysis

Normally distributed data were expressed as mean±SD and compared using t test. The 2 groups (IVT treatment in anterior versus IVT treatment in posterior circulation stroke) were compared using the Mann-Whitney test for continuous variables and the \(\chi^2\) or Fisher exact test (the latter if some expected counts in the \(2\times2\) table were too low) for dichotomous variables. Multiple logistic regression analyses were performed to assess the joint effects of the affected territory (anterior versus posterior) and the other predictors on the outcome parameters sICH, mortality, and favorable outcome. In a first step, the influence of every single potential predictor on the outcome parameters was evaluated using univariate logistic regression analysis. The parameters examined were age, admission NIHSS score, time to treatment, systolic and diastolic blood pressure, blood glucose levels on admission (continuous variables), patient’s gender, arterial hypertension, smoking status, diabetes mellitus, hypercholesterolemia, coronary artery disease, atrial fibrillation, diabetes mellitus, and medication with antplatelets or anticoagulants at stroke onset (categorical variables). In a second step, a multivariate logistic regression analysis was performed, including all potential predictors with a probability value <0.2 from univariate analyses into the model. The parameter stroke territory (ACS or PCS) was forced in both models. For evaluating the association of stroke territory with sICH in logistic regression model, we used 1000 bootstrap samples to estimate the standard error (SE) of the regression coefficients.

Significance was declared at the \(P<0.05\) level. IBM SPSS Statistics 18.0 was used for all analyses.

Results

Study Population

Between June 1998 to December 2008, 892 consecutive patients at 3 centers underwent IVT for acute ischemic stroke (Basel, \(n=359\); Bern, \(n=116\); Zurich, \(n=468\)). Nine of the 892 patients were excluded, because the affected vascular territory remained unclear (\(n=9\)). Of the 883 patients included, 95 (11%) had PCS and 788 (89%) ACS. No patient showed combined clinical and radiological findings of both ACS and PCS. Baseline characteristics, stroke severity, and etiology of the 2 groups are shown in Table 1. Patients with PCS were younger (63 versus 67 years, \(P=0.012\)) and had lower mean NIHSS scores (9 versus 12, \(P<0.001\)), whereas the other characteristics did not differ between the 2 groups. Basilar artery occlusion was diagnosed in 10 of 95 (11%) patients with PCS.

Outcomes

At 3 months, clinical outcome was available in 878 (99%) and sICH classification in 877 (99%) of the included 883 patients. Five (<1%) patients were lost to follow-up, 1 with PCS and 4 with ACS.

Using the NINDS criteria, a total of 36 (4%) patients a sICH, and 10 of these were fatal. Symptomatic intracranial hemorrhage occurred in 5% of patients with ACS but in none of patients with PCS (\(P=0.026\); Table 2). Multivariate logistic regression analyses identified atrial fibrillation (\(P=0.019\)), antplatelet medication (\(P=0.025\)), and diastolic blood pressure (\(P=0.029\)) as independent predictors of sICH. With respect to the lack of sICH in PCS, we applied the bootstrap method for estimating the SE of the regression coefficients. When assessing the joint effects of stroke territory, atrial fibrillation, antplatelet medication, and diastolic blood pressure on sICH, we identified a strong association between stroke territory and sICH (\(P=0.001\) independent from the other predictors (Table 2). Applying the ECASS II criteria, sICH was observed in 26 of 883 (3%) patients, all of which occurred in ACS. The statistical difference was less pronounced (\(P=0.049\)) but still significant in logistic regression analysis by using the bootstrap method (\(P=0.001\)).

A total of 108 (12%) patients died during the 3-month follow-up period. Mortality did not significantly differ between the 2 groups (PCS, 9%; ACS, 13%; \(P=0.243\); Table 2). Multivariate logistic regression analyses identified age (\(P<0.001\)), NIHSS score (\(P<0.001\)), and blood glucose (\(P=0.001\)) as independent predictors of mortality. No association between stroke territory and mortality was observed after adjusting for these predictors (\(P=0.251\); Table 2).

A favorable outcome was observed in 426 (49%) patients. Favorable outcome occurred more often in patients with PCS (66%) as compared with those with ACS (47%, \(P<0.001\); Table 2). Multivariate logistic regression analyses showed NIHSS score (\(P<0.001\)), blood glucose (\(P<0.001\)), age (\(P=0.006\)), antplatelet medication (\(P=0.008\)), and anticoagulation (\(P=0.022\)) to be independently associated with a favorable outcome. Stroke territory no longer predicted fa-
favorable outcome after adjustment for these predictors ($P=0.177$; Table 2).

Discussion

To our best knowledge, this is the largest series assessing the safety and clinical outcome of IVT for PCS in comparison to ACS. Few studies have examined IVT in patients with PCS; most of them had a small sample size (range, 9 to 12 patients)$^{19-21}$ or were restricted to patients with basilar artery occlusion.4,22

The rate of patients with PCS (11%) was lower than reported in other studies, which may be explained by the following reason: our study excluded patients with PCS who received endovascular treatment or conservative therapy only, the latter being the case in 31% of patients in the Basilar Artery International Cooperation Study (BASICS) registry.4

Table 1. Baseline Characteristics of 95 Patients With Posterior Circulation Stroke and 788 Patients With Anterior Circulation Stroke

<table>
<thead>
<tr>
<th></th>
<th>Posterior Circulation Stroke ($n=95$)</th>
<th>Anterior Circulation Stroke ($n=788$)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male sex, %</td>
<td>62.1</td>
<td>62.8</td>
<td>0.892</td>
</tr>
<tr>
<td>Mean age±SD, y</td>
<td>62.9±15.1</td>
<td>66.9±14.3</td>
<td>0.012*</td>
</tr>
<tr>
<td>Hypertension, %</td>
<td>62.1</td>
<td>63.1</td>
<td>0.854</td>
</tr>
<tr>
<td>Current smoking, %</td>
<td>25.3</td>
<td>24.8</td>
<td>0.918</td>
</tr>
<tr>
<td>Diabetes mellitus, %</td>
<td>16.0</td>
<td>13.6</td>
<td>0.528</td>
</tr>
<tr>
<td>Hypercholesterolemia, %</td>
<td>46.4</td>
<td>38.7</td>
<td>0.171</td>
</tr>
<tr>
<td>Antiplatelet medication at stroke onset, %</td>
<td>38.9</td>
<td>36.1</td>
<td>0.584</td>
</tr>
<tr>
<td>Anticoagulation at stroke onset, %</td>
<td>1.1</td>
<td>2.4</td>
<td>0.714†</td>
</tr>
<tr>
<td>Coronary artery disease, %</td>
<td>19.1</td>
<td>18.0</td>
<td>0.793</td>
</tr>
<tr>
<td>Atrial fibrillation, %</td>
<td>17.0</td>
<td>24.6</td>
<td>0.102</td>
</tr>
<tr>
<td>Mean NIHSS score±SD</td>
<td>9.3±7.9</td>
<td>12.2±5.9</td>
<td><0.001*</td>
</tr>
<tr>
<td>Time to treatment±SD</td>
<td>169.0±54.5</td>
<td>160.0±40.0</td>
<td>0.243*</td>
</tr>
<tr>
<td>Mean systolic blood pressure±SD, mm Hg</td>
<td>152.8±24.7</td>
<td>155.6±24.9</td>
<td>0.211*</td>
</tr>
<tr>
<td>Mean diastolic blood pressure±SD, mm Hg</td>
<td>85.9±14.7</td>
<td>88.1±16.4</td>
<td>0.210*</td>
</tr>
<tr>
<td>Mean blood glucose±SD, mmol/L</td>
<td>6.9±2.6</td>
<td>6.9±2.4</td>
<td>0.890*</td>
</tr>
<tr>
<td>Cause of stroke</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large artery atherosclerosis, %</td>
<td>15.2</td>
<td>12.9</td>
<td></td>
</tr>
<tr>
<td>Cardiac embolism, %</td>
<td>43.5</td>
<td>47.8</td>
<td>0.331</td>
</tr>
<tr>
<td>Small artery disease, %</td>
<td>8.7</td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td>Other determined etiology, %</td>
<td>6.5</td>
<td>9.2</td>
<td></td>
</tr>
<tr>
<td>Undetermined etiology, %</td>
<td>26.1</td>
<td>25.9</td>
<td></td>
</tr>
</tbody>
</table>

P values apply to χ^2 tests unless otherwise indicated.

NIHSS indicates National Institutes of Health Stroke Scale; SD, standard deviation.

*Fisher exact test.

†Adjusted for atrial fibrillation, antiplatelet medication, and diastolic blood pressure in logistic regression analysis (bootstrap method).

‡Adjusted for age, NIHSS score and blood glucose in logistic regression analysis.

§Adjusted for NIHSS score, blood glucose, age, antiplatelet medication, and anticoagulation in logistic regression analysis.

Table 2. Symptomatic Intracranial Hemorrhage, Mortality, and Favorable Outcome in Patients With Posterior Versus Anterior Circulation Stroke Treated With Intravenous Thrombolysis

<table>
<thead>
<tr>
<th></th>
<th>Symptomatic ICH</th>
<th>Mortality</th>
<th>Favorable Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n/N [%]) Unadjusted</td>
<td>(n/N [%]) Unadjusted</td>
<td>(n/N [%])</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Posterior circulation stroke</td>
<td>0/93 (0)</td>
<td>0.026*</td>
<td>8/94 (9)</td>
</tr>
<tr>
<td></td>
<td>0.001†</td>
<td></td>
<td>0.251‡</td>
</tr>
<tr>
<td>Anterior circulation stroke</td>
<td>36/784 (5)</td>
<td>100/784 (13)</td>
<td>364/784 (46)</td>
</tr>
</tbody>
</table>

Symptomatic intracranial hemorrhage (ICH) refers to National Institute of Neurological Disorders and Stroke criteria. P-values apply to χ^2 tests unless otherwise indicated.

ICH indicates intracranial hemorrhage; NIHSS, National Institutes of Health Stroke Scale.

*Fisher exact test.

†Adjusted for atrial fibrillation, antiplatelet medication, and diastolic blood pressure in logistic regression analysis (bootstrap method).

‡Adjusted for age, NIHSS score and blood glucose in logistic regression analysis.

§Adjusted for NIHSS score, blood glucose, age, antiplatelet medication, and anticoagulation in logistic regression analysis.
Furthermore, patients with PCS might have more (relative) contraindications for IVT such as NIHSS score ≤4 points or fluctuating stroke symptoms.\(^5\),\(^23\),\(^24\)

The main finding of the present study was the lack of sICH in patients with PCS; after multivariable adjustment, PCS was associated with a lower sICH risk. In line with our findings, a previous study reported a significantly lower rate of hemorrhagic transformations after IVT for basilar artery occlusions as compared with middle cerebral artery occlusions and no sICH in basilar artery occlusions.\(^25\) Older age, history of diabetes, aspirin pretreatment, high NIHSS score at baseline, high systolic blood pressure at presentation, and high baseline blood glucose have been described as independent predictors of sICH after IVT.\(^26\) In the present study, the frequency of diabetes mellitus and baseline blood glucose levels were similar in patients with PCS and ACS. Patients with PCS had significantly lower baseline NIHSS scores as compared with those with ACS in the present study. A similar difference in NIHSS baseline scores was reported in 2 other studies.\(^23\),\(^24\) This may partly be explained by the fact that the NIHSS has limitations in the assessment of stroke severity in PCS, because it is highly weighted toward deficits in ACS such as aphasia and hemiparesis, whereas signs of PCS, including bulbar deficits and ataxia, receive fewer points.\(^27\)

Furthermore, NIHSS in PCS does not correlate with volume of ischemic lesion and lesion volume in PCS does not predict outcome,\(^28\),\(^29\) which is in contrast to ACS.\(^30\) Thus, we believe that the observed differences in NIHSS scores between patients with PCS and ACS may rather be related to shortcomings of the NIHSS. The age difference between the 2 patient groups was statistically significant but unlikely to account for such a pronounced discrepancy in the sICH rates between stroke territories. Smaller infarct volumes may be a reason for lower sICH rates in PCS; however, the reason for this remains hypothetical and we do not have any data about the ischemic or infarct volumes in both territories. From an anatomic point of view, one argument might be the difference in vessel calibers because especially the brain stem is nourished by small end-arteries. Collateral flow through the posterior communicating or the cerebellar arteries may lead to a slower evolution of irreversible ischemia in PCS with proximal artery occlusion.\(^31\) However, there are currently no anatomic or clinical–epidemiological studies to support that collateral supply is better in posterior circulation; thus, this argument remains rather hypothetical.

In our study, mortality between PCS and ACS did not differ significantly in univariate and multivariate analyses. Favorable clinical outcome after IVT was more frequent in patients with PCS as compared with those with ACS in univariate analysis \((P<0.001)\). The association of favorable outcome with PCS was no longer significant after multivariable adjustment, however \((P=0.177)\). We are not aware of other studies that assessed the outcome after IVT according to stroke territory; thus, no comparisons to existing literature can be undertaken.

The present study has several limitations. First, comparisons of stroke severity between PCS and ACS by using the NIHSS may not be quite accurate, as discussed previously in this article. Still, this drawback is currently inevitable in the absence of an alternative established evaluation tool. Second, a bias in patient selection is probable in view of a multicenter study with different treatment preferences. A total of 631 patients with ischemic stroke underwent intra-arterial and/or mechanical thrombolysis during the study period at the 3 centers. Of these 631 patients, 116 had PCS and 515 ACS. Some patients with severe basilar artery occlusion may have been excluded due to endovascular treatment. On the other hand, this bias might be counterbalanced by the exclusion of severe ACS with middle cerebral artery occlusion, either due to treatment with intraarterial thrombolysis or ultrasound-enhanced IVT. Third, we were not able to assess early recanalization rates and infarct volumes, which might have additionally influenced the sICH risk. The number of patients with PCS was small, precluding definite conclusions on outcome differences between both stroke territories. Number of patients with prestroke modified Rankin Scale >1 would be valuable for interpretation of the results with respect to clinical outcome, the latter defined as modified Rankin Scale score 0 to 1 at 3 months. Unfortunately, we did not systematically evaluate the prestroke modified Rankin Scale in this study. Finally, we did not assess the presence of carotid blood supply to posterior cerebral circulation.

In conclusion, our study suggests that PCS is associated with a lower risk of sICH after IVT as compared with ACS, whereas favorable outcome and mortality were similar in the 2 stroke territories.

Disclosures

None.

References

Outcomes of Intravenous Thrombolysis in Posterior Versus Anterior Circulation Stroke
Hakan Sarikaya, Marcel Arnold, Stefan T. Engelter, Philippe A. Lyrer, Heinrich P. Mattle, Dimitrios Georgiadis, Leo H. Bonati, Felix Fluri, Urs Fischer, Oliver Findling, Pietro Ballinari and Ralf W. Baumgartner

Stroke. 2011;42:2498-2502; originally published online July 21, 2011;
doi: 10.1161/STROKEAHA.110.607614
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2011 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/42/9/2498

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/