Self-Expandable Stents in the Treatment of Acute Ischemic Stroke Refractory to Current Thrombectomy Devices

Italo Linfante, MD, FAHA; Edgar A. Samaniego, MD; Philipp Geisbüsch, MD; Guilherme Dabus, MD

Background and Purpose—Vessel recanalization is a strong predictor of good outcome in acute ischemic strokes (AIS) secondary to large vessel occlusions. We report our single-center experience with self-expandable stents in the treatment of AIS.

Methods—The stroke database of Baptist Cardiac and Vascular Institute in Miami was retrospectively reviewed from August of 2008 to September of 2010. All cases of AIS in which a self-expandable stents was deployed as acute endovascular intervention were included in the analysis. Criteria for intervention were the onset of neurological symptoms because of AIS, a National Institute of Health Stroke Scale score ≥4 at presentation, stroke attributable to a large vessel occlusion, and failure of arterial thrombolysis or mechanical thrombectomy or both. Good outcome was defined as a modified Rankin Scale score ≤2 at 1 month from hospital discharge.

Results—Nineteen patients with AIS who underwent stenting were identified. Median National Institute of Health Stroke Scale score on admission was 19. Six Enterprise and 13 Wingspan stents were deployed. Recanalization was achieved in 95% occlusions (63% thrombolysis in myocardial infarction grade 3 and 32% thrombolysis in myocardial infarction grade 2). Good clinical outcome was achieved in 42%. No intraprocedural complications occurred and all stents were successfully deployed. Symptomatic intracerebral hemorrhage occurred in 3 (16%) patients, 2 of whom died.

Conclusions—Use of self-expandable stents in AIS appears to be safe and may be considered when currently available thrombectomy devices and/or intraarterial thrombolysis fail. (Stroke. 2011;42:2636-2638.)

Key Words: acute ischemic stroke ■ self-expandable stents ■ stenting ■ thrombectomy ■ thrombolysis

Recanalization is a strong predictor of good outcome in cerebral ischemia secondary to large vessel occlusion.1 Recanalization rates with Food and Drug Administration-approved thrombectomy devices such as the Concentric Thrombus Retriever (Concentric Medical) and the Penumbra System (Penumbra) have been reported to range between 63% and 82%.2,3 Recent experience with the use of self-expanding stents (SES) for flow restoration of acute ischemic stroke (AIS) secondary to intracranial large vessel occlusion suggests that this approach can be safe and feasible.4 We report our single-center experience with SES in the treatment of AIS.

Materials and Methods

After obtaining Institutional Review Board approval, stroke cases at Baptist Cardiac and Vascular Institute, which occurred between August 2008 and September 2010, were retrospectively reviewed. All cases of AIS in which a stent was deployed as acute endovascular intervention were included in the analysis.

Criteria for intervention was the onset of neurological symptoms attributable to an acute ischemic stroke with a National Institute of Health Stroke Scale score ≥4, stroke attributable to a large vessel occlusion, and failure or contraindication to intra-arterial thrombolysis or mechanical thrombectomy (or both). Patients who presented beyond 6 hours from symptom onset were considered for treatment if the brain computed tomography perfusion demonstrated a mismatch of more than one-third of the middle cerebral artery territory between the cerebral blood flow and cerebral blood volume images. Enterprise Vascular Reconstruction Device (Cordis Corporation) and Wingspan (Boston Scientific) SES are used at our institution. The off-label use of these stents for vessel recanalization in AIS, procedural complications, and adverse events were notified to the Institutional Review Board and manufactures. Every intervention was performed with written consent from the patients or their legal representative.

Outcomes were assessed at follow-up clinic visits or by a structured telephone interview. Good outcome was defined as a modified Rankin Scale (mRS) score ≤2 at 1 month from hospital discharge. Recanalization of the target vessel and of the distal circulation was assessed using the thrombolysis in myocardial infarction grading system by a physician not involved with the procedure and blinded from the clinical outcome.5

If chemical thrombolysis was not effective, then mechanical thrombectomy was attempted with the Merci Retriever or the Penumbra system (or both). If minimal or no recanalization was achieved, or if anatomic variations prevented the use of thrombectomy devices, then angioplasty and stenting were performed. If the patient was not using aspirin and clopidogrel, then intra-arterial abciximab was infused immediately before or after the stent deployment (0.25 mg/kg).

A head computed tomography was performed within 24 hours of the procedure to detect hemorrhagic transformation. Spontaneous intracerebral hemorrhage was defined as a 4-point deterioration from
Results

Nineteen patients with AIS who underwent stenting were identified. Demographic characteristics and clinical outcomes are described in Table 1. The median National Institute of Health Stroke Scale score at admission was 19 (range, 6–28).

All patients were treated with chemical thrombolysis or mechanical thrombectomy (or both), except for 2 patients who presented beyond 3 hours and had evidence of atherosclerotic changes in angiography and were directly stented. Six Enterprise and 13 Wingspan stents were deployed. In all the procedures, intra-arterial GIIb/IIIa inhibitors were administered to ensure stent patency.

Twelve (63%) lesions achieved thrombolysis in myocardial infarction grade 2 or 3 flow. This selected cohort of patients, with otherwise poor prognoses, achieved a mRS score of 2 in 42% and mRS score 3 in 63%. Other studies have shown a 100% successful deployment of SES in AIS (Table 2), with only 2 cases of transitory stent occlusion in which intra-arterial glycoprotein IIb/IIIa inhibitors had to be administered.

The rate of spontaneous intracerebral hemorrhage (16%) in our cohort was higher than other studies that have reported rates between 0% and 11%. These previous studies did not administer intra-arterial glycoprotein IIb/IIIa inhibitors in all their patients, as in our experience (Table 2). Based on these observations, intra-procedural glycoprotein IIb/IIIa inhibitors may only be used as a salvage intervention in case of acute in-stent thrombosis and may not be administered routinely during stent deployment.

Discussion

In our experience, angioplasty and stenting in AIS secondary to large vessel occlusion resulted in 95% thrombolysis in myocardial infarction grade 2 or 3 flow. This selected cohort of patients, with otherwise poor prognoses, achieved a mRS score of 2 in 42% and mRS score 3 in 63%. Other studies have shown a 100% successful deployment of SES in AIS (Table 2), with only 2 cases of transitory stent occlusion in which intra-arterial glycoprotein IIb/IIIa inhibitors had to be administered.

The Wingspan stent system was approved by the Food and Drug Administration for endovascular treatment of intracranial atherosclerosis and appears as a natural choice for revascularization in AIS. Nevertheless, the more navigable SES Enterprise was successfully deployed in 2 cases in which cerebrovascular tortuosity limited the use of Wingspan.

Table 1. Clinical and Radiological Characteristics of 19 Patients Treated With Self-Expandable Stents for Acute Ischemic Stroke

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age (Y)</th>
<th>Gender</th>
<th>Occlusion</th>
<th>NIHSS</th>
<th>Stent</th>
<th>Time of Intervention (H)</th>
<th>TIMI</th>
<th>1 mo mRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>91</td>
<td>F</td>
<td>L M1</td>
<td>23</td>
<td>Enterprise</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>53</td>
<td>M</td>
<td>L M1</td>
<td>20</td>
<td>Enterprise</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>79</td>
<td>M</td>
<td>L M1</td>
<td>20</td>
<td>Enterprise</td>
<td>5*</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>73</td>
<td>M</td>
<td>R M1</td>
<td>9</td>
<td>Enterprise</td>
<td>24*</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>66</td>
<td>M</td>
<td>Basilar</td>
<td>28</td>
<td>Enterprise</td>
<td>12</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>67</td>
<td>M</td>
<td>L Carotid T</td>
<td>26</td>
<td>Enterprise</td>
<td>9*</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>42</td>
<td>M</td>
<td>L Carotid T</td>
<td>26</td>
<td>Wingspan</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>59</td>
<td>M</td>
<td>L Carotid T</td>
<td>26</td>
<td>Wingspan</td>
<td>3.5</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>54</td>
<td>M</td>
<td>Tandem R ICA at the bifurcation + R M1</td>
<td>17</td>
<td>Wingspan</td>
<td>3.5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>28</td>
<td>M</td>
<td>R M1</td>
<td>6</td>
<td>Wingspan</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>70</td>
<td>M</td>
<td>L Carotid T</td>
<td>26</td>
<td>Wingspan</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>52</td>
<td>F</td>
<td>L M1</td>
<td>13</td>
<td>Wingspan</td>
<td>7</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>69</td>
<td>M</td>
<td>Basilar</td>
<td>10</td>
<td>Wingspan</td>
<td>23*</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>14</td>
<td>78</td>
<td>F</td>
<td>R M1</td>
<td>14</td>
<td>Wingspan</td>
<td>9</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>15</td>
<td>92</td>
<td>M</td>
<td>L M1</td>
<td>19</td>
<td>Wingspan</td>
<td>3</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>16</td>
<td>63</td>
<td>M</td>
<td>L M1</td>
<td>8</td>
<td>Wingspan</td>
<td>3.5</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>71</td>
<td>M</td>
<td>L M1</td>
<td>14</td>
<td>Wingspan</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>18</td>
<td>70</td>
<td>M</td>
<td>L Carotid T</td>
<td>19</td>
<td>Wingspan</td>
<td>2.5</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>19</td>
<td>56</td>
<td>M</td>
<td>Basilar</td>
<td>11</td>
<td>Wingspan</td>
<td>2</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

F indicates female; IA, intraarterial; ICA, Internal Carotid Artery; IV, intravenous; L, left; M, male; mRS, modified Rankin Scale; NIHSS, National Institutes of Health Stroke Scale; R, right; TIMI, thrombolysis in myocardial infarction; T, terminous.

*Approximate time since last seen normal.

the preprocedure National Institute of Health Stroke Scale score combined with a space-occupying brain hematoma.6
Levy et al4

I.L. is a consultant for Codman Neurovascular and Concentric available devices failed.

Intracranial vessels in patients in whom other currently available devices failed would bypass the study limitations. In summary, deployment of SES in AIS is an alternative for recanalization of large intracranial vessels in patients in whom other currently available devices failed.

Disclosures

I.L. is a consultant for Codman Neurovascular and Concentric Medical.

References

Self-Expandable Stents in the Treatment of Acute Ischemic Stroke Refractory to Current Thrombectomy Devices
Italo Linfante, Edgar A. Samaniego, Philipp Geisbüsch and Guilherme Dabus

Stroke. 2011;42:2636-2638; originally published online June 30, 2011;
doi: 10.1161/STROKEAHA.111.618389
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2011 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/42/9/2636

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org/subscriptions/