Acutic ischemic stroke is one of the major sources of morbidity and mortality in the industrialized countries. The lifetime risk of stroke is estimated to be 1 in 5 for middle-aged women and 1 in 6 for men according to the Framingham Study.1 Outcome depends on the length of time between onset of symptoms and revascularization, the recanalization rate, and on whether or not intracranial hemorrhage occurs.2 A meta-analysis of 52 studies on thrombolysis outcome in 2066 patients showed that the chance of an independent life after stroke increases 4.4 times for patients with successful recanalization compared with patients without recanalization; mortality rate decreases 4-fold.2

Intravenously administered tissue plasminogen activator (IV tPA) and local intra-arterial thrombolysis (IAT) have both been shown to improve patient outcome. However, the time window for treatment and the recanalization rate of both approaches are limited,3–5 and the application of thrombolytic drugs increases the risk of symptomatic intracranial hemorrhage (sICH).6 The success of recanalization, furthermore, depends on the occlusion site; proximal occlusions of large vessels such as the internal carotid artery have a poor recanalization rate after either IV tPA or IAT.4,5

Recent studies have examined whether mechanical recanalization techniques can accelerate the process of recanalization, increase the recanalization rate, and even expand the window of opportunity. This article describes the evolution of the different mechanical thrombolysis and stenting techniques and their working principles for endovascular vessel recanalization and reviews the data on the outcome after acute stroke treatment.

Mechanical Thrombolysis
The various techniques and approaches for mechanical thrombolyis (MT) can be divided into 3 categories: thrombus disruption, immediate flow restoration with self-expandable stents, and thrombectomy.

Thrombus Disruption
According to Pro-Urokinase for Acute Cerebral Thromboembolism-2 (PROACT II), IAT consists of local application of the fibrinolytic drug at the proximal surface of the thrombus. Mechanical clot disruption was not allowed according to the study protocol.7

Various techniques for thrombus fragmentation have been advocated. The most common is probing the thrombus with the microwire and/or advancing the microcatheter into or beyond the thrombus.8–9 This simple mechanical procedure during IAT has been shown to improve the rate of successful recanalization (here defined as Thrombolysis in Myocardial Infarction score ≥210 or Thrombolysis in Cerebral Infarction score ≥2b11). In middle cerebral artery occlusions, successful recanalization has reported in 79%12 compared with the PROACT II data showing a recanalization rate of 66%.13 Various studies have shown the efficacy of percutaneous balloon angioplasty at increasing the thrombus surface and achieving recanalization.14,15

The largest study compared 34 patients with M1 occlusions receiving percutaneous balloon angioplasty as the first-line treatment15 to 36 patients treated with IAT alone (mean National Institutes of Health Stroke Scale [NIHSS], 16). Sufficient recanalization was achieved in 91.2% (versus 63.9%) with a favorable clinical outcome (here defined as modified Rankin Scale at 90-day follow-up ≤2) in 73.5% versus 50%, respectively. After percutaneous balloon angioplasty, however, 64.5% of patients required additional IAT to resolve distal emboli that occurred during treatment.

A modification of this technique is percutaneous balloon angioplasty using low-pressure remodeling balloons. A recent study reports on the use of this technique in conjunction with low-dose epifibatide and/or IAT.16 Treatment of 12 consecutive patients (mean NIHSS, 17) produced successful recanalization in 91.6% and a favorable clinical outcome in 41.6%. Due to the risk of periprocedural complications and distal emboli associated with percutaneous balloon angioplasty, this technique has not emerged as a first-line technique and is reserved rather for patients in whom more conservative methods have failed.

More sophisticated intraluminal clot disruption devices apply ultrasound or laser technology. The EKOS system (EKOS, Bothell, WA) uses a 2.5-Fr microcatheter (MicroLysUS infusion catheter) with a 2.1-MHz piezoelectric sonography element at its distal tip. Local application of ultrasonic vibrations is intended to increase fluid permeation within the

© 2011 American Heart Association, Inc.

Stroke is available at http://stroke.ahajournals.org

DOI: 10.1161/STROKEAHA.111.626903
thrombus so as to enhance the effect of IAT. The initial clinical study on 14 patients with anterior and posterior circulation strokes (mean NIHSS, 18) showed a successful recanalization in 57% with a favorable clinical outcome in 43% of patients. The rate of sICH was increased to 14% (compared with the 10% rate in PROACT II). The device has subsequently been investigated in the Interventional Management of Stroke (IMS)-II trial in which its application in 34 patients resulted in a recanalization rate of 73%. Currently, the EKOS system is one of the 3 mechanical approaches being used in the IMS-III trial. Laser-based technology is used by the EPAR system (EPAR; Endovasix, Belmont, CA), which aims to emulsify the clot by the application of microcavitation bubbles at the tip of the microcatheter. The clinical study enrolled 34 patients (mean NIHSS, 19) with occlusion sites in the anterior and posterior circulation. In 18 of the 34 patients (53%), the device could be applied as intended with a recanalization rate of 61.1% in this subgroup. The study documented 1 severe adverse event (vessel rupture) and 5.9% of sICH with an overall mortality rate of 38.2%.

Approaches requiring adjuvant thrombolysis are prone to increase the rate of sICH, which is a potential disadvantage compared with techniques applying MT alone.

Stenting

Stent placement promises immediate flow restoration without repetitive passing and retrieval attempts and may render unnecessary the application of thrombolytic drugs. Instead of mechanical retrieval, intracranial stenting achieves recanalization by compressing the thrombus to the vessel wall and avoids the risk of proximal thrombus dislocation. However, intracranial stent placement in general, but especially in the setting of acute stroke, has some disadvantages. The compressed thrombus is likely to cause permanent side branch and perforator occlusion. Furthermore, the implant can cause short-term complications such as in-stent thrombosis and reocclusion of the vessel, requiring antplatelet aggregation medication. However, this preventive medication regime might increase the risk of sICH in the stroke population. Furthermore, the up to 32% restenosis rate reported for bare metal stents at intracranial stenosis in a 9-month follow-up period is matter for concern.

Different stent designs have been successfully applied to the clinical setting of acute stroke; self-expandable stents (SESs) are preferentially used over balloon-mounted stents. Preliminary data on the use of SES in the treatment of acute intracranial vessel occlusion is limited to case reports and small case series. Levy et al reported successful recanalization in 79% in 18 patients (mean NIHSS, 18) who presented with acute stroke. The placement of SES in the study, however, was accompanied by various other endovascular techniques. Moderate clinical outcome (here defined as modified Rankin Scale at 90-day follow-up ≤3) was achieved in 33.3%. Brekenfeld et al treated 12 patients (mean NIHSS, 14) with acute ischemic stroke using SES; IAT and/or mechanical thrombolysis failed in 7 patients before stent deployment. Successful recanalization was achieved in 92% of cases; moderate clinical outcome was reported in 50%; no sICH occurred.

Similarly, Linfante et al reported on the use of SES in 19 patients with stroke (mean NIHSS, 19) as a rescue therapy after failure of arterial thrombolysis and/or mechanical thrombectomy. Successful recanalization was achieved in 95% of occlusions. Favorable clinical outcome was achieved in 42%. No intraprocedural complications were encountered; sICH occurred in 16%.

The Stent-Assisted Recanalization in Acute Ischemic Stroke (SARIS) trial is the first Food and Drug Administration-approved prospective trial investigating stenting for the treatment of acute stroke. It reports on 20 patients with stroke (mean NIHSS, 14) treated within the 6-hour window. In all cases (100%), the target vessel was recanalized after treatment. Adjuvant therapies including angioplasty, IAT, and IV tPA were applied in 63.2%. At 1-month and 6-month moderate clinical outcome was achieved in 60% of patients.

Although the recanalization rate in all studies on the application of SES in patients with stroke is generally very high, it is debatable whether stenting in acute ischemic stroke has a future role as a first-line treatment due to the risks associated with intracranial stent placement and the recent success of thrombectomy. Stenting does, however, have clear value in selected cases of rescue therapy.

Mechanical Thrombectomy

All mechanical thrombectomy devices are delivered by endovascular access proximal to the occlusion site. The various devices can be divided into 3 major groups according to where they apply force on the thrombus.

Proximal devices apply force to the proximal base of the thrombus; this group includes various aspiration catheters and systems. Distal devices approach the thrombus proximally but then are advanced by a microcatheter past the thrombus to be unsheathed behind it, where force is applied to the distal base of the thrombus; this group includes brush-like, basket-like, or coil-like devices.

The most recently developed devices include stent-like devices that are placed across the occlusion side, deployed within the thrombus, and then retrieved; this group includes various self-expandable stent retrievers (SRs).

Thrombus Aspiration and Proximal Thrombectomy

The first reports on mechanical thrombectomy in acute stroke treatment included the use of aspiration catheters. A large microcatheter (4–5 Fr) is advanced to the proximal surface of the clot and suction force is applied using a 60-mL syringe. Entrapment of the thrombus is indicated by the absence of backflow. The catheter is then retrieved with constant negative pressure to avoid loss of thrombus. After each retrieval of clot fragments, the procedure is repeated.

Although widely applied, few data have been published on this approach so far. A recent single-center study reported on 22 consecutive patients (mean NIHSS, 18) treated with aspiration thrombectomy alone. Sufficient recanalization was
achieved in 81.9% and a favorable clinical outcome in 45.5%.30

The method is technically simple, fast to apply, and inexpensive. It is widely used, especially in proximal occlusions (eg, distal cervical internal carotid artery, internal carotid artery terminus) when the target vessel has a large diameter and an anatomy favorable for device navigation.

Penumbra System

The Penumbra system (Penumbra, Alameda, CA) is a refinement of the proximal thrombectomy technique. It applies continuous aspiration in conjunction with mechanical fragmentation and was approved by the Food and Drug Administration for clot removal in stroke treatment in 2007.

Reperfusion catheters of various sizes (0.26–0.51 inch) are advanced to the proximal surface of the thrombus and connected to an aspiration pump providing continuous aspiration (−700 mm Hg). To avoid the obstruction of the aspiration catheter, additional clot fragmentation is achieved with a teardrop-shaped separator mounted at the distal end of the microwire (Figure 1). This setting allows cleaning of the catheter tip of clot fragments at the same time as keeping the device in place during recanalization. The aim of this setting is to debulk the clot from proximal to distal; small catheter sizes should facilitate thrombectomy even in distal branches such as M2 segments.

The Penumbra system has been investigated in numerous single-center and multicenter trials. The Penumbra Pivotal Stroke Trial prospectively examined the results in 125 stroke patients (mean NIHSS, 18) within a window of 8 hours after onset of symptoms. Recanalization of the target vessel was achieved in 81.6%. The study did not state the percentage of patients that received IV tPA before mechanical recanalization. Despite the convincing recanalization rate, clinical outcome was poor; favorable clinical outcome was achieved in only 25% of all patients and in 29% of patients with successful recanalization. The rate of sICH was 11.2% and overall mortality was 32.8%.31 Serious adverse events occurred in 3.2% of cases.

The high recanalization rate in correlation to the poor clinical results in this trial sparked the discussion on the value of recanalization using MT. However, some single-center studies reported better clinical results with the Penumbra system than those of the Pivotal Trial. Kulcsar et al32 reported on a series of 27 patients (mean NIHSS, 14) with large vessel occlusions. The mean procedural time was rather long (1.6 hours). Successful recanalization was achieved in 93% of patients, favorable clinical outcome was found in 48%, and all-cause mortality was reduced to 11%.

The Penumbra system is one of the devices currently being investigated in the IMS-III trial.19

Distal Thrombectomy

Due to the technical disadvantages associated with large-diameter aspiration catheters as well as the low retrieval rate of aspiration, a novel generation of distal thrombectomy devices was developed. The microcatheter (0.18–0.27 inch) for the deployment of distal devices is usually easy to navigate even in tortuous vessel anatomy to the intracranial occlusion side. After passing the clot, the device is deployed distally to the thrombus. This approach shifts the application of force to the distal base of the thrombus, which has been shown to increase the efficacy of thrombectomy in vivo. However, vasospasm and vessel wall damage have been more frequently described in association with distal devices. Furthermore, during retrieval, the loose engagement of the clot with the distal device is prone to cause thromboembolic events. For most distal devices, therefore, proximal balloon occlusion and aspiration from the guide catheter (flow reversal) during retrieval are recommended.

Various distal devices have been advocated in the past (eg, Phenox, Bochum, Germany; Catch, Balt, Montmorency, France), most of them available in Europe only. Large clinical experience has been reported on the Merci devices, the first device of this group to receive Food and Drug Administration approval (in 2004).

Merci Devices

The essential component of the Merci Retrieval System (Concentric Medical, Mountain View, CA) is the Merci retriever (Figure 2). The initial Mechanical Embolus Removal in Cerebral Ischemia (MERCI) trial evaluated the
safety and efficacy of the Merci system in the setting of acute stroke within 8 hours of onset in 151 patients (mean NIHSS, 20) who were ineligible for IAT.33 The trial included patients with anterior circulation (90%) and posterior circulation (10%) stroke. Successful recanalization was achieved in 46% of the treated patients, significantly higher compared with the control group, the spontaneous recanalization rate of 18% of the PROACT II trial.7 Favorable clinical outcome was achieved in 27.7% of patients. The mean procedure duration was 2.1 hours; clinically significant procedural complications occurred in 7.1% of patients; the sICH rate was 7.8%.

The Multi-MERCI trial was an international, single-arm trial that investigated 164 patients (mean NIHSS, 19) within an 8-hour window after symptom onset.34 The primary end point was target vessel recanalization. In contrast to the MERCI trial, prior treatment with IV tPA, IAT, or other mechanical techniques was allowed and new generations of the Merci device were included. Successful recanalization was achieved in 57.3% using the retriever alone and in 69.5% in conjunction with other treatment modalities. A favorable clinical outcome was achieved in 36% of patients. Mean procedure duration was 1.6 hours and therefore again remarkably long for a mechanical approach. Clinically significant procedural complications occurred in 5.5% of patients; the sICH rate was 9.8%.

The introduction of the device was a landmark of mechanical recanalization in stroke treatment. Both MERCI trials demonstrated a significantly better clinical outcome in patients with successful recanalization. The group of Merci devices is currently being assessed within the IMS-III trial.19

Stent Retriever

The most recently introduced mechanical devices for acute stroke treatment are self-expandable, stent-like thrombectomy devices. Combining the advantages of temporary stenting with immediate flow restoration without the need for permanent implantation plus thrombectomy with definitive thrombus removal, SR devices offer a promising new treatment option for acute ischemic stroke. The devices are applied in a manner comparable to that of intracranial stents. After passing the occlusion site with a microcatheter (0.21–0.27-inch inner diameter), the SR is deployed covering the entire thrombus. The radial force of the SR can immediately generate a channel compressing the thrombus and restore flow to the distal territory. Adjuvant IAT can be applied at this point. After an embedding time of 3 to 10 minutes, the deployed stent is slowly retrieved. As for distal devices, proximal balloon occlusion and flow reversal by aspiration at the guide catheter during retrieval is recommended.

Numerous variants of this device type are currently under development or in first clinical trials (TREVO, Concentric Medical, Mountain View, CA; PULSE, Penumbra, Alameda, CA; ReVive, Micrus, CA).

The first dedicated combined flow restoration and thrombectomy device for acute stroke treatment was the Solitaire FR (ev3, Irvine, CA; Figure 3). The device is a modification of the Solitaire AB Neurovascular Remodeling Device, originally developed for stent-assisted treatment of wide-neck intracranial aneurysms. Within a short period of time, numerous studies have reported on the in vivo and clinical application of the Solitaire FR for stroke treatment.

Castano et al35 reported in 2010 on their initial experience in 20 patients with acute stroke within an 8-hour time window. Successful recanalization was achieved in 90% of cases with a mean procedural time of 50 minutes. A favorable clinical outcome was attained in 45%; the sICH rate was 9.8%. Other small case series using SR have shown similar successful recanalization rates (88%–91%) and fast procedural times (42–55 minutes) with comparable rates of favorable clinical outcome (42%–54%).36–38

Figure 3. Angiogram showing an acute MCA occlusion (A) and the immediate flow restoration after SR placement (B). Complete recanalization after retrieval (C); the thrombus is encaged in the Solitaire FR. MCA indicates middle cerebral artery; SR, stent retriever.
The largest study to date summarizes these findings. The retrospective collection of cases from 6 large European stroke centers reports on outcome in 141 patients with acute patients (mean NIHSS, 18) treated for occlusions in the anterior (internal carotid artery: 27%, middle cerebral artery: 59%) and posterior circulation (14%). Mean recanalization time was 45 minutes; Thrombolysis in Cerebral Infarction ≥2b was achieved in 86% of target vessels. A favorable clinical outcome was found in 55% of patients. Overall mortality was 20.5%.

The results of 2 larger trials are expected. The SWIFT trial (Solitaire FR with the Intention for Thrombectomy) is a randomized trial comparing the efficacy and safety of the Solitaire FR system with that of the Merci device. Patients included in the trial may be ineligible for or have failed IV tPA within an 8-hour window. The primary outcome is recanalization of an occluded target vessel to Thrombolysis in Myocardial Infarction ≥2. Secondary outcomes are recanalization time and modified Rankin Scale at 90-day follow-up. The SWIFT study was halted by the data monitoring board early in 2011 after 126 patients of the anticipated 250 had been enrolled. The results have not been published yet but favorable results for Solitaire FR can be assumed.

The Solitaire FR is currently being evaluated in the STAR Trial (Solitaire FR Thrombectomy for Acute Revascularization). This prospective, international single-arm study has an enrolment goal of 200 consecutive patients with anterior circulation occlusion treated within a window of 8 hours. The study includes patients ineligible for or with failed IV tPA after bridging therapy or thrombectomy as initial treatment. The primary outcomes are recanalization rate of the target vessel to Thrombolysis in Cerebral Infarction ≥2b and safety. Secondary outcomes are recanalization time and modified Rankin Scale at 90-day follow-up. First results can be expected mid-2012.

The promising advances in SR compared with previous MT approaches are its reported high recanalization rate and marked reduction in recanalization time. Furthermore, it appears that the high recanalization rate ultimately correlates with a marked elevation in the rate of favorable clinical outcomes.

Discussion
Rapid restoration of cerebral blood flow is the principle goal of ischemic stroke therapy and is associated with better clinical outcome and reduced mortality rate after acute stroke. MT is performed using a variety of endovascular recanalization techniques, which have undergone rapid evolution in recent years. Nevertheless, current endovascular stroke treatment remains a multimodal approach combining the advantages of different MT techniques often in conjunction with IAT. Concerning the severity of intracranial complications, endovascular recanalization techniques should be reserved to dedicated stroke centers.

The introduction of mechanical approaches has undoubtedly expanded the time window for stroke treatment and broadened the treatment to patients in whom IV tPA or IAT failed or is contraindicated. The future role and true clinical value of MT is hard to predict and even difficult to invest-
Gralla et al

Mechanical Thrombolysis and Stenting in AIS

285

Key Words: acute stroke ▪ angioplasty & ▪ stenting ▪ endovascular treatment ▪ interventional neuroradiology ▪ mechanical thrombectomy ▪ stroke management ▪ thrombolysis
Mechanical Thrombolysis and Stenting in Acute Ischemic Stroke
Jan Gralla, Caspar Brekenfeld, Pasquale Mordasini and Gerhard Schroth

Stroke. 2012;43:280-285; originally published online December 22, 2011;
doi: 10.1161/STROKEAHA.111.626903
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2011 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://stroke.ahajournals.org/content/43/1/280

Data Supplement (unedited) at:
http://stroke.ahajournals.org/content/suppl/2012/08/14/STROKEAHA.111.626903.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org/subscriptions/
Mechanical Thrombolysis and Stenting in Acute Ischemic Stroke

Jan Gralla, MD, MSc; Caspar Brekenfeld, MD; Pasquale Mordasini, MD; Gerhard Schrot, MD

Section Editors: Laurent Pierot, MD, PhD, and Ajay Wakhloo, MD, PhD

Topical Review

Full Article

Received August 5, 2011; final revision received September 3, 2011; accepted September 14, 2011.
From the Department of Interventional and Diagnostic Neuroradiology, University of Bern, Bern, Switzerland.
Correspondence to Jan Gralla, MD, MSc, Department of Neuroradiology, Freiburgstrasse 4, CH-3010 Bern, Switzerland. E-mail jan.gralla@insel.ch

© 2011 American Heart Association, Inc.
를 나타낸 경우가 73.5% 였다(versus 50%). 그러나 경피적 풍선형성술 이후 64.5%에서 시술 중 발생한 왼위부 색전(distal emboli)을 눈여겨 두기 위하여 추가적으로 IAT의 시험이 필요했다.

이 방법을 보완한 것이 저압-개조 풍선(low-pressure remodeling balloons)을 이용한 경피적 풍선형성술이다. 최근의 연구에서, 이 방법을 저항성 epitifibatide, IAT와 함께 사용한 경우에 대해 보고하였다. 12명의 환자(평균 NIHSS, 17)의 91.6%에서 성공적으로 재관함성을 보였고, 41.6%에서 좋은 임상적 예후를 나타냈다.

경피적 풍선형성술과 관련된 시술 중 협병증 및 왼위부 색전 발생의 위험에 따른 이 방법은 현재 진행 중인 임상시험의 일차 지표로는 개발되지 않았으며, 이 방법은 임상 시험에 실패한 경우에 대해 널리 알려져 있는 것에대 해석을 하였다.

 좀 더 심해진 혈관내 혈관내내피질의 기구는 초음파나 레이저 기술을 적용한다. EKOS system (EKOS, Bothell, WA)는 2.1-MHz 압박(piezoelectric) 초음파를 그 원위부 끝부 지막한 2.5-Fr 미세 캐터터(Microlyse US infusion catheter)를 사용한다. 초음파 전송의 국소적 적용은 혈관내내피의 역제 투과를 증가시키며 IAT의 효과를 증진시키고자 사용되었다. 전신환부 뇌조직과 후손후부 뇌조직 환자 14명을 대상으로 한 조기 임상연구에서(평균 NIHSS, 18), 57%에서 성공적인 재관함성을 나타내었으며 43%의 환자에서 좋은 임상적 예후를 보였다. 17 sICH는 PROACT II의 10%에 비해 14%로 증가하였다. 이 기구는 Interventional Management of Stroke (IMS)-II 연구에서 34명의 환자에 적용되었으며, 73%의 혈관재생능성을 보였다. 18 현재, EKOS system은 IMS-III 연구에서 사용되는 3가지 기계적 혈관내내피들을 변환한 환자팀 성공률이 34명의 환자(평균 NIHSS, 19)를 대상으로 하였다. 19 34명 중 18명(53%)에서 기구가 적용될 수 있었으며, 재관함성률은 치료군에서 61.1%로 나타났다. 이 연구에서는 한 가지 심각한 부작용이 발생했으며(혈관 파열), 5.9%의 sICH가 발생했고, 전체 사망률은 38.2%였다.

추가적인 혈관내내피가 필요하다고 판단된 방법은 sICH의 발생을 증가시키는 경향이 있으며, 이는 기계적 혈관내내피 단독요법에 비해 잠재적인 약점이 될 수 있다.

스텐트 삽입술

스텐트 삽입술은 반복적인 동과/획수의 시도 없이 촉각적으로 혈류의 회복을 가능하게 하고, 혈관내내피 로돈관을 보완한 후로 사용을 줄일 수 있다. 기계적 제거 대신에, 두개내 스텐트 삽입술은 혈관벽으로 혈전을 앞서서 재관함성이 이루어지게 하며, 이는 근위부의 혈전이 원위부로 이탈하는 위험을 방지한 다. 그러나 두개내 스텐트 삽입술은 일반적으로, 특히 급성 뇌졸중 발생한 환자에서 몇 가지 단점이 있다. 압착된 혈관이 혈관내내피와 전공기를 영구적으로 막을 수도 있다. 재단 스텐트 내의 혈관형성이나 재관활과 같은 단기 혈관증이 발생한 수 도 있으며, 이러한 경우 혈관내내피질제의 사용이 필요하다. 그러나 이 예방적 치료제가 뇌졸중 환자에서 sICH의 위험을 증가시킬 수 있다. 20 더욱이, 두개내 혈관확장에서 일반금속 스텐트(bare metal stent)를 사용한 경우에 9개월 후 추적검사 후 재관함률이 32%까지 이르렀다는 사실은 알려진 만한 사항이다. 21

다양한 다자인의 스텐트가 급성 뇌졸중에서 성공적으로 임상적 적용되었다. 자가패칭성 스텐트(self-expendable stents, SES)가 풍선에 부착된 스텐트(balloon-mounted stents)보다 더 선행했다. 급성 두개내혈관 폐색 치료로서 SES를 사용한 예비연구결과는 증례보고와 소규모 중등사이즈의 연구에 있다. Levy 등은 급성 뇌졸중 환자 18명에게(평균 NIHSS, 18) 79%의 성공적인 재관함성을 보고하였다. 22 그러나, 이 연구에서 SES의 삽입은 다른 다양한 혈관내내피 치료 기법과 함께 사용되었다. 33,3%에서 90일 mRS ≤ 3의 중간 정도 임상예후를 보였다. 23 Brekenfeld 등은 12명의 급성 혈관내내피 뇌졸중 환자(평균 NIHSS, 14)를 SES로 치료하였으며, 이들 중 7명은 스텐트 삽 입 이전에 IAT와 기계적 혈관내내피가 실패한 경우였다. 24 92%에서 성공적으로 재관활성화 되었으며, 50%에서 중간 정도의 임 상예후를 나타냈고, sICH는 없었다.

비슷하게, Linfante 등은 19명의 뇌졸중 환자에게(평균 NIHSS, 19) 동맥내혈관확장, 기계적 혈관내내피가 실패한 이후에 SES를 적용하였다. 25 95%에서 폐쇄부위가 성공적으로 재관활성화 되었다. 좋은 임상예후는 42%에서 확인되었다. 시술 중 협병증은 발생하지 않았고, sICH는 16%에서 나타났었다.

Stent-Assisted Recanalization in Acute Ischemic Stroke (SARIS) 시험은 급성 뇌졸중 치료에서 스텐트 삽입술을 시험하는 연구로는 처음으로 미국 식약청의 승인을 받은 전 항적 시험이다. 뇌졸중 환자 20명(평균 NIHSS, 14)이 증상발 생 6시간 이내에 치료를 받았다. 모든 환자에게 치료 후 대상 혈관이 재관활성화되었다. 혈관내내피, IAT, 그리고 IV tPA를 포함한 추가적 치료는 63.2%에서 받았다. 60%의 환자에서 1개 월, 6개월 이후 중간 정도의 임상예후를 보인 것으로 보고되 었다. 26,27

뇌졸중 환자에서 SES를 적용한 모든 연구에서 재관함성을 봐가 매우 높았지만, 급성 혈관내내피 뇌졸중에서 스텐트 삽 입술이 일반치료법으로 사용될 수 있을지 여부에 대해서는 두개내 스텐트 삽입술과 관련된 연구와 최근 혈관내내피의 성 공적 사례보고 등으로 인해 논란의 여지가 있다. 그러나 스턴 트 삽입술이 일부 선택적 증례에서는 효과가 있음을 분명하다.
기계적 혈전제거술

모든 기계적 혈전제거술 기기는 혈관내 치료를 통해 폐색부위의 원위부로 접근하게 된다. 다양한 기구들은 혈전의 어느부위에 적용되느냐에 따라 3가지로 분류된다.

근위부기구는 혈전의 근위부에 적용된다. 이 종류에는 다양한 흡인 카테터와 시스템이 포함된다.

원위부기구는 혈전의 원위부에 도달한 다음 미세카테터를 혈전을 통과한 후 혈전의 원위부에 영향을 줄 수는 것이다. 이 종류에는 brush-like, basket-like, coil-like 기구들이 포함된다.

가장 최근에 개발된 기구에는 stent-like 기구가 포함되는 데, 이는 폐색된 부위를 관통하여 혈전내에 위치시킨 다음 다시 회수하는 것으로, 여러 종류의 자가 팽창성 스텝트 혈전제거기(self-expandable stent retrievers, SRs)가 있다.

혈전 혈관과 근위부 혈전제거술

급성 뇌졸중 치료에서 처음으로 보고된 기계적 혈전제거술은 흡인 카테터를 사용한 것이었다.39 40 굴침 미세 카테터(4~5 Fr)를 혈전의 근위부 표면까지 접근시킨 후 60~ml 주사기를 이용하여 흡인력을 적용시킨다. 혈전이 집중되었는지 여부는 역류가 없는 것으로 확인된다. 이후 지속적으로 음압(negative pressure)을 주어 혈전이 다시 빠져나가는 것을 막으면서 도관을 빼낸다. 혈전조각을 회수하는 과정이 반복된다.

광범위하게 적용되었지만, 아직까지 이 방법에 대한 보고는 거의 없다. 최근의 한 단일기관연구에서 22명의 환자(평균 NIHSS 18)를 흡인 혈전제거술만으로 치료한 결과를 보고하였다. 81.9%에서 적절한 재관행성이 이루어졌으며, 45.5%에서 좋은 예후를 보였다.39

가술적으로 작용하기 쉽고, 빠르고, 비용도 적게 든다. 이 방

법은 대상 혈관 내경이 넓고 해부학적으로 기구의 조종이 용이할 때, 특히 근위부 폐색(예를 들어 경부 내경동맥의 원위부나 내경동맥의 끝부분) 시에 널리 사용된다.

반응형 시스템

반응형 시스템(Penumbra, Alameda, CA)은 근위부 혈전제거기술이 개량된 것이다. 기계적 혈전을 부수면서 지속적으로 흡입하는 방법이며, 2007년에 뇌졸중 치료 시 혈전제거방법으로 미국 식약처의 승인을 받았다.

다양한 크기(0.26~0.51 inch)의 재관행 카테터를 혈전의 근위부 표면에 위치시킨 후 지속적으로 흡유를 할 수 있도록 흡유 초기에 연결시킨다(~700 mm Hg). 흡류 카테터가 막혀 있는 것을 방지하기 위해, 동방쪽 모양의 분리기가 커분부에 장착된 미세와이어에 의해 추가적으로 혈전을 부수는 과정이 진행된다(Figure 1). 이러한 설정은 재관행성 시술은 시행하는 동안에 카테터의 끝부분의 혈전조각을 제거할 수 있게 한다. 이의 목적은 근위부부터 원위부에 이르기까지 혈전의 부피를 줄여는데 있으며, 이로 인해 작은 도관으로 M2 분절과 같은 원위부 분지에서도 혈전제거기술을 수행할 수 있다.

반응형 시스템은 많은 단일기관연구 및 다기관평판연구에서 사례가 이루어졌다. Penumbra Pivotal Stroke Trial은 125명의 뇌졸중환자(평균 NIHSS 18) 중에서 발생한 경우 이후 8시간 내에 치료를 시행한 상행성 연구이다. 대상 혈관의 재관행성률은 81.6%였다. 이 연구에서는 기계적 재관행성 여전에 IV tPA를 투여받은 환자의 비율은 억지하지 않았다. 성공적으로 재관행성여전에 불구하고 압상 예후는 나빠졌는데, 좋은 압상예후가 단지 전체 환자의 25%, 성공적으로 재관행성이 이루어진 환자의 29%에서 확인되었다. sICH의 비율은 11.2%였고, 전체 사망률은 32.8%였다.31 심각한 부작용이 증례의 3.2%에서 발생했다.

이 연구에서 나타난 높은 재관행성률과 낮은 압상 예후는 기계적 혈전제거술의가치에 대한 논의로까지 이어졌다. 그러나 일부 단일기관 연구에서는 반응형 시스템을 사용해서 Pivotal Trial에서보다 더 좋은 압상 결과를 보고하였다. Kulsar 등은 27명의 대혈관폐색 환자(평균 NIHSS 14) 증례시리즈를 보고했다.47 평균 시술시간은 긴 패턴이었다(1.6시간), 93%에서
Figure 3. Angiogram showing an acute MCA occlusion (A) and the immediate flow restoration after SR placement (B). Complete recanalization after retrieval (C); the thrombus is engaged in the Solitaire FR. MCA indicates middle cerebral artery; SR, stent retriever.

Merci Devices

Merci Retrieval System (Concentric Medical, Mountain View, CA)의 핵심적인 부분은 Merci retriever이다(Figure 2). 첫 Mechanical Embolus Removal in Cerebral Ischemia (MERCI) 연구는 IAT가 불가능한 151명의 환자(평균 NIHSS, 20)를 증상 발생 8시간 내에 치료하였을 때의 안전성과 효과를 평가했다.7) 전승환부 뇌출혈 환자(90%)와 후승환부 뇌출혈 환자(10%)를 포함하였다. 성공적인 재관협성은 치료받은 환자 46%에서 달성되었으며, 이는 대조군인 PROACT II 연구의 자연발생적 재관협성률 18%에 비해 유의하게 높았다.7) 좋은 임상 예후는 환자의 27,7%에서 관찰되었다. 평균 시술시간은 2.1시간이었고, 임상적으로 유의한 시술중 합병증은 7.1%에서 발생했으며 sICH는 7.8%였다.

Multi-MERCI 연구는 국제적, 단일군 연구로, 증상 발생 8시간 이내의 뇌출혈 환자 164명을 대상으로 했다(평균 NIHSS, 19).7) 임상 종료점은 대상 환자의 재관협성으로 하였다. MERCI 연구와 달리, 시술 전의 IV tPA, IAT, 그 외 다른 기계적 방법을 허용하였고, 새로운 MERCI device를 포함하였다. 성공적인 재관협성은 MERCI retriver만 사용했을 때 57,3%, 다른 치료법과 함께 사용했을 때 69,5%였다. 36%의 환자에서 좋은 임상 예후를 보였다. 평균 시술시간은 1.6시간이었으며, 이로 다시 한번 기계적 혈전용해 시 시간이 오래 걸림이 확인되었다. 임상적으로 유의한 시술 중 합병증은 5.5%에서 발생했는데, sICH는 9.8%에서 나타났다.

MERCI device는 개발은 뇌출혈 치료의 기계적 재관협성의 표식이었다. 두 MERCI 연구는 성공적으로 재관협성이 이루어진 환자에서 유의하게 좋은 임상 예후를 확인하였다. Merci
devices는 IMS-III 연구에서 현재 시험중이다."

Stent Retriever

가장 최근에 소개된 급성 뇌졸중 치료를 위한 기계적 혈전제거 기기는 자기팽창식, stent-like 혈전제거기구이다. 영구적으로 스테트를 삽입해놓을 필요 없이 즉각적인 혈류개선과 혈류복구를 위한 혈전제거 치료의 이득을 얻어낸 인식적 스테트 삽입과 확실한 혈전제거의 장점들을 합하여, SR device가 급성 혈전뇌졸중 뇌혈액순환을 유지하_mu니, SR이 혈전체를 막게 된다. SR의 방사력(radial force)가 즉시 혈전을 압박하고 동로를 만들어 원위부로의 혈류를 복원시킨다. 이 시점에서 추가적인 IAT가 시도될 수 있다. 3~10분간의 스테트를 넣어두고, 서서히 스테트를 빼낸다. 원위부 기구와 마찬가지로, 스테트를 빼는 동안 근위부 동맥을 이용하여 폐쇄시키고 가이드카테터를 사용해서 흡입을 함으로써 혈류를 역행시키는 것이 가능하다.

급성 뇌졸중 치료를 위해 혈류 복원 및 혈전체 제거용으로 개발된 기구는 Solitaire FR (ev3, Irvine, CA: Figure 3)이다. 이는 두개뇌 경동맥류(wide-neck intracranial aneurysms)의 혈전체 제거를 위해 개발된 Solitaire AB Neurovascular Remodeling Device를 보완한 것이다. 짧은 기간 동안, 뇌졸중 치료를 위해 Solitaire FR를 생전에 실험, 또는 임상에 적용시키는 많은 연구들이 보고되었다.

Castano 등은 2010년에 증상발생 8시간 이내의 급성 뇌졸중 환자 20명에서 초기 경험을 보고하였다. 30%에서 성공적으로 재관통성이 이루어졌고, 평균 시술시간은 50분이었다. 48%에서 좋은 임상 예후를 나타내었고, sICH는 10%에서 발생했다. SR을 사용한 다른 소규모 증례연구에서도 비슷한 정도의 성공적인 재관통성을 보고하였으며(88~91%), 빠른 시술시간(42~55분), 그리고 비슷한 정도의 좋은 예후(42~54%) 보였다. 16, 17, 18

지금까지 시행된 것 중 최대 규모의 연구는 이러한 결과를 요약한 결과를 보였다. 유럽의 6개 대형 뇌졸중센터의 증례를 후향적으로 모아, 진단후반(경동맥류 28%, 종동맥류 59%)과 후반전반(16%) 패색으로 인한 급성 뇌졸중 환자 141명(평균 NIHSS 18)의 치료결과를 보고했다. 재관통성까지 걸린 평균 시간은 45분이었고, 대생 혈관의 86%에서 Thrombolysis in Cerebral Infarction ≥2b의 결과를 보였다. 좋은 임상 예후는 환자의 55%에서 관찰되었고, 전체 사망률은 20.5%였다. 19, 20

현재 두 개의 대규모 임상연구 결과를 기대하는 것이다. SWIFT trial (Solitaire FR with the Intention for Thrombectomy)은 Solitaire FR system을 MERCI device와 비교하여 효과와 안정성을 비교하는 연구이다. 연구에 포함된 환자들은 IV tPA가 불가능하거나 실패한, 증상발생 8시간 이내의 환자들이 다. 초기결과지표는 막힌 혈관이 Thrombolysis in Myocardial Infarction ≥2로 재관통성되는 것이다. 이차결과지표는 재관통성까지의 시간, 추적관찰 90일째의 mRS 점수이다. SWIFT 연구는 예정된 250명의 환자가 포함되기 전, 126명의 환자가 연구에 포함된 2011년에 자료관리위원회(data monitoring board)에 의해 조기에 종료되었다. 아직 결과는 발표되지 않았으나 Solitaire FR의 좋은 결과가 기대되고 있다.

Solitaire FR는 현재 STAR Trial (Solitaire FR Thrombectomy for Acute Revascularization)에서 연구되고 있다. 이는 전형적, 국제적, 단일군 시험으로 증상발생 8시간 이내에 치료가 시행될 수 있는 200개의 전신환자 뉴런 증환자를 포함하는 것을 목표로 한다. 초기치료로서 IV tPA가 불가능하거나 연계치료 후 IV tPA에 실패했거나, 기계적 혈전체제거로 실패한 환자를 포함한다. 임상 결과지표는 대상 혈관이 Thrombolysis in Cerebral Infarction ≥2b로 재관통성되는 것과 안전성이, 이차결과지표는 재관통성까지 걸린 시간과 추적검사 90일째의 mRS 점수이다. 최적 결과가 2012년 중반에 나올 것으로 기대하고 있다.

이전의 기계적 혈전체제거와 비교하여 SR의 유망한 발전여정상은 높은 재관통성율을 보이는 것과 재관통성시간이 주목할 만큼 감소했다는 점이다. 또한, 높은 재관통성율이 극적으로 좋은 임상 예후를 나타내는 비율의 드라마한 증가와 연관된 것이다.

토의

빠른 뉴런류의 복원은 혈혈뇌졸중 치료의 주된 목표이며, 이는 좋은 임상 예후와 연관되고 급성 뇌졸중 이후의 사망률을 감소시킨다. 기계적 혈전체제거는 다양한 혈관내 재관통성 기술을 사용해서 이루어지며, 최근 수년간 빠른 발전이 이루어졌으나. 그럼에도 불구하고, 현재의 혈관내 뉴런 증환 치료는 여전히 각기 다른 기계적 혈전체제거의 이점을 종합한 다각적 방법으로 이루어지고 중증 IAT와 함께 사용된다. 두개뇌 혈관중증의 심각성을 고려할 때, 혈관내 치료를 통한 재관통성율은 특정 뉴런 증환센터에 국한되어 시행되어야 한다.

기계적 혈전체제기의 시도는 뉴런증 치료에 있어서 시간적 제한을 넘어서고, IV tPA나 IAT가 실패했거나 불가능한 환자의 치료가능도를 넓혀줄 수 있다는 점에는 의심할 여지가 없다. 기계적 혈전체제기의 미래의 역할과 실제 임상에서의 가치는 예측

14 Stroke 한국어판 Vol. 5, No. 2
Disclosures
J.G. is principal investigator of the STAR trial and a consultant for ev3.

References

KEY WORDS: acute stroke ■ angioplasty & ■ stenting ■ endovascular treatment ■ interventionnal neuroradiology ■ mechanical thrombectomy ■ stroke management ■ thrombolysis