Letters to the Editor

Stroke welcomes Letters to the Editor and will publish them, if suitable, as space permits. Letters must reference a Stroke published-ahead-of-print article or an article printed within the past 3 weeks. The maximum length is 750 words including no more than 5 references and 3 authors. Please submit letters typed double-spaced. Letters may be shortened or edited. Include a completed copyright transfer agreement form (available online at http://stroke.ahajournals.org and http://submit-stroke.ahajournals.org).

Letter by Saji and Kimura Regarding Article, “Arterial Stiffness and Cerebral Small Vessel Disease: The Rotterdam Scan Study”

To the Editor:

We read with great interest the article by Marielle et al1 that was recently published in Stroke. In their population-based study that included 1460 participants, increased arterial stiffness indicated by aortic pulse wave velocity (PWV), a conventional measurement of arterial stiffness, was associated with a larger volume of white matter lesions. Furthermore, lacunar infarcts and deep or infratentorial microbleeds were associated with a higher aortic PWV in persons with uncontrolled hypertension.

We applaud their results, because we also showed an independent association between cerebral small vessel disease and increased arterial stiffness indicated by brachial-ankle PWV, a convenient measurement of arterial stiffness.2,3 In our studies, both asymptomatic lacunar infarcts4 and white matter disease2 were independently associated with a high brachial-ankle PWV. Although Marielle et al1 did not show an independent association between lacunar infarcts and increased arterial stiffness, a previous study using aortic PWV showed this association.5 Moreover, the cardioankle vascular index, a measure of arterial stiffness independent of blood pressure similar to brachial-ankle PWV, was associated with asymptomatic lacunar infarcts.6 Hence, the association between lacunar infarcts and increased arterial stiffness has been validated by multiple methods to assess arterial stiffness.3–5

In contrast, there was no significant association between the cardioankle vascular index and white matter disease in multivariate analysis in our previous study.7 Because cardioankle vascular index is calculated using the stiffness parameter β, which reflects local stiffness of a blood vessel, vessel stiffness per se, may not be associated with white matter disease. These findings indicate that highly pulsatile pressure and flow in the cerebral small vessels could contribute to more progressive white matter disease than lacunar infarcts.

As for microbleeds, Henskens et al4 did not show an independent association between microbleeds and increased arterial stiffness. This result is opposite to that of the recent report by Marielle et al.1 This discrepancy may depend on a difference in the definition of microbleeds. Marielle et al1 classified the location of microbleeds as lobar, deep, or infratentorial. Conversely, Henskens et al4 did not classify microbleeds by location. Because lobar microbleeds are thought to be associated with amyloid angiopathy, this mixture could have affected the results of Henskens et al.

Although small numbers of hypertensive subjects were enrolled in the previous studies,2,3 these independent associations between cerebral small vessel disease and arterial stiffness are important, because cerebral small vessel disease is still a major risk for stroke.

Disclosures

None.

Naoki Saji, MD, PhD
Kawasaki Medical School
Kurashiki
Okayama, Japan

References

Letter by Saji and Kimura Regarding Article, "Arterial Stiffness and Cerebral Small Vessel Disease: The Rotterdam Scan Study"
Naoki Saji and Kazumi Kimura

Stroke. 2012;43:e178; originally published online November 15, 2012; doi: 10.1161/STROKEAHA.112.675637
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2012 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/43/12/e178

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/