The Argatroban and Tissue-Type Plasminogen Activator Stroke Study
Final Results of a Pilot Safety Study

Philip M.W. Bath, FRCPath, FRCP

Baretto et al studied intravenous argatroban, a direct thrombin inhibitor, in 65 patients with proximal intracranial arterial occlusion and moderate stroke severity who were given a standard dose of alteplase within 3 or 4.5 hours of ictus. Argatroban was administered open label without a comparator group as a bolus (100 μg/kg bolus given over 3–5 minutes) within 1 hour of tissue-type plasminogen activator (tPA) and then dose-adjusted from 1.0 μg/kg per minute to maintain the activated partial thromboplastin time at 1.75 times baseline over 48 hours. In practice, argatroban was started at a median of 51 minutes after tPA, and the target anticoagulation was reached at a median of 3 hours. Although recanalization (assessed using transcranial Doppler or CT angiography) occurred in 61% of patients (29 of 47) at 2 hours, significant intracerebral hemorrhage (the primary outcome) occurred in 6% (4 patients, and symptomatic intracranial hemorrhage in 4.6%, 3 patients). Seven (10%) patients died over the first 7 days. The investigators concluded that the combination of alteplase and argatroban was potentially safe and that further evaluation was warranted.

The study is noteworthy in several respects. First, the lack of a parallel control group given alteplase alone means that, practically, it is impossible to assess whether combined therapy increases recanalization as compared with thrombolysis alone and whether this comes with an acceptable rate of symptomatic intracranial hemorrhage. In this respect, the authors originally planned to compare their findings with data from the control group in the Combined Lysis of Thrombus in Brain Ischemia Using Transcranial Ultrasound and Systematic tPA (CLOTBUST) trial. However, the relevance of historical controls can be questioned because CLOTBUST was an older trial with a different population of patients with stroke. Although the present trial was conceived in the early part of the last decade, it would have been far more relevant as a randomized controlled trial with a placebo comparator, that is, tPA+argatroban versus tPA+placebo.

Second, the findings in the first 15 patients have already been published. This reported 2 symptomatic intracranial hemorrhages plus 1 asymptomatic brain bleed, although the latter may have been incidental because anticoagulation does not appear to increase asymptomatic hemorrhagic transformation of the infarct. Third, the investigators took >7 years to complete the study; delays occurred due to regulatory issues, interim safety reviews, and recruiting in the absence of adequate funding. During the manuscript review process, it also became clear that the investigators had struggled with a stroke community that was negative to the aims of the study.
on the grounds that combined thrombolysis and anticoagulation would inevitably be unsafe.

What then of the future of argatroban? Monotherapy with argatroban seems of little interest because anticoagulation alone has not been found to be effective in multiple trials,\(^2\) as was also seen in the Argatroban Anticoagulation in Patients With Acute Ischemic Stroke (ARGIS-1) trial of argatroban versus control (without tPA).\(^1\) A larger randomized trial of argatroban on top of thrombolysis could be performed to further test safety and efficacy as suggested by the authors. However, the need for activated partial thromboplastin time monitoring and regular dose adjustment is a potential limiting factor; newer agents requiring no dose adjustment are replacing older ones that do need monitoring, as seen with the replacement of unfractionated heparin by low-molecular-weight heparin for the treatment and prevention of venous thromboembolism. In this respect, it might be preferable to use tPA with an existing anticoagulant that has a longer half-life, does not need monitoring, and can be reversed pharmacologically if necessary, that is, a low-molecular-weight heparin.

The wider lessons from this study are several; first, that randomized controlled trials should be the de facto design for early- as well as late-phase clinical studies. Comparison of an uncontrolled cohort with a historical group is no substitute for randomization between treatment and control groups. Excluding Phase I first-ever into human studies, uncontrolled Phase II studies should be resisted by investigators, funders, sponsors, and regulators. Second, we as a stroke community must not allow our preconceived beliefs to obstruct trialists just because we think we already know the results. There are too many examples in which trial results have overturned dogma built on little or no evidence. Finally, we must all support the authors. However, the need for activated partial thromboplastin time monitoring and regular dose adjustment is a potential limiting factor; newer agents requiring no dose adjustment are replacing older ones that do need monitoring, as seen with the replacement of unfractionated heparin by low-molecular-weight heparin for the treatment and prevention of venous thromboembolism. In this respect, it might be preferable to use tPA with an existing anticoagulant that has a longer half-life, does not need monitoring, and can be reversed pharmacologically if necessary, that is, a low-molecular-weight heparin.

The wider lessons from this study are several; first, that randomized controlled trials should be the de facto design for early- as well as late-phase clinical studies. Comparison of an uncontrolled cohort with a historical group is no substitute for randomization between treatment and control groups. Excluding Phase I first-ever into human studies, uncontrolled Phase II studies should be resisted by investigators, funders, sponsors, and regulators. Second, we as a stroke community must not allow our preconceived beliefs to obstruct trialists just because we think we already know the results. There are too many examples in which trial results have overturned dogma built on little or no evidence. Finally, we must all support the authors. However, the need for activated partial thromboplastin time monitoring and regular dose adjustment is a potential limiting factor; newer agents requiring no dose adjustment are replacing older ones that do need monitoring, as seen with the replacement of unfractionated heparin by low-molecular-weight heparin for the treatment and prevention of venous thromboembolism. In this respect, it might be preferable to use tPA with an existing anticoagulant that has a longer half-life, does not need monitoring, and can be reversed pharmacologically if necessary, that is, a low-molecular-weight heparin.

Disclosures

Dr Bath was Chief Investigator of the Tinzaparin in Acute Ischaemic Stroke Trial (TAIST) trial of tinzaparin (Leo Pharmaceuticals) and a local investigator in the International Stroke Trial (IST-1) trial of unfractionated heparin. He has been on the Trial Steering Committee, Data Monitoring Committee, Advisory Board, and/or given talks at commercial symposia for AstraZeneca, Bayer, Biosite, Bristol Myers Squibb, Boehringer Ingelheim, Daiichi-Sankyo, Lundbeck, Mitsubishi, M’s Science, Phagenesis, ReNeuron, Servier, Shire, and Takeda.

References


Key Words: acute ischemic stroke • anticoagulation • argatroban • thrombolysis
The Argatroban and Tissue-Type Plasminogen Activator Stroke Study: Final Results of a Pilot Safety Study
Philip M.W. Bath

Stroke. 2012;43:623-624; originally published online January 5, 2012;
doi: 10.1161/STROKEAHA.111.640557

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/43/3/623

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/