Conclusions—High sodium intake was prevalent and associated with an increased risk of stroke independent of vascular risk factors. Although hypertension is a well-established risk factor for vascular disease, and is associated with an increased risk of cardiovascular disease.3 The controversial findings of this recent report and gaps in the literature regarding the association between sodium consumption and risk of stroke among blacks and Hispanics underscore the need for further research.

We examined the association between sodium consumption and risk of stroke and combined vascular events, stroke, myocardial infarction (MI), and vascular death, in a multi-ethnic population-based prospective cohort study.

Methods
Study Population
The Northern Manhattan Study (NOMAS) is a cohort study designed to determine stroke incidence, risk factors, and prognosis in a
multietnic urban population. Study details have been published previously.\textsuperscript{7} Eligible participants were: (1) stroke-free; (2) \(>40\) years old; and (3) resided in northern Manhattan for \(\geq 3\) months with a household telephone. Participants were identified by random-digit dialing (91\% telephone response rate) and recruited to have an in-person baseline interview and assessment between 1993 and 2001. The enrollment response rate was 75\%, and 3298 participants were enrolled. For our analysis, we excluded participants without a completed diet questionnaire (N = 132), with improbable total daily kilocalories or sodium consumption based on food frequency responses (<500 or \(>4000\) kcal/day or \(>10\) 000 mg/day sodium, N = 272), and those with an MI before baseline (n = 237). The study was approved by the Columbia University and University of Miami Institutional Review Boards and all participants provided informed consent.

**Baseline Evaluation**

Data were collected through interviews with trained research assistants in English or Spanish. Study physicians conducted physical examinations. Race–ethnicity was based on self-identification using questions modeled after the US census and conforming to standard definitions outlined by Directive 15.\textsuperscript{8} Standardized questions were adapted from the Behavioral Risk Factor Surveillance System by the Centers for Disease Control and Prevention regarding hypertension, diabetes, smoking, and cardiac conditions.\textsuperscript{9} Measurement of blood pressure (BP) and fasting blood specimens for glucose and lipids and the definitions of hypercholesterolemia, diabetes, moderate to heavy physical activity, and moderate alcohol use were described previously.\textsuperscript{10,11} Hypertension was defined as BP \(\geq 140/90\) mm Hg, anti-hypertensive medication use, or the participant’s self-report of hypertension.

**Diet**

At baseline, participants were administered a modified Block National Cancer Institute food frequency questionnaire by trained research assistants in English or Spanish.\textsuperscript{12} This questionnaire assesses dietary patterns over the previous year and was modified to include specific dietary items commonly consumed among Hispanics. Sodium intake was calculated based on self-reported food consumption using DIETYS software (Block Dietary Data System: Dietsys+ analysis software, Version 59, 1999). Average sodium consumption was examined continuously with 500 mg/day as the unit of measurement and in prespecified categories: \(\leq 1500\) mg/day (reference, AHA recommendation), 1501 to 2300 mg/day (consistent with US Department of Agriculture recommendation of \(\leq 2300\) mg for those at standard risk), 2301 to 3999 mg/day, and 4000 to 10000 mg/day (approximately the top quintile).

**Outcomes**

The primary outcome was confirmed incident stroke of all subtypes (infarcts, intracerebral hemorrhage, and subarachnoid hemorrhage). Secondary outcomes were confirmed (1) incident combined vascular event (stroke, MI, or vascular death); (2) incident MI; and (3) vascular death. Follow-up procedures and outcome classifications were detailed previously.\textsuperscript{10,11} Subjects were screened annually by telephone to determine changes in vital status, detect neurological events, document interval hospitalizations, and review risk factor status, medication changes, and changes in functional status. Persons who screened positive were scheduled for in-person assessment, including chart review and examination by study neurologists. Ongoing hospital surveillance of admission and discharge data, including screening of International Classification of Diseases, 9th Revision codes, was reviewed to detect outcome events. The outcome surveillance network includes screening of all daily admissions, daily contacts with the neurology consult residents, reviewing bimonthly hospital discharge lists, emergency room visits, and visits to the ambulatory care network. All hospitalizations for suspected stroke or MI were reviewed thoroughly and trigger more extensive data collection for outcome adjudication. Medical records of all hospitalizations were reviewed to verify the details of suspected events. Outcome events were reviewed by a specially trained research assistant and, when available, medical records were reviewed for all outcome events, including death, by the study neurologists and cardiologists.

Stroke was defined by the first symptomatic occurrence of any type of stroke including infarct, intracerebral hemorrhage, and subarachnoid hemorrhage. Stroke was defined based on World Health Organization criteria as “rapidly developing clinical signs of focal (at times global) disturbance of cerebral function, lasting more than 24 hours or leading to death with no apparent cause other than that of vascular origin.” Strokes were classified as intracerebral hemorrhage, subarachnoid hemorrhage, and cerebral infarction (atherosclerotic extracranial vessel, atherosclerotic intracranial vessel, lacunar small vessel, cardioembolic, cryptogenic, and other determined cause). MI was defined by criteria adapted from the Cardiac Arrhythmia Suppression Trial and the Lipid Research Clinics Coronary Primary Prevention Trial and requires at least 2 of the 3 following criteria: (1) ischemic cardiac pain determined to be typical angina; (2) cardiac enzyme abnormalities defined as abnormal creatine–phosphokinase MB isoenzyme fraction or troponin values; and (3) electrocardiographic abnormalities. Stroke events were adjudicated by the study neurologists and cardiac events by the study cardiologists. The cause of death was classified as vascular or nonvascular and based on information obtained from the family, medical records, and death certificates. Vascular death included death due to stroke, MI, heart failure, pulmonary embolus, cardiac arrhythmia, or other vascular cause. These are International Classification of Diseases, 9th Revision codes 390 to 459.

**Statistical Analysis**

We examined the unadjusted associations of categories of sodium consumption with sociodemographics and vascular risk factors using analysis of variance and \( \chi^2 \) tests.

We used Cox proportional hazards models to examine the associations between sodium consumption (continuously and categorically) and vascular events. Person-time of follow-up was accrued from baseline to the end of follow-up (March 2011), the time of outcome event, death, or loss to follow-up, whichever came first. We constructed the following models sequentially: (1) adjusted for demographics: age, sex, race/ethnicity, and high school completion; (2) adjusted for demographics and behavioral risk factors: smoking (never, former, current), moderate to heavy physical activity, moderate alcohol consumption, daily consumption of total kcal, protein, total fat, saturated fat, and carbohydrates; and (3) adjusted for demographics, behavioral risk factors, and vascular risk factors: diabetes, hypercholesterolemia, hypertension, previous cardiovascular disease, and body mass index. We assessed potential effect modification by age, sex, race/ethnicity, hypertension status, and continuous BP measurements (in the overall sample and among those not taking antihypertensive medications) by including interaction terms between sodium consumption and these variables in Model 3.

**Results**

This study included 2657 NOMAS participants. The mean age at baseline was 69±10 years, 36\% of participants were men, 21\% white, 24\% black, and 53\% Hispanic. Over a mean follow-up of 10 years, 615 vascular events accrued, including 235 strokes (202 ischemic strokes), 209 MIs, and 371 vascular deaths. The mean sodium consumption was 3031±1470 mg/day (median, 2787 mg/day; interquartile range, 1966–3815). Only 12\% consumed the AHA-recommended level of \( \leq 1500\) mg/day sodium, whereas 24\% consumed 1501 to 2300, 43\% 2301 to 3999, and 21\% 4000 to 10 000 mg/day.

Table 1 shows the risk factor profile of the study population overall and in relation to sodium consumption. In unadjusted analyses, lower sodium consumption was associ-
ated with older age, female sex, black race, never smoking, and antihypertensive use, whereas higher sodium consumption was associated with Hispanic ethnicity, moderate alcohol use, increased body mass index, and consumption of total kilocalories, protein, carbohydrates, total fat, and saturated fat ($P<0.05$). There was no significant association between sodium consumption and continuous BP measurements or hypertension status at baseline.

We observed an increased risk of stroke with greater sodium consumption, and this relationship became stronger after adjusting for behavioral and vascular risk factors (Table 2). The analysis of sodium as a continuous variable showed a 17% increase in stroke risk for each 500-mg/day increase in sodium consumption (Model 3; 95% CI, 1.07–1.27). Those who consumed $\geq 4000$ mg/day had a 2.6-fold increase in stroke risk versus those who consumed $\leq 1500$ mg/day (Model 3; 95% CI, 1.27–5.28). Intake of sodium $>1500$ but $<4000$ mg/day had a hazard ratio of 1.3 for stroke, which did not reach significance. We did not observe an interaction between sodium and age (interaction $P=0.68$), sex (interaction $=0.84$), race/ethnicity (interaction $P=0.47$ black versus white, $P=0.73$ Hispanic versus white), hypertension status (interaction $P=0.99$), or BP (interaction $P=0.98$ for systolic BP and $P=0.73$ for diastolic BP) at baseline in relation to stroke risk. When the outcome was restricted to ischemic stroke, the results remained consistent. A 16% increased risk of ischemic stroke was seen for each 500-mg/day sodium increase, and there was a 2.4-fold greater risk among those who consumed $\geq 4000$ versus $\leq 1500$ mg/day of sodium.

Table 3 shows the relationship between sodium consumption and combined vascular events. Consumption of $\geq 4000$

Table 1. Demographics and Vascular Risk Factors and Sodium Consumption

<table>
<thead>
<tr>
<th>Categorical factors, no. (%)</th>
<th>Full Cohort (N=2657)</th>
<th>$\leq 1500$ (N=320)</th>
<th>1501–3999 (N=1779)</th>
<th>$\geq 4000$ (N=558)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male sex*</td>
<td>965 (36)</td>
<td>68 (21)</td>
<td>622 (35)</td>
<td>275 (49)</td>
</tr>
<tr>
<td>Race/ethnicity*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>552 (21)</td>
<td>49 (15)</td>
<td>397 (22)</td>
<td>106 (19)</td>
</tr>
<tr>
<td>Black</td>
<td>637 (24)</td>
<td>104 (33)</td>
<td>418 (24)</td>
<td>115 (21)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>1407 (53)</td>
<td>160 (50)</td>
<td>925 (52)</td>
<td>322 (58)</td>
</tr>
<tr>
<td>Other</td>
<td>61 (2)</td>
<td>7 (2)</td>
<td>39 (2)</td>
<td>15 (3)</td>
</tr>
<tr>
<td>High school completion</td>
<td>1124 (46)</td>
<td>140 (44)</td>
<td>836 (47)</td>
<td>248 (44)</td>
</tr>
<tr>
<td>Smoking*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td>452 (17)</td>
<td>54 (17)</td>
<td>298 (17)</td>
<td>100 (18)</td>
</tr>
<tr>
<td>Former</td>
<td>946 (36)</td>
<td>92 (29)</td>
<td>625 (35)</td>
<td>229 (41)</td>
</tr>
<tr>
<td>Never</td>
<td>1259 (47)</td>
<td>174 (54)</td>
<td>856 (48)</td>
<td>229 (41)</td>
</tr>
<tr>
<td>Moderate to heavy physical activity</td>
<td>232 (9)</td>
<td>18 (6)</td>
<td>163 (9)</td>
<td>51 (9)</td>
</tr>
<tr>
<td>Moderate alcohol use*</td>
<td>895 (34)</td>
<td>84 (26)</td>
<td>610 (34)</td>
<td>201 (36)</td>
</tr>
<tr>
<td>Previous cardiac disease</td>
<td>482 (18)</td>
<td>58 (18)</td>
<td>310 (17)</td>
<td>114 (20)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>1928 (73)</td>
<td>244 (76)</td>
<td>1276 (72)</td>
<td>408 (73)</td>
</tr>
<tr>
<td>Antihypertensive use*</td>
<td>1139 (43)</td>
<td>161 (50)</td>
<td>751 (42)</td>
<td>227 (41)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>552 (21)</td>
<td>64 (20)</td>
<td>364 (20)</td>
<td>124 (22)</td>
</tr>
<tr>
<td>Hypercholesterolemia</td>
<td>1501 (56)</td>
<td>193 (60)</td>
<td>1008 (57)</td>
<td>300 (54)</td>
</tr>
<tr>
<td>Continuous factors, mean (SD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age*</td>
<td>69 (10)</td>
<td>70 (10)</td>
<td>69 (10)</td>
<td>68 (9)</td>
</tr>
<tr>
<td>Total kilocalories/d*</td>
<td>1561 (648)</td>
<td>814 (238)</td>
<td>1429 (401)</td>
<td>2413 (594)</td>
</tr>
<tr>
<td>Total fat, g/d*</td>
<td>61 (31)</td>
<td>31 (12)</td>
<td>54 (20)</td>
<td>99 (32)</td>
</tr>
<tr>
<td>Saturated fat, g/d*</td>
<td>20 (12)</td>
<td>9 (4)</td>
<td>18 (8)</td>
<td>34 (13)</td>
</tr>
<tr>
<td>Protein, g/d*</td>
<td>62 (28)</td>
<td>30 (11)</td>
<td>57 (18)</td>
<td>96 (28)</td>
</tr>
<tr>
<td>Carbohydrates, g/d*</td>
<td>187 (80)</td>
<td>100 (37)</td>
<td>175 (57)</td>
<td>277 (79)</td>
</tr>
<tr>
<td>Systolic blood pressure</td>
<td>143 (21)</td>
<td>144 (20)</td>
<td>143 (21)</td>
<td>144 (21)</td>
</tr>
<tr>
<td>Diastolic blood pressure</td>
<td>83 (11)</td>
<td>83 (11)</td>
<td>83 (11)</td>
<td>84 (11)</td>
</tr>
<tr>
<td>Low-density lipoprotein</td>
<td>128 (36)</td>
<td>131 (35)</td>
<td>129 (36)</td>
<td>126 (36)</td>
</tr>
<tr>
<td>High-density lipoprotein*</td>
<td>47 (15)</td>
<td>49 (16)</td>
<td>47 (15)</td>
<td>45 (14)</td>
</tr>
<tr>
<td>Body mass index*</td>
<td>28 (6)</td>
<td>28 (5)</td>
<td>28 (5)</td>
<td>29 (6)</td>
</tr>
</tbody>
</table>

* $P<0.05$ across categories of sodium consumption ($\chi^2$ test for categorical variables, analysis of variance for continuous variables).
mg/day sodium was associated with an elevated risk of combined vascular events versus ≤1500 mg/day. Intake of 1501 to 2300 mg/day was associated with an increased risk of stroke, MI, or vascular death compared with ≤1500 mg/day. There was no interaction between sodium consumption and age (interaction \( P = 0.10 \)), sex (interaction = 0.30), race/ethnicity (interaction \( P = 0.19 \) black versus white, \( P = 0.18 \) Hispanic versus white), hypertension status (interaction \( P = 0.28 \)), or BP (interaction \( P = 0.18 \) for systolic BP and \( P = 0.49 \) for diastolic BP) in relation to vascular events. No association was observed between sodium consumption and risk of MI or risk of vascular death (Table 3).

### Discussion

Excessive sodium intake was prevalent in this population-based multiethnic cohort with only 12% meeting the AHA-recommended level of ≤1500 mg/day, only 36% meeting the US Department of Agriculture-recommended level of ≤2300 mg/day, and 21% consuming ≥4000 mg/day based on self-reported food consumption using a food frequency questionnaire. Excessive sodium intake was associated with an increased risk of vascular events, but in our event-specific analysis, sodium consumption ≥4000 mg/day was associated mainly with stroke and less with MI or vascular death. There was a slight increased risk of stroke among those in the 2 daily sodium consumption categories between 1501 to 3999 mg in comparison to ≤1500 mg, but this did not reach statistical significance. For combined events, there was a significantly increased risk among those consuming 1501 to 2300 mg/day compared with ≤1500 mg/day. Although we found a 17% relative increase in the hazard of stroke for every 500-mg/day increase in dietary sodium intake, our data did not suggest a linear dose–response relationship between sodium consumption and stroke risk.

A meta-analysis supported a strong relationship between sodium consumption and stroke risk, although many previous prospective cohort studies did not show an association or did so only for a subset of the study population. Specifically, a 23% increased risk of stroke was reported among those with higher salt intake (approximately 5 g/day more salt than those classified as consuming less salt). A 14% increased risk of cardiovascular disease was also associated with higher salt intake (\( P = 0.07 \)). Effect estimates across studies were heterogeneous as were the methods used. Some studies also used food frequency questionnaires to assess sodium consumption, whereas others used 24-hour dietary recall or urinary sodium excretion analysis. The strength of the association with stroke risk was often different for men versus women, but the direction of this difference was inconsistent. In our study, we did not observe effect modification by sex. Possible reasons for the lack of association between sodium and stroke risk in other studies include small sample size, misclassification of sodium intake, and short follow-up.

Our results are consistent with the meta-analysis indicating a stronger association for sodium consumption with stroke than with cardiovascular disease. The majority of previous prospective studies also did not observe a significant relationship with global cardiovascular disease risk.

### Table 3. Sodium in Relation to Risk of Combined Vascular Events and of MI and Vascular Death Separately

<table>
<thead>
<tr>
<th>Daily Dietary Sodium, mg</th>
<th>Person-Years</th>
<th>Stroke, MI, or Vascular Death</th>
<th>MI</th>
<th>Vascular Death</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Model 2*</td>
<td>Model 3†</td>
<td>Events</td>
</tr>
<tr>
<td>500 mg/d increase</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤1500</td>
<td>26278</td>
<td>615</td>
<td>1.06 (1.00–1.12)</td>
<td>0.99 (0.99–1.11)</td>
</tr>
<tr>
<td>1501–2300</td>
<td>4089</td>
<td>96</td>
<td>1.10 (1.00–1.21)</td>
<td>1.00 (1.00–1.11)</td>
</tr>
<tr>
<td>2301–3999</td>
<td>6620</td>
<td>121</td>
<td>1.24 (0.77–2.01)</td>
<td>1.33 (0.81–2.18)</td>
</tr>
<tr>
<td>4000–10 000</td>
<td>11752</td>
<td>147</td>
<td>1.15 (0.73–1.81)</td>
<td>1.31 (0.78–2.23)</td>
</tr>
</tbody>
</table>

MI indicates myocardial infarction.

*Adjusted for demographics (age, sex, race/ethnicity, education).
†Adjusted for demographics + behavioral risk factors (alcohol use, smoking, physical activity, total calories, total fat, saturated fat, carbohydrates, protein).
‡Adjusted for demographics + behavioral risk factors + vascular risk factors (diabetes, hypercholesterolemia, hypertension, previous cardiac disease, body mass index).
stronger relationship between sodium consumption and risk of stroke as compared with MI is likely due to the fact that BP is etiologically more important for stroke than MI. Our findings do not support the conclusions of a recent study suggesting an increased risk of cardiovascular events among those with low sodium excretion levels in a predominantly white, younger European cohort.4

The current study includes a large proportion of blacks and Hispanics, who have been underrepresented in the literature. Because dietary behavior may vary across race/ethnic groups, even those living in the same community, and evidence suggests that blacks and Hispanics are at an increased risk of stroke and hypertension,5,6 examination of the relationship between sodium consumption and stroke and cardiovascular disease risk in an ethnically heterogeneous population was needed. Sodium consumption differed by race/ethnicity in our study with Hispanics consuming the most, and therefore the attributable risk of sodium consumption for stroke among Hispanics is likely to be higher. The power to detect effect modification by race/ethnicity was modest, however, and we did not observe a significant difference in the relationship between sodium consumption and stroke risk across race/ethnic groups.

Our study uses the new AHA-recommended sodium consumption guideline as its reference value. The results show that a large proportion of our study population (88%) consumed more than the AHA recommendation of \( \leq 1500 \) mg/day and that lowering their sodium consumption may have a substantial effect on lowering their stroke risk. Although the US Department of Agriculture level for the general population is set at 2300 mg/day, a lower level of \( \leq 1500 \) mg/day has been recommended for certain population groups including those aged >51 years, all blacks, and all patients who have hypertension, chronic kidney disease, or diabetes. Our study supports the importance of reducing sodium consumption to this level for most Americans. The association between sodium consumption and stroke risk was independent of behavioral and vascular risk factors, including hypertension, at baseline, and was observed among those with and without hypertension and across age groups, suggesting that lowering sodium consumption can have beneficial effects on stroke risk for all.

Although we controlled for hypertension at baseline, BP may still be on a causal pathway underlying the association between sodium consumption and stroke risk, because sodium consumption may influence changes in BP during follow-up. Excess sodium intake is directly related to elevated BP, and dose–response trials have shown that the BP response to sodium reduction is progressive and nonlinear.1 Likewise, elevated BP is an established risk factor for cardiovascular disease and stroke, and primary and secondary prevention strategies support BP reduction to decrease vascular events.15–19

Sodium consumption was not associated with systolic or diastolic BP or defined hypertension in our study. In fact, antihypertensive use was associated with lower sodium consumption. The lack of association between sodium consumption and BP was likely due to the cross-sectional nature of the analysis, because BP and diet were both assessed at baseline.

Participants with hypertension, particularly those taking antihypertensive medication, may have been advised by their physicians to limit sodium consumption. In addition, the majority of our cohort (73%) had hypertension at baseline, which could have inhibited our ability to detect an association with sodium intake.

The biological mechanisms by which sodium might influence stroke risk independent of BP are speculative. Adverse health effects of heavy sodium consumption, independent of BP, include increased oxidative stress, impaired renal function, left ventricular hypertrophy, arterial fibrosis, increased large elastic artery stiffness, vascular endothelial dysfunction, and vascular remodeling, all of which are associated with vascular disease risk.1

Strengths of our study include its population-based prospective design, multiethnic population, high follow-up, validated outcomes, and comprehensive collection of vascular and other behavioral/lifestyle risk factors. However, despite the use of a well-established valid and reliable food frequency questionnaire12,20,21 to calculate sodium consumption, a potential for both random misclassification and recall bias persists. We lacked independent verification of dietary sodium intake using an objective measurement such as urinary sodium excretion. The prospective design suggests that most misclassification would likely be random. We tried to limit the effect of inaccurate recall of diet by excluding participants with improbably low or high total daily kilocalories (<500 or >4000) or sodium consumption >10 000 mg. However, possible underreporting of total diet is suggested by the low mean caloric consumption, particularly in the \( \leq 1500 \)-mg sodium category. In addition, the calculation of sodium consumption using the food frequency questionnaire was not able to fully capture the contribution of salt added to foods at the table. Sodium consumption was based on self-reported food consumption at a single time point, but participants were asked to indicate their average food consumption over the last year. Dietary patterns may change over time and possibly during follow-up. Because our study population was all aged >40 years at baseline food frequency assessment, we were not able to examine the effect of sodium consumption before enrollment at earlier stages in life.

Our study provides evidence for a strong relationship between excess sodium intake and increased stroke risk in a multiethnic population. Our findings contribute to a body of literature indicating the high sodium intake in the United States has negative health consequences. The new AHA strategic dietary goals for 2020, which include sodium reduction to \( \leq 1500 \) mg/day, will help promote ideal cardiovascular and brain health. Our findings underscore the need for public health initiatives to reduce the sodium level in the food supply.

Sources of Funding
This work is supported by a grant from the National Institute of Neurological Disorders and Stroke (R37 NS 29993).

Disclosures
None.
References
Dietary Sodium and Risk of Stroke in the Northern Manhattan Study
Hannah Gardener, Tatjana Rundek, Clinton B. Wright, Mitchell S.V. Elkind and Ralph L. Sacco

Stroke. 2012;43:1200-1205; originally published online April 12, 2012;
doi: 10.1161/STROKEAHA.111.641043
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2012 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/43/5/1200

Data Supplement (unedited) at:
http://stroke.ahajournals.org/content/suppl/2013/10/02/STROKEAHA.111.641043.DC1
http://stroke.ahajournals.org/content/suppl/2013/10/08/STROKEAHA.111.641043.DC2

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/
Northern Manhattan Studyにおける食事中のナトリウムと脳卒中のリスク

Dietary Sodium and Risk of Stroke in the Northern Manhattan Study

Hannah Gardener, ScD1; Tatjana Rundek, MD1,2; Clinton B. Wright, MD1,2; Mitchell S. V. Elkind, MD3; Ralph L. Sacco, MD1,2

1Evelyn F. McKnight Brain Institute and Department of Neurology and 2Department of Epidemiology and Public Health, University of Miami, Miami, FL; 3Department of Neurology, Columbia University Medical Center, New York, NY.

Abstract

背景および目的：米国心臓協会は、心血管を理想的な健康状態に保つためにはナトリウム摂取量を≦1,500 mg/日に制限することを推奨している。ナトリウム摂取は、高血圧との直接的な関係によって血管疾患と関連づけて考えられてきたが、脳卒中リスクとの関連を裏づけた試験はほとんど存在しない。

方法：被験者は、脳卒中の発生率に関する地域住民を対象としたコホート研究、Northern Manhattan Study（平均年齢69±10歳、女性64％、白人21％、ヒスパニック53％、黒人24％）から組み入れた。ナトリウム摂取量はベースライン時に食物摂取頻度調査票を用いて評価し、連続的およびカテゴリー別に評価した：≦1,500 mg/kg/日（12％）、1,501～2,300 mg/日（24％）、2,301～3,999 mg/日（43％）および≧4,000 mg/kg/日（21％）。平均10年の追跡期間にわたり、ナトリウム摂取量と235件の脳卒中の関係を、社会人口統計学的要素、食物、行動/ライフスタイルおよび血管危険因子について補正し、Coxモデルを用いて検討した。

結果：食事データが得られた2,657例の被験者では、平均のナトリウム摂取量が3,031±1,470 mg/日（中央値：2,787 mg/日、四分位範囲：1,966～3,815 mg/日）であった。≧4,000 mg/kg/日納取者の脳卒中のリスクが高く（ハザード比=2.59、95％CI：1.27～5.28）、脳卒中の発現リスクは摂取量が500 mg/kg/日増加するごとに17％上昇した（95％CI：1.07～1.27）。

結論：ナトリウムの多量摂取は、血管危険因子とは無関係に脳卒中のリスク上昇に関与していた。米国心臓協会の食事中ナトリウムの新しい目標は、脳卒中のリスク軽減に役立つであろう。

表2 ナトリウム摂取量と脳卒中リスクの関係

<table>
<thead>
<tr>
<th>1日あたりの食事中ナトリウム量、mg</th>
<th>人・年</th>
<th>イベント</th>
<th>モデル1*</th>
<th>モデル2†</th>
<th>モデル3‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 mg/kg/日の増加</td>
<td>27,048</td>
<td>235</td>
<td>1.08 (1.04～1.13)</td>
<td>1.17 (1.07～1.27)</td>
<td>1.17 (1.07～1.27)</td>
</tr>
<tr>
<td>≦1,500</td>
<td>3,408</td>
<td>24</td>
<td>1.0 (参照基準)</td>
<td>1.0 (参照基準)</td>
<td>1.0 (参照基準)</td>
</tr>
<tr>
<td>1,501～2,300</td>
<td>6,620</td>
<td>56</td>
<td>1.24 (0.77～2.01)</td>
<td>1.33 (0.81～2.18)</td>
<td>1.38 (0.84～2.27)</td>
</tr>
<tr>
<td>2,301～3,999</td>
<td>11,752</td>
<td>89</td>
<td>1.15 (0.73～1.81)</td>
<td>1.31 (0.78～2.22)</td>
<td>1.32 (0.78～2.23)</td>
</tr>
<tr>
<td>4,000～10,000</td>
<td>5,262</td>
<td>66</td>
<td>1.99 (1.24～3.20)</td>
<td>2.50 (1.23～5.07)</td>
<td>2.59 (1.27～5.28)</td>
</tr>
</tbody>
</table>

*人口統計学的要素（年齢、性別、人種/民族、教育）について補正。
†人口統計学的要素+行動に関する危険因子（飲酒、喫煙、運動、総摂取カロリー、総脂質、飽和脂肪、炭水化物、蛋白）について補正。
‡人口統計学的要素+行動に関する危険因子+血管危険因子（糖尿病、高コレステロール血症、高血圧、心臓疾患の既往、肥満指数）について補正。

表3 ナトリウムと複合血管イベントリスクとの関係ならびに心筋梗塞および血管死それぞれとの関係

<table>
<thead>
<tr>
<th>1日の食事中ナトリウム量、mg</th>
<th>人・年</th>
<th>イベント</th>
<th>ハザード比（95％CI）</th>
</tr>
</thead>
</table>

 Stroke 2012; 43: 1200-1205
Dietary Sodium and Risk of Stroke in the Northern Manhattan Study
Hannah Gardener, ScD; Tatjana Rundek, MD; Clinton B. Wright, MD; Mitchell S.V. Elkind, MD; Ralph L. Sacco, MD

(Stroke. 2012;43:1200-1205.)

Key Words: diet ■ epidemiology ■ sodium ■ stroke

Table 2. Sodium Intake in Relation to Stroke Risk

<table>
<thead>
<tr>
<th>Daily Dietary Sodium, mg</th>
<th>Person-Years</th>
<th>Events</th>
<th>Hazard Ratio (95% CI) for Stroke</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 mg/d increase</td>
<td>27 048</td>
<td>235</td>
<td>Model 1* 1.08 (1.04–1.13)</td>
</tr>
<tr>
<td>≤1500</td>
<td>3408</td>
<td>24</td>
<td>Model 2† 1.17 (1.07–1.27)</td>
</tr>
<tr>
<td>1501–2300</td>
<td>6620</td>
<td>56</td>
<td>Model 3‡ 1.17 (1.07–1.27)</td>
</tr>
<tr>
<td>2301–3999</td>
<td>11 752</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>4000–10 000</td>
<td>5262</td>
<td>66</td>
<td></td>
</tr>
</tbody>
</table>

*Adjusted for demographics (age, sex, race/ethnicity, education).  
†Adjusted for demographics + behavioral risk factors (alcohol use, smoking, physical activity, total calories, total fat, saturated fat, carbohydrates, protein).  
‡Adjusted for demographics + behavioral risk factors + vascular risk factors (diabetes, hypercholesterolemia, hypertension, previous cardiac disease, body mass index).

Table 3. Sodium in Relation to Risk of Combined Vascular Events and of MI and Vascular Death Separately

<table>
<thead>
<tr>
<th>Daily Dietary Sodium, mg</th>
<th>Stroke, MI, or Vascular Death</th>
<th>Hazard Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Person-Years</td>
<td>Events</td>
<td>Model 2*</td>
</tr>
<tr>
<td>500 mg/d increase</td>
<td>26 278</td>
<td>615</td>
</tr>
<tr>
<td>≤1500</td>
<td>3306</td>
<td>67</td>
</tr>
<tr>
<td>1501–2300</td>
<td>6432</td>
<td>157</td>
</tr>
<tr>
<td>2301–3999</td>
<td>11 447</td>
<td>253</td>
</tr>
<tr>
<td>4000–10 000</td>
<td>5095</td>
<td>138</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MI</th>
<th></th>
<th></th>
<th>Hazard Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Events</td>
<td>Model 2*</td>
<td>Model 3†</td>
<td></td>
</tr>
<tr>
<td>209</td>
<td>0.95 (0.86–1.04)</td>
<td>0.94 (0.85–1.04)</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>1.0 (referent)</td>
<td>1.0 (referent)</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>0.88 (0.55–1.43)</td>
<td>0.93 (0.58–1.51)</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>0.66 (0.38–1.11)</td>
<td>0.68 (0.40–1.15)</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>0.79 (0.37–1.69)</td>
<td>0.78 (0.36–1.70)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vascular Death</th>
<th></th>
<th></th>
<th>Hazard Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Events</td>
<td>Model 2*</td>
<td>Model 3†</td>
<td></td>
</tr>
<tr>
<td>371</td>
<td>1.02 (0.95–1.10)</td>
<td>1.02 (0.95–1.10)</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>1.0 (referent)</td>
<td>1.0 (referent)</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>1.39 (0.95–2.04)</td>
<td>1.43 (0.97–2.11)</td>
<td></td>
</tr>
<tr>
<td>164</td>
<td>1.37 (0.91–2.07)</td>
<td>1.37 (0.90–2.07)</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>1.49 (0.82–2.72)</td>
<td>1.49 (0.81–2.72)</td>
<td></td>
</tr>
</tbody>
</table>

MI indicates myocardial infarction.  
*Adjusted for demographics + behavioral risk factors.  
†Adjusted for demographics + behavioral risk factors + vascular risk factors.