High-Resolution Magnetic Resonance Imaging

An Emerging Tool for Evaluating Intracranial Arterial Disease

Jeffrey D. Bodle, MD; Edward Feldmann, MD; Richard H. Swartz, MD, PhD; Zoran Rumboldt, MD; Truman Brown, PhD; Tanya N. Turan, MD

Atherosclerosis occurs in diverse vascular beds and may result in tissue ischemia. Current understanding of atherosclerotic disease has been advanced by imaging techniques, such as high-resolution magnetic resonance imaging (MRI; HRMRI) studies of the coronary and carotid arteries. In these vessels, atherosclerotic plaque components can be visualized to risk-stratify patients, select treatments, and advance our understanding of atherosclerosis pathophysiology in vivo. These imaging techniques are now being applied to evaluate intracranial arterial disease, both atherosclerotic and non-atherosclerotic. This review highlights the mechanisms by which intracranial atherosclerotic disease causes ischemia, the potential of HRMRI for identifying intracranial arterial pathology, the limitations of HRMRI in the intracranial circulation, and future applications of HRMRI for intracranial atherosclerotic disease.

HRMRI of Intracranial Atherosclerotic Disease

Image quality in MRI depends on several factors (eg, slice thickness, field of view, signal-to-noise ratio, matrix size, and magnetic field strength), but the term HRMRI is not well defined. In this review, the operational definition of HRMRI is limited to magnetic resonance acquisitions using clinically available 1.5 to 3.0 T magnetic field strengths targeted to intracranial arterial pathology that are of sufficient quality to visualize the arterial wall, separate from the lumen, of the proximal circle of Willis vessels. HRMRI can be accomplished at 1.5 T by limiting the field of view to focus on a single vessel or point of interest, but higher field strength at 3.0 T has many advantages over conventional (1.5 T) MRI. Image acquisition is faster and there are increased signal-to-noise and contrast-to-noise ratios, with better image quality for black-blood imaging. The increased signal and contrast that 3 T provides improves the detection of complex atherosclerotic plaque and can identify plaque components in larger arteries. Two-dimensionally acquired HRMRI is time consuming and must be monitored by a neuroradiologist to ensure adequate sampling of the lesions of interest. HRMRI using 3-dimensional (isotropic) acquisitions permits imaging of intracranial atherosclerotic disease (ICAD) with shorter scan times and generates better-quality images.

Mechanisms of Stroke in ICAD

The primary mechanisms by which ICAD results in ischemic stroke are plaque rupture, occlusion of small penetrating arteries, and hypoperfusion. Plaque rupture exposes the thrombogenic core to clotting factors, and the resulting thrombus either occludes the artery locally or embolizes distally. Vulnerable plaques (those with a large lipid core, intraplaque hemorrhage, or a thin or ruptured fibrous cap) are prone to rupture and cause myocardial infarction due to coronary artery atherosclerosis. The second mechanism, unique to ICAD, is growth of plaque over the ostia of penetrating arteries resulting in occlusion, described by Caplan as branch atheromatous disease. Lastly, high-grade narrowing or occlusion of the lumen may lead to hypoperfusion of the distal brain territory, particularly in patients with inadequate collateral flow.

Typically, the mechanism of stroke is inferred from the clinical presentation and the pattern and size of infarction. However, without detailed knowledge of plaque location, severity, and morphology, determination of stroke mechanism cannot be directly determined. HRMRI may provide this information, and thereby clarify the mechanism of stroke (Table 1). For example, an intracranial plaque with HRMRI features of intraplaque hemorrhage and a ruptured fibrous cap in a patient with downstream ischemia is likely associated with artery-to-artery embolism, whereas a stable plaque with a large amount of fibrous tissue and small lipid core resulting in high-grade stenosis may cause hypoperfusion. Thus, HRMRI may directly determine stroke mechanism and play a role in selecting secondary prevention therapies (eg, patients with hypoperfusion may benefit from intracranial revascularization procedures that may not benefit patients with artery-to-artery embolism). Future studies of stroke prevention may be enhanced by patient selection based on mechanism using HRMRI.

Conventional ICAD Imaging Compared With HRMRI

Degree of Stenosis

Conventional imaging of ICAD focuses on the vessel lumen. Digital subtraction angiography, computerized axial tomography angiography, and magnetic resonance angiography identify...
luminal patency and stenosis, whereas transcranial Doppler indirectly estimates luminal stenosis by measuring blood flow velocity. In contrast to these methods, HRMRI allows direct visualization of the vessel wall, permitting assessment of both luminal stenosis and features of vessel wall pathology, which can aid diagnostic specificity and sensitivity.

Determining Causes of Stenosis
Intracranial stenosis can be caused by diverse pathologies (eg, atherosclerosis, inflammation, and vasospasm), with diverse treatment implications. Although conventional imaging detects luminal narrowing, different pathologies can result in similar patterns of stenosis. Currently, differentiating causes of intracranial stenosis requires invasive testing, such as a spinal tap or brain biopsy. However, HRMRI may noninvasively differentiate between pathologies of intracranial stenosis by identifying plaque components or unique enhancement patterns. Swartz et al studied postcontrast HRMRI images in 37 patients with intracranial stenosis and found that symptomatic atherosclerotic vasculopathies (ICAD) had eccentric wall thickening and enhancement, but inflammatory vasculopathies had concentric thickening and enhancement patterns. Along those lines, idiopathic Moya-moya disease was associated with luminal narrowing with neither wall thickening nor enhancement, and vasospasm due to noninflammatory processes (reversible cerebral vasoconstriction syndrome) was associated with concentric wall thickening without enhancement. HRMRI has identified a Moya-moya phenomenon due to atherosclerosis, and distinguished between atherosclerosis and basilar artery hypoplasia by identifying plaque components.

Detection of Nonstenotic Plaques
Although conventional imaging can detect luminal narrowing, lumen diameter may be maintained in atherosclerotic arteries through compensatory vascular remodeling that results in minimal stenosis detectable by conventional imaging. This process of positive or outward remodeling (Figure) results in plaque rupture in acute coronary syndromes and has been reported in ICAD. HRMRI can identify remodeling without stenosis that may be clinically important, but missed by conventional imaging. For example, HRMRI showed plaque in middle cerebral artery (MCA) and basilar arteries that appeared normal on magnetic resonance angiography, but resulted in stroke because of occlusion of penetrating arteries. In some cases, ICAD was identified in the setting of small lacunar strokes that would previously have been attributed to lipohyalinosis of the penetrating arteries.

Identification of Plaque Components
HRMRI can reliably identify plaque features in other vascular territories and shows promise for use in ICAD (Table 2).
In other vascular beds, identification of atherosclerotic plaque components has helped risk-stratify patients and select treatments. Using imaging, clinical, and pathological correlations, studies of coronary and carotid artery disease have identified features that indicate plaque vulnerability: intraplaque hemorrhage, lipid core size, and fibrous cap thickness. These vulnerable plaque characteristics are also present in ICAD, but are less well studied.

Intraplaque Hemorrhage
Intraplaque hemorrhage (IPH) from rupture of plaque microvessels causing accumulation of erythrocyte membranes, deposition of cholesterol, macrophage infiltration, and enlargement of the necrotic core results in atheroma growth and plaque destabilization. In patients with extracranial carotid stenosis, HRMRI-defined IPH correlates well with pathological specimens, and IPH is associated with stroke symptoms in cross-sectional and prospective studies of patients with carotid stenosis. Although HRMRI-defined IPH is a well-described predictor of ischemic events due to carotid stenosis, it is an emerging area of research in ICAD. One case report showed HRMRI-defined IPH in a patient with symptomatic ICAD. Another case series using HRMRI identified intracranial IPH in 2 of 13 patients with ischemic stroke. In the first systematic attempt to associate IPH with recent symptoms in ICAD, the prevalence of IPH in symptomatic patients (19.6%) was higher than in asymptomatic patients (3.2%). The prevalence of IPH in other (basilar, ICA, vertebral) intracranial arteries has been systematically studied. The timing, initial appearance, and duration that IPH is detectible on HRMRI are critical factors that require additional study. Although these data suggest an association between IPH and recent symptoms, only prospective follow-up will determine whether IPH predicts high risk.

Lipid Core
A large amount of lipid within the necrotic core of a plaque is another sign of plaque vulnerability. HRMRI measurement of lipid-necrotic core area in carotid plaques correlates well with pathology. A large lipid core area relative to the plaque area on HRMRI has also been associated with stroke symptoms in cross-sectional and prospective studies of patients with carotid stenosis. In patients with ICAD, the presence and amount of lipid core within plaque is not well reported. Turan et al presented a case series of 8 intracranial plaques (middle cerebral artery and basilar) evaluated using HRMRI, wherein the presence of lipid core was visualized in 75%. However, the relationship between the presence or amount of lipid within the plaque and prognosis requires study.

Fibrous Cap
The fibrous cap is a layer of connective tissue covering the lipid-necrotic core. In patients with carotid stenosis, pathology specimens show that a thin fibrous cap overlying a lipid core is a feature of plaque vulnerability and that subsequent
rupture of the fibrous cap exposes the thrombogenic lipid core to circulating blood, resulting in thromboembolism. Thick fibrous caps are less prone to rupture. HRMRI can identify fibrous cap characteristics (thin, thick, or ruptured) in carotid arteries. HRMRI of carotid plaques showed that patients with recent stroke symptoms had significantly more ruptured caps (70%) and thin caps (50%) than thick caps (9%), suggesting fibrous cap status may also be a predictor of stroke risk. Although more difficult to visualize, fibrous caps have also been identified in patients with ICAD, but there has been no systematic study of the relationship between fibrous cap status and recent stroke symptoms.

Limitations of HRMRI
Despite the advantages of HRMRI ICAD imaging, this technique currently has limitations. Imaging characteristics in ICAD have not yet been correlated with pathological specimens because, although HRMRI of the carotids can be correlated with endarterectomy specimens, intracranial vessels are not accessible to pathology sampling in live patients. Therefore, the signal characteristics of intracranial plaque components can only be extrapolated from carotid HRMRI studies at present. Pathological correlation with HRMRI signal characteristics will be a key step in validating this technique in ICAD.

Additional challenges in HRMRI ICAD imaging are because of the tortuosity and variable course of the intracranial arteries. Three-dimensional image acquisition and the ability to reconstruct images in multiple planes may be used to straighten tortuous or angled arteries to provide a more accurate representation of the lesion. Another challenge is the small size (2.0–5.0 mm) and depth of the intracranial vessels, which require relatively long acquisition times, making HRMRI imaging difficult because of patient motion artifact and limitations in resolution. In the future, motion-correction algorithms may be used to evaluate challenging patients.

HRMRI is limited by its cost and availability. The average Medicare reimbursement for a brain MRI is $533, but as ICAD imaging is not standard-of-care; there is currently no reimbursement for the extra scan time. A recent survey reported that MRI was available at 66% of hospitals, with small and rural hospitals having less access. However, 3-T MRI is available at most large academic centers and is the fastest growing magnetic resonance market segment. Finally, a disadvantage of higher field strength is the increased specific absorption rate that results in the potential for more tissue heating, raising safety concerns. Although not as much of a concern with 3 T, clinical imaging at 7 T is performed in a few centers, and its use is strictly limited to patients without any possibility of metal implants, such as cardiac stents or metal clips, to prevent tissue injury.

Future Directions of Research
The use of HRMRI to characterize ICAD is an emerging field and was built on cardiac and carotid studies. IPH, fibrous

Table 2. Examples of Suspected Plaque Components Identified by HRMRI in ICAD

<table>
<thead>
<tr>
<th>Component</th>
<th>Imaging Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intraplaque hemorrhage</td>
<td>Sequential T1 sagittal images of the MCA showing intraplaque hemorrhage defined as >150% of medial pterygoid muscle signal (second and third images; Turan et al)</td>
</tr>
<tr>
<td>Fibrous cap rupture and lipid core</td>
<td>Sagittal T2 (panel C) and T1-weighted fat-suppressed (panel D) imaging of symptomatic MCA. Lower right corner shows central region magnified. IPH is defined as bright signal on T1 fat-suppressed images (arrow in panel D; Xu et al)</td>
</tr>
<tr>
<td></td>
<td>Axial images of basilar artery stenosis (T1-weighted precontrast and postcontrast, T2-weighted, and FLAIR) and normal volunteer FLAIR. Row A is unmarked and row B shows plaque features marked. Lipid is isodense on T1 and hypodense on T2 (white +). Ruptured fibrous cap is indicated by enhancement (black *). Artery wall to CSF boundary (white dash line) is not visualized in normal artery on FLAIR (Turan, et al)</td>
</tr>
</tbody>
</table>

HRMRI indicates high-resolution magnetic resonance imaging; MCA, middle cerebral artery; ICAD, intracranial atherosclerotic disease.
cap status, and large lipid core area are plaque components that can be detected in ICAD and have been associated with stroke in extracranial carotid plaques. Rigorous study of the prognostic value of HRMRI in ICAD will need to establish the reliability of HRMRI for detection of plaque features, the prevalence of plaque features, and to describe the temporal relationship between the appearance and resolution of imaging abnormalities and ischemic symptoms.

Demonstrating that HRMRI ICAD plaque features are predictors of stroke could lead to changes in clinical management. Currently, conventional angiographic imaging is used to identify ICAD patients at highest risk of recurrent stroke, such as those with severe (70–99%) stenosis and poor collateral flow. However, HRMRI may noninvasively identify other predictors of recurrent symptoms. For example, a patient with 60% stenosis and thin fibrous cap may be at higher risk of recurrent stroke than a patient with 80% stenosis and an intact thick fibrous cap. Although the association between stroke risk and HRMRI plaque features is not yet proven, the ability to identify plaque characteristics may enhance future risk stratification and individualization of treatment. Jiang et al have already described cases of ICAD patients in which HRMRI plaque imaging helped guide the endovascular treatment. In addition, the HRMRI identification of plaque components in arteries appearing normal using conventional imaging techniques may reclassify patients previously thought to have cryptogenic or lacunar stroke, and thereby change their management.

Demonstrating that HRMRI ICAD plaque features are predictors of stroke could lead to changes in patient selection for future clinical trials that evaluate new prevention treatments, such as using IPH as an entry criterion rather than selection for future clinical trials that evaluate new prevention therapies targeted at preventing progression of atherosclerosis, thereby change their management.

In the future, HRMRI in ICAD may also lead to new understanding of the mechanisms of atherosclerotic pathology. The use of novel, targeted MRI contrast agents may allow visualization of biological processes, such as angiogenesis or inflammation, within the plaque wall to identify vulnerable plaques using HRMRI. For example, gadolinium-loaded paramagnetic nanoparticles have been used to identify neovascularization in animal models. As these novel technologies continue to be developed and studied in other vascular territories, their application in ICAD will also warrant study.

Conclusion

HRMRI of intracranial arteries is an emerging tool that can help identify stroke mechanisms, determine the degree and pathology of stenoses, identify nonstenotic plaques, and identify potentially high-risk plaque components. These plaque characteristics are not visualized with conventional luminal imaging and may be important predictors of stroke. Additional research is needed to establish the reliability of HRMRI for detection of high-risk plaque features in ICAD, which may set the stage for prospective studies to determine the predictive power of HRMRI in ICAD and for future therapeutic trials to investigate new treatments for this high-risk disease.

Sources of Funding

Dr Turan receives funding from the National Institutes of Health (K23NS069668). This research was also supported by the Medical University of South Carolina Center for Advanced Imaging Research and the South Carolina Clinical and Translational Research Institute award UL1RR029882. Dr Swartz is supported by the Heart and Stroke Foundation of Canada for HRMRI research in intracranial vascular diseases.

Disclosures

JDB, EF, ZR, TB have no relevant disclosures; RHS- funded by the Heart and Stroke Foundation of Canada for HRMRI research; TNT – funded by the National Institutes of Health for HRMRI research.

References

High-Resolution Magnetic Resonance Imaging: An Emerging Tool for Evaluating Intracranial Arterial Disease

Stroke. 2013;44:287-292; originally published online November 29, 2012; doi: 10.1161/STROKEAHA.112.664680

Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2012 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/44/1/287

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org/subscriptions/