Incidence of Venous Thromboembolism in the Wake of the Clots in Legs Or sTockings after Stroke (CLOTS) Study

Palbha Jain, IB; Elizabeth Ward, MBBS; Tracy Nevatte, PhD; Christine Roffe, MD

Background and Purpose—In the United Kingdom, compressive stockings were standard care in all stroke units until the publication of the Clots in Legs Or sTockings after Stroke (CLOTS) trial results in May 2009, which concluded that stockings were ineffective. The aim of this audit was to assess whether this change in practice was associated with any change in venous thromboembolism incidence in routine clinical practice.

Method—All stroke register entries at the University Hospital of North Staffordshire from 2 years before the publication of the CLOTS trial results to 2 years after were identified and included in this audit. The hospital radiology reporting system was then cross-checked for evidence of venous thromboembolism on computed tomography pulmonary angiogram, ventilation/perfusion lung scan, and leg Doppler reports.

Results—There were 773 patients in the before cohort and 861 in the after cohort (mean age, 74/74 years; men, 47%/45%; and ischemic stroke, 87%/85%, respectively). Symptomatic venous thromboembolism incidence was the same in both cohorts, 21 (2.7%) in the before cohort and 26 (3.0%) in the after cohort (P=0.8). There was a trend toward more deep vein thrombosis (9 [1.2%] versus 19 [2.2%]; P=0.1) and fewer pulmonary embolisms (12 [1.6%] versus 6 [0.7%]; P=0.2) in the after cohort.

Conclusions—Discontinuation of compressive stockings did not increase venous thromboembolism incidence. There was a trend toward more deep vein thrombosis and fewer PEs after CLOTS, which might be because of increased clinical vigilance in the diagnosis of deep vein thrombosis, but a chance variation cannot be excluded. (Stroke. 2013;44:2910-2912.)

Key Words: pulmonary embolism ■ venous thromboembolism ■ venous thrombosis

Venous thromboembolism (VTE; eg, deep venous thrombosis [DVT] and pulmonary embolism [PE]) is a common complication of acute stroke. Its incidence varies between studies.1–7 In 2009, the Clots in Legs Or sTockings after Stroke (CLOTS) 1 trial reported an incidence of 10% for DVT diagnosed by Doppler, of which 7% were asymptomatic and 3% were symptomatic, and there was a 1% incidence of symptomatic PE.1

In the Chinese Acute Stroke Trial (CAST) and in a study of in-hospital deaths after stroke in Germany, half of the reported PEs were fatal,2,3 but it is conceivable that not all PEs were diagnosed because the observed rates were very low, at 0.1% and 0.4%, respectively. In addition to the risk of PE, DVT may lead to chronic venous stasis and ulceration, with considerable burden on the patient and long-term costs for the National Health Service. Prophylactic anticoagulation lowers the risk of DVT and PE after stroke, but reduction of symptomatic PE is balanced by an equal increase in symptomatic intracerebral hemorrhage. United Kingdom stroke guidelines do not support routine prophylactic anticoagulation (Royal College of Physicians guidelines 2008 and 2012).8,9

Compressive stockings effectively reduce DVT in inpatients10 and have been used as the main method of thrombosis prevention in most stroke units in the United Kingdom until May 26, 2009, when the CLOTS 1 trial showed that stockings were ineffective in this patient group.1 There was concern among clinicians that the change in practice may lead to an increase in VTE. This audit was performed to establish

<table>
<thead>
<tr>
<th>Table 1. Baseline Demographic Characteristics and Details of the Stroke</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Age, mean (SD), y</td>
</tr>
<tr>
<td>Sex, men, n (%)</td>
</tr>
<tr>
<td>Intracerebral hemorrhage, n (%)</td>
</tr>
<tr>
<td>Stroke pathology not known, n (%)</td>
</tr>
<tr>
<td>Cerebral infarct, n (%)</td>
</tr>
<tr>
<td>Infarct classification</td>
</tr>
<tr>
<td>Total anterior circulation infarct, n (%)</td>
</tr>
<tr>
<td>Partial anterior circulation infarct, n (%)</td>
</tr>
<tr>
<td>Lacunar infarct, n (%)</td>
</tr>
<tr>
<td>Posterior circulation infarct, n (%)</td>
</tr>
<tr>
<td>Infarct type not defined, n (%)</td>
</tr>
<tr>
<td>Using antplatelet medication, n (%)</td>
</tr>
<tr>
<td>Time from admission to first therapy session, median (IQR), d</td>
</tr>
</tbody>
</table>

CLOTS indicates Clots in Legs Or sTockings after Stroke trial; and IQR, interquartile range.

Received March 12, 2013; final revision received June 13, 2013; accepted June 13, 2013.

From the School of Medicine (P.J.), Institute for Science and Technology in Medicine (T.N., C.R.), Keele University, Keele, UK; Department of Stroke Medicine, University Hospital of North Staffordshire, Stoke on Trent, UK (E.W.); and Stroke Research, North Staffordshire Combined Healthcare Trust, Stoke on Trent, UK (C.R.). Correspondence to Christine Roffe, MD, Holly Lodge, 62 Queens Rd, Stoke on Trent ST4 7LH, UK. E-mail christine.roffe@northstaffs.nhs.uk

© 2013 American Heart Association, Inc.

Stroke is available at http://stroke.ahajournals.org

DOI: 10.1161/STROKEAHA.113.001458

2910
whether the incidence of VTE has changed since stopping
the use of compressive stockings after the publication of the
CLOTS 1 trial.

Materials and Methods
In this standards-based retrospective clinical audit, data of 1638
stroke patients were collected from the Stroke Register at the
University Hospital of North Staffordshire for the 2 cohorts: before
cohort (between May 27, 2007 and May 25, 2009) and after cohort
(May 27, 2009 and May 25, 2011). The admission date was defined
as the date when the patient was admitted to University Hospital of
North Staffordshire after presenting with a stroke.

In the before cohort, full-length graduated compression stock-
ings were used from the day of admission for every stroke patient
unless there were definite contraindications or if they were par-
ticipating in the CLOTS study. Patients in the after cohort were
not treated with compression stockings. Prophylactic anticoagula-
tion was not used routinely on the unit during the before and after
phases, but it was considered in patients with a history of VTE or
with known thrombophilia. Stocking use before and cessation of
use after CLOTS was supported by local guidelines and followed
consistently. Because the unit took part in the CLOTS trial and fol-
lowed the results live, change in practice was immediate and com-
prehensive, especially because neither patients nor nurses liked
the stockings. For the audit, each stroke patient’s records were ac-
cessed using CRIS radiology software to determine the following:

1. Whether and when they had been diagnosed as having either a
DVT or PE, or both, in the time period of 14 days before and 90
days after the admission date.
2. Whether an ultrasound Doppler of the lower limb veins, ven-
tilation/perfusion scan scan, or computed tomography (CT) pul-
monary angiogram had been performed and, if so, whether a
diagnosis of PE had been made or not.

For each scan, it was recorded whether the scan was positive or
negative for DVT, which leg was affected, and whether the DVT was

Table 2. Incidence Venous Thromboembolism in the Before and After Clots in Legs Or sTockings after Stroke Cohorts

<table>
<thead>
<tr>
<th></th>
<th>Before, n=773</th>
<th>After, n=861</th>
<th>Total, N=1634</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deep vein thrombosis, n (%)</td>
<td>9 (1.2)</td>
<td>19 (2.2)</td>
<td>28 (1.7)</td>
</tr>
<tr>
<td>Pulmonary embolism, n (%)</td>
<td>12 (1.6)</td>
<td>6 (0.7)</td>
<td>18 (1.1)</td>
</tr>
<tr>
<td>Total, N (%)</td>
<td>21 (2.7)</td>
<td>26 (3.0)</td>
<td>47 (2.9)</td>
</tr>
</tbody>
</table>

Table 3. Incidence of Symptomatic Venous Thromboembolism in Observational Studies, Registries, and Randomized Clinical Trials

<table>
<thead>
<tr>
<th>Type of Study/ Clinical Trial</th>
<th>Centers</th>
<th>Intervention</th>
<th>Number of Patients</th>
<th>Incidence of Symptomatic DVT</th>
<th>Incidence of Symptomatic PE</th>
</tr>
</thead>
<tbody>
<tr>
<td>This audit</td>
<td>Retrospective notes survey</td>
<td>Single</td>
<td>1668</td>
<td>1.7%</td>
<td>1.1%</td>
</tr>
<tr>
<td>Tong, 2010[13]</td>
<td>Retrospective health care cost survey</td>
<td>Multi</td>
<td>28985</td>
<td>0.8%</td>
<td>0.3%</td>
</tr>
<tr>
<td>Heuschmann, 2004[14]</td>
<td>Stroke register</td>
<td>Multi</td>
<td>10 800</td>
<td>0.4%</td>
<td>1%</td>
</tr>
<tr>
<td>Langhorne, 2000[15]</td>
<td>Prospective survey</td>
<td>3 sites</td>
<td>311</td>
<td>2%</td>
<td>1%</td>
</tr>
<tr>
<td>Davenport, 1996[16]</td>
<td>Retrospective notes survey</td>
<td>Single</td>
<td>607</td>
<td>3%</td>
<td>1%</td>
</tr>
<tr>
<td>Dromerick, 1994[17]</td>
<td>Retrospective notes survey</td>
<td>Single</td>
<td>100</td>
<td>0%</td>
<td>1%</td>
</tr>
</tbody>
</table>

EXCLAIM, 2012[17] RCT Enoxaparin 14 d vs enoxaparin 28 d
CLOTS 1, 2009[18] RCT Full-length CS vs no CS
PREVAIL, 2007[19] RCT Enoxaparin vs UFH
IST, 1997[21] RCT 2×2 Aspirin vs no aspirin UFH vs no UFH
CAST, 1997[22] RCT Aspirin 150 mg/d vs placebo*

CAST indicates Chinese Acute Stroke Trial; CLOTS, Clots in Legs Or sTockings after Stroke; CS, compressive stockings; DVT, deep venous thrombosis; EXCLAIM, EXTended CLinical prophylaxis in Acutely Ill Medical patients; IST, International Stroke Trial; PE, pulmonary embolism; PREVAIL, Prospective Randomized Evaluation of the WATCHMAN LAA Closure Device in Patients With Atrial Fibrillation Versus Long Term Warfarin Therapy; RCT, randomized controlled trial; TOAST, Trial of ORG 10172 in Acute Stroke Treatment; and UFH, unfractionated heparin.

*Active controls rather than placebo or standard care.
proximal or distal. Proximal DVTs were defined as located in the knee and thigh (ie, in the femoral vein) and distal DVTs were defined as located below the knee (ie, in the popliteal vein). Both occlusive and nonocclusive thromboses were included.

Baseline clinical data for each cohort were summarized using means, medians, and percentages. Differences in DVT and PE incidence between the before and after cohorts were tested for statistical significance using 2-tailed Fisher exact tests.

Results
One thousand six hundred sixty-eight patients were included in the audit. Thirty-four patients were recruited to CLOTS and, therefore, were excluded from the audit, leaving 773 patients in the before cohort and 861 in the after cohort. Patients were well-matched for age, sex, stroke diagnosis (infarct or hemorrhage), infarct subtype, and treatment with antiplatelet agents (Table 1).

The incidence of symptomatic VTE was the same for both cohorts, with 21 (2.7%) events in the before cohort and 26 (3.0%) in the after cohort ($P=0.8$). However, there was a trend toward more DVTs (9 [1.2%] versus 19 [2.2%]; $P=0.1$) and fewer PEs (12 [1.5%] versus 7 [0.8%]; $P=0.2$) in the after cohort (Table 2). All diagnoses of VTE were confirmed by leg Doppler, ventilation/perfusion scan, or pulmonary angiogram. None of the VTE events was diagnosed by postmortem examination.

Discussion
The results of this audit show that there was no increase in VTE after the routine use of compressive stockings was stopped in acute stroke patients at University Hospital of North Staffordshire. Our findings confirm the results of the CLOTS 1 trial and extend the findings from the trial population to day-to-day routine clinical practice.1

The incidence rates of DVTs and PEs in our audit cohort were 1.7% and 1.1%, respectively, which is similar to previous United Kingdom–based surveys, as shown in Table 3. The incidence of symptomatic PE and DVT in our cohort is also comparable with that of the control groups of large, randomized, controlled studies, which range between 0.2% (CAST) and 1.6% (CLOTS 1) for PE and between 1.6% (Trial of ORG 10172 in Acute Stroke Treatment) and 3.4% (CLOTS 1) when compared against placebo or usual care (Table 3).1,7,11–17 Our results, the results of previous surveys, and results from the control groups of randomized controlled trials suggest that symptomatic PE is a rare complication of stroke and that symptomatic DVT is slightly more common but <4%.

Although we showed no overall change in VTE, the trend toward higher rates of DVT and lower rates of PE in the after cohort could be because of random variation; however, because the change in practice caused great anxiety on our unit and prompted the team to examine calves on a daily basis, it could have been because of greater vigilance in diagnosis of DVT. This could explain the trend and also point toward an effective method of prevention of PE. Because the incidence of PE is low, a study to test this hypothesis would have to be very large.

Disclosures
None.

References
Incidence of Venous Thromboembolism in the Wake of the Clots in Legs Or sTockings after Stroke (CLOTS) Study
Palbha Jain, Elizabeth Ward, Tracy Nevatte and Christine Roffe

Stroke. 2013;44:2910-2912; originally published online August 8, 2013;
doi: 10.1161/STROKEAHA.113.001458

Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2013 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/44/10/2910

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/