New Model for Predicting Surgical Feeding Tube Placement in Patients With an Acute Stroke Event

Perry H. Dubin, BA; Amelia K. Boehme, MSPH; James E. Siegler, MD; Amir Shaban, MD; Jenifer Juengling, PhD; Karen C. Albright, DO, MPH; Sheryl Martin-Schild, MD, PhD

Background and Purpose—The need for surgical feeding tube placement after acute stroke can be uncertain and associated with further morbidity.

Methods—Retrospective data were recorded and compared across patients with acute ischemic stroke and intracerebral hemorrhage. We identified all feeding tubes placed as percutaneous endoscopic gastrostomy (PEG) tubes. A prediction score for PEG tube placement was developed separately for patients with acute ischemic stroke and intracerebral hemorrhage using logistic regression models of variables known by 24 hours from admission.

Results—Of 407 patients included, 51 (12.5%) underwent PEG tube placement (25 acute ischemic stroke and 26 intracerebral hemorrhage). The odds of a patient with acute ischemic stroke with PEG score ≥3 of getting a PEG are greater than those with PEG score <3 (odds ratio, 15.68; 95% confidence interval, 4.55–54.01). The odds of a patient with intracerebral hemorrhage with PEG score ≥3 of getting a PEG are greater than those with PEG score <3 (odds ratio, 12.49; 95% confidence interval, 1.54–101.29).

Conclusions—The PEG score, comprised by variables known within the first day of admission, may be a powerful predictor of PEG placement in patients with acute stroke. (Stroke. 2013;44:3232-3234.)

Key Words: acute ischemic stroke ■ enteral nutrition ■ gastric feeding tube ■ intracerebral hemorrhage

Dysphagia, or difficulty swallowing, can be identified in ≤50% of patients with acute stroke.1–3 The placement of a percutaneous endoscopic gastrostomy (PEG) tube is a feasible and common medical intervention with a low complication rate4 for patients who experience dysphagia after stroke to minimize complications.5 This study aims to develop a score to assist physicians in predicting the eventual placement of a PEG in patients who experience acute ischemic stroke (AIS) and intracerebral hemorrhage (ICH).

Methods

This is a retrospective analysis of prospectively collected data from patients admitted consecutively with acute stroke (AIS and ICH) to our academic stroke center from July 2008 to December 2010. Patients who received a PEG tube or other surgical feeding tube during hospital stay were identified from our stroke registry database. Patients with an in-hospital stroke, transferred from an outside facility, with an unknown time of last seen normal, reason for dysphagia other than stroke (eg, multiple sclerosis, advanced Alzheimer dementia, or previous head and neck surgery), and who presented 24 hours after last seen normal were excluded. Admission demographic and clinical data, as well as outcome measures, were extracted from patient records. Demographic and clinical data were recorded from within 24 hours of presentation and compared across patients with AIS and ICH using χ2 and t test with nonparametric tests, as well as odds ratios, when appropriate. A prediction score was developed separately for patients with AIS and ICH. More information on data collection, statistical analyses, and prediction model building can be found in the online-only Data Supplement.

Results

Patient Population

A total of 734 patients were identified for the study, and 407 patients met inclusion criteria. Of these patients, 51 (12.5%) underwent PEG placement during hospital admission (Table 1). Of those undergoing PEG placement, there were 25 patients with AIS (7.6% of patients with AIS) and 26 patients with ICH (34.2% of patients with ICH; Table 2).

Risk Prediction Model: AIS

The AIS-PEG score was developed with 1 point being awarded for each of the following: age ≥80 years, 24-hour National Institutes of Health Stroke Scale (NIHSS) 8 to 14 (with an
extra point for 24-hour NIHSS score >14), 1 point for black race, and 1 point for the infarct location involving cortex with a maximum of 5 points. Severity of dysphagia documented by speech therapy, dichotomized as nil per os versus liquid or solid foods permissible, was not predictive of PEG placement, and therefore not included in the model (P = 0.252). We found that for the entire cohort, the odds of patients with PEG score ≥3 getting a PEG as an inpatient were 15× higher than those with PEG score <3 (odds ratio, 15.68; 95% confidence interval, 4.55–54.01), and a score of ≥3 points is 91.7% sensitive and 62.8% specific for undergoing PEG placement during hospitalization for patients with AIS with stroke (Figure).

Risk Prediction Model: ICH

The ICH-PEG score was developed with 1 point being awarded for each of the following: black race, 24-hour NIHSS score 8 to 14 (with an extra point for 24-hour NIHSS score >14), midline shift on initial head computed tomographic scan (≥3 mm), and edema on follow-up head computed tomography with a maximum of 5 points. Again, severity of dysphagia did not reach statistical significance for predicting PEG placement (P = 0.523). With this risk prediction model, the odds of patients with ICH with PEG score of ≥3 undergoing PEG placement were 3× higher than those with PEG score <3 (odds ratio, 3.08; 95% confidence interval, 1.14–9.04), and a score of ≥3 points is 87.8% sensitive and 75.0% specific for undergoing PEG placement during hospitalization for patients with ICH with stroke (Figure).
placement as an inpatient were nearly 12× higher than those with PEG score <3 (odds ratio, 12.49; 95% confidence interval, 1.54–101.29), and a score of ≥3 points is 96.2% sensitive and 33.3% specific for having a PEG tube placed (Figure).

Discussion
Severe strokes, baseline dysarthria, and impaired level of consciousness were associated with PEG tube placement, which is consistent in the literature.2,6,7 Despite this association, dysarthria and level of consciousness were not included in the models because of nonsignificance.

The AIS risk prediction model was found to be more prognostic of future PEG placement than the ICH risk model. The PEG score could be used to demonstrate need for surgical feeding tube insertion by the day after admission, potentially minimizing length of stay.

Our study is limited by its small sample size involving only 1 academic center, making our results difficult to generalize to larger populations, and by the retrospective nature of this study. We mitigated these limitations by extensively documenting admission physical examination data, allowing us to create an effective model to predict PEG placement early during hospitalization. The study is further limited by the method of classifying the severity of dysphagia, as it does not use a validated dysphagia scoring system.

In summary, our data present a new tool for estimating who will undergo PEG placement. With the expedited placement of a PEG, enteral nutrition can be initiated and the risks of malnutrition, prolonged length of stay, and mortality could be minimized. To appreciate the full implications of such a scoring system, we recommend validating this risk prediction model prospectively and with other stroke registries.

Sources of Funding
The project described was supported by Award Numbers 5 T32 HS013852-10 from The Agency for Healthcare Research and Quality (AHRQ), 3 P60 MD000502-08S1 from The National Institute on Minority Health and Health Disparities (NIMHD), National Institutes of Health (NIH), and by award 13PRE13830003 from the American Heart Association. The content is solely the responsibility of the authors and does not necessarily represent the official views of the AHRQ, AHA, or the NIH.

Disclosures
This work was supported by a grant from the Doris Duke Charitable Foundation to fund Clinical Research Fellow P.H. Dubin. The other authors report no conflict.

References
New Model for Predicting Surgical Feeding Tube Placement in Patients With an Acute Stroke Event
Perry H. Dubin, Amelia K. Boehme, James E. Siegler, Amir Shaban, Jenifer Juengling, Karen C. Albright and Sheryl Martin-Schild

Stroke. 2013;44:3232-3234; originally published online August 20, 2013; doi: 10.1161/STROKEAHA.113.002402

Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2013 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/44/11/3232

Data Supplement (unedited) at:
http://stroke.ahajournals.org/content/suppl/2013/08/20/STROKEAHA.113.002402.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Stroke* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Stroke* is online at:
http://stroke.ahajournals.org/subscriptions/
Supplemental Methods

Data Collection

All patients received bedside clinical swallow assessment from a speech and language therapist within 24 hours of the admission unless unable to participate, and videofluoroscopic swallowing assessments (unless the patient was unable to participate or a diet was recommended based on lack of aspiration predictors on the bedside clinical swallow assessment). Decision for PEG placement was individualized to each patient through the interdisciplin ary evaluation and made after sequential attempts to demonstrate a functional swallow on clinical bedside assessments or persistent inability to participate with the assessments. NIHSS evaluations were performed daily before morning rounds and upon detection of clinical worsening as part of the standard of care at our institution, which allowed clinicians to assess neurological recovery and/or decline. All examiners were certified in the NIHSS examination. Only investigators certified to perform the modified Rankin Scale (mRS) exam documented the mRS score for each patient at the time of discharge.

We compared admission, clinical and discharge information between patients who received a PEG tube and patients who did not receive a PEG tube. We sub-analyzed the differences between AIS and ICH patients who underwent PEG tube placement. The primary outcome of interest was PEG tube or other surgical feeding tube placement, which we also identified as PEG tube placement for the study. Secondary outcome measures were compared across patients with and without PEG tube placement, and included neurological deterioration (increase in NIHSS of 2 or more points in a 24 hour period), discharge disposition, mRS and NIHSS at discharge, length of stay (LOS), and in-hospital mortality.

Statistics

The prediction models were built by using a random sample of 55% of the dataset (build group) and subsequently tested on the remaining random 45% (test group). Additionally, the scores were tested on the entire population after score development. The patients in the build group were used in logistic regression models with the outcome variable of PEG placement. Independent predictors of PEG placement (e.g., race) with p values ≤0.2 entered our final score as score variables and were evaluated at different values and dichotomizations using sensitivity analysis and logistic regression to identify cutoff points. We tested every variable that would be available at 24 hours after admission for the PEG predictors. Each continuous variable was evaluated using receiver operator characteristics (ROC) curves. After the variables were assessed individually using the <0.2 cut point for the p-value we then placed variables that met this requirement in the multivariable model. The points assigned to the variables in the score were determined through the beta coefficients from the final multivariable logistic regression model. Once in the multivariable model we then used the area under the curve (AUC) of the ROC curve from the multivariable models to develop the most predictive scoring algorithm. Spearman’s correlation and ROC curves were used to evaluate the final score. This process was done separately for AIS patients and for ICH patients. Additional logistic regression analyses were conducted to assess the relationship between PEG
placement and outcomes as well as PEG scoring cut points and PEG placement. As this was an exploratory analysis, no adjustments were made for multiple comparisons. An alpha of 0.05 was set as the level of significance.

Supplementary References

Supplementary Table 1: Logistic Regression Variables

<table>
<thead>
<tr>
<th></th>
<th>Odds Ratio</th>
<th>95% CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIS Score</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>1.85</td>
<td>0.72-4.79</td>
<td>0.203</td>
</tr>
<tr>
<td>Black Race</td>
<td>1.39</td>
<td>0.49-3.85</td>
<td>0.532</td>
</tr>
<tr>
<td>Cortical Involvement</td>
<td>7.77</td>
<td>0.99-60.7</td>
<td>0.051</td>
</tr>
<tr>
<td>NIHSS Score</td>
<td>2.78</td>
<td>1.51-5.10</td>
<td>0.001</td>
</tr>
<tr>
<td>ICH Score</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black Race</td>
<td>1.80</td>
<td>0.51-6.31</td>
<td>0.357</td>
</tr>
<tr>
<td>Edema</td>
<td>1.99</td>
<td>0.54-7.38</td>
<td>0.303</td>
</tr>
<tr>
<td>Midline Shift</td>
<td>1.92</td>
<td>0.66-5.34</td>
<td>0.230</td>
</tr>
<tr>
<td>NIHSS Score</td>
<td>2.31</td>
<td>0.96-5.59</td>
<td>0.063</td>
</tr>
</tbody>
</table>

Odds ratios and 95% confidence intervals for variables in logistic regression models.

Abbreviations: Acute ischemic stroke (AIS), National Institute of Health Stroke Score (NIHSS), intracerebral hemorrhage (ICH).