Oxidative Stress Interferes With White Matter Renewal After Prolonged Cerebral Hypoperfusion in Mice

Nobukazu Miyamoto, MD, PhD; Takakuni Maki, MD, PhD; Loc-Duyen D. Pham, MS; Kazuhide Hayakawa, PhD; Ji Hae Seo, PhD; Emiri T. Mandeville, MD, PhD; Joseph B. Mandeville, PhD; Kyu-Won Kim, PhD; Eng H. Lo, PhD; Ken Arai, PhD

Background and Purpose—White matter injury caused by cerebral hypoperfusion may contribute to the pathophysiology of vascular dementia and stroke, but the underlying mechanisms remain to be fully defined. Here, we test the hypothesis that oxidative stress interferes with endogenous white matter repair by disrupting renewal processes mediated by oligodendrocyte precursor cells (OPCs).

Methods—In vitro, primary rat OPCs were exposed to sublethal CoCl₂, for 7 days to induce prolonged chemical hypoxic stress. Then, OPC proliferation/differentiation was assessed. In vivo, prolonged cerebral hypoperfusion was induced by bilateral common carotid artery stenosis in mice. Then, reactive oxygen species production, myelin density, oligodendrocyte versus OPC counts, and cognitive function were evaluated. To block oxidative stress, OPCs and mice were treated with the radical scavenger edaravone.

Results—Prolonged chemical hypoxic stress suppressed OPC differentiation in vitro. Radical scavenging with edaravone ameliorated these effects. After 28 days of cerebral hypoperfusion in vivo, reactive oxygen species levels were increased in damaged white matter, along with the suppression of OPC-to-oligodendrocyte differentiation and loss of myelin staining. Concomitantly, mice showed functional deficits in working memory. Radical scavenging with edaravone rescued OPC differentiation, ameliorated myelin loss, and restored working memory function.

Conclusions—Our proof-of-concept study demonstrates that after prolonged cerebral hypoperfusion, oxidative stress interferes with white matter repair by disrupting OPC renewal mechanisms. Radical scavengers may provide a potential therapeutic approach for white matter injury in vascular dementia and stroke. (Stroke. 2013;44:3516-3521.)

Key Words: mice ■ oligodendrocyte ■ reactive oxygen species ■ white matter diseases

Approximately 50% of the human brain is composed of white matter, and white matter damage is a critical component of stroke and vascular dementia. Why is white matter so vulnerable? Traditional models suggest that intrinsic antioxidant properties in white matter may be relatively low. Furthermore, lipid-rich myelin may provide a source and substrate for the generation of reactive oxygen species.

White matter is not static, and homeostasis can be sustained by endogenous repair and renewal processes. Even after adolescence, myelin-forming mature oligodendrocytes in the white matter can be generated from oligodendrocyte precursor cells (OPCs). When white matter is damaged in stroke or other neurodegenerative diseases, residual OPCs rapidly proliferate, migrate to fill demyelinated areas, and differentiate into mature oligodendrocytes to restore myelin integrity. An emerging concept in neuroscience emphasizes that the mechanisms of neuronal disorders involve a balance between initial injury and endogenous repair.

Is it possible that pathophysiology in white matter may also involve a disruption of endogenous OPC recovery mechanisms? A radical scavenger edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) is clinically used in Japan for acute ischemic stroke. In vivo studies with rodent stroke models suggest that the neuroprotective effects of edaravone may take place in penumbral-like regions where oxygen radicals are typically generated. In addition, edaravone is demonstrated to show protective effects in vitro cell culture systems.

In this study, therefore, we use this radical scavenger to test the hypothesis that oxidative stress interferes with endogenous...
white matter repair by disrupting compensatory OPC-to-oligodendrocyte differentiation.

Methods

Cell Culture

Primary cortical OPCs were prepared and maintained according to our previous work. To differentiate OPCs into myelin basic protein–positive oligodendrocytes, the culture medium was switched to DMEM containing 1% penicillin/streptomycin, 15 ng/mL ciliary neurotrophic factor, 15 mmol/L triiodothyronine (T3), and 2% B27 supplement (DMEM medium). OPC cultures were treated with sublethal (1 mmol/L for 7 days) CoCl2 to induce prolonged chemical hypoxic conditions as described before. Hypoxic conditions were confirmed by an increase in hypoxia-inducible factor-1α (HIF-1α) expression. Edaravone (Mitsubishi Tanabe Pharma) was dissolved in dimethylsulfoxide. The final concentration of dimethylsulfoxide in the culture medium was <0.1%, which had no effects on OPC survival and function. In vitro experiments were performed in duplicate, repeated 3x to 6x independently (see online-only Data Supplement for detailed methods of in vitro cell culture experiments).

Cerebral Prolonged Hypoperfusion Model

All experiments were performed following an institutionally approved protocol in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals. For inducing cerebral chronic hypoperfusion stress, a microcoil (0.18-mm diameter; Sawane Spring Co) was applied to bilateral common carotid arteries. Male C57/black 6 (C57BL/6) mice (sham: 22 mice, vehicle group: 37 mice, edaravone group: 38 mice, 10 weeks old, Charles River Institute) were anesthetized with 4.0% isoflurane and then maintained on 1.5% isoflurane in 70% N2O and 30% O2, maintaining the rectal temperature between 36.5°C and 37.5°C. The operation time was ≈20 minutes per mouse, and the interval between the 2 microcoils was 5 minutes. The cerebral blood flow was measured before/after the microcoil placement as described previously. The radical scavenger edaravone (3 mg/kg IP) or vehicle was treated twice per week starting at day 0 until the operation day. Animals were euthanized on days 0, 7, 14, and 28. All in vivo experiments and measurements were performed in a blinded and randomized manner. Animal numbers and experimental time points for each experiment are described in figure legends (see online-only Data Supplement for detailed methods of end point assessments).

Statistical Analysis

Power estimates were calculated based on α=0.05 and β=0.8 to obtain group sizes appropriate for detecting effect sizes in the range of 30% to 50% for in vivo models and 40% to 50% for cell cultures models. Statistical significance was evaluated using the unpaired t test to compare differences between the 2 groups and a 1-way ANOVA followed by the Tukey honestly significant difference test for multiple comparisons. Data are expressed as mean±SD. A P<0.05 was considered statistically significant.

Results

Oxidative Stress Disrupts OPC Differentiation In Vitro

When OPCs were subjected to sublethal chemical hypoxia (1 mmol/L CoCl2 for 7 days) to induce prolonged hypoxic conditions, their in vitro differentiation into mature oligodendrocytes was significantly inhibited (Figure 1A in the online-only Data Supplement). Dichlorofluorescein and oxyblot assays confirmed that CoCl2 treatment induced oxidative stress (Figure 1A; Figures 1B and 1C in the online-only Data Supplement). Cointreatment with the radical scavenger edaravone rescued OPC differentiation (Figure 1B and 1C; Figure II in the online-only Data Supplement). cAMP response element-binding (CREB) signaling is known to mediate OPC differentiation. As expected, CoCl2 treatment decreased the phosphorylation level of CREB in OPC cultures, and edaravone successfully restored phospho-CREB levels (Figure 1D; Figure II in the online-only Data Supplement).
Prolonged Cerebral Hypoperfusion Induces Oxidative Stress and White Matter Dysfunction In Vivo

When mice were subjected to microcoil placement, their cerebral blood flows decreased (vehicle group: 55.0±12.6%, edaravone group: 55.2±11.5%) as reported previously.21,24 After 28 days of cerebral hypoperfusion, corpus callosum regions showed a reduction in myelin staining (Figure 2A and 2B), reduced the white matter index on MRI (Figure 2C), and decreased myelin basic protein expression in Western blots (Figure III in the online-only Data Supplement). Consistent with white matter damage, working memory function was also perturbed in hypoperfused mice, detected as a decrease in alternating rates in the Y-maze test without any changes in locomotor activity (Figure 2D; Figure IV in the online-only Data Supplement). Oxidative stress may be involved because levels of oxidized proteins were elevated in affected white matter (Figure V in the online-only Data Supplement), and treatment with the radical scavenger edaravone (3 mg/kg IP, twice per week for 4 weeks) significantly decreased oxidized protein levels (marker of oxidative stress), increased myelin staining, and rescued Y-maze performance (Figure 2A–2D; Figures III–V in the online-only Data Supplement).

Oxidative Stress Induces Cell Death in Oligodendrocytes and Oligodendrocyte Precursors In Vivo

After cerebral hypoperfusion, the number of single-stranded DNA and terminal deoxynucleotidyl transferase dUTP nick end labeling–positive cells progressively increased with time after hypoxia in areas of white matter injury (Figure 3A; Figure VIA in the online-only Data Supplement). Both cell death markers colocalized with oligodendrocytes (labeled with glutathione S-transferase [GST]-pi) and OPCs (labeled with platelet-derived growth factor-receptor-α [PDGF-R-α]; Figure 3B; Figure VIB in the online-only Data Supplement). Treatment with the radical scavenger edaravone reduced the total number of dead cells (Figure 3A; Figure VIA in the online-only Data Supplement). In addition, by 28 days, the number of GST-pi–positive oligodendrocytes was restored by edaravone treatment (Figure 3C and 3D).

Blockade of Oxidative Stress Restores the Compensatory Response in Oligodendrocyte Renewal

When hypoperfused mice were treated with edaravone, the number of Ki67-positive proliferating cells was increased at days 7 and 14 (Figure 4A), and most Ki67 signals colocalized with PDGF-R-α–positive OPCs (Figure 4B). To check whether OPCs can successfully differentiate into mature oligodendrocytes at later time points, mice were injected with 5-bromo-2’-deoxyuridine (BrdU) at day 14, and the brain sections were stained with anti-BrdU and anti–GST-pi antibodies at day 28 (Figure 5A). Edaravone treatment increased the number of BrdU-incorporated cells (Figure 5B), and importantly, the edaravone-treated group showed larger ratio of BrdU/GST-pi double staining (Figure 5C), suggesting that reactive oxygen species suppression promoted

Figure 2. Prolonged cerebral hypoperfusion stress induced oxidative stress and white matter dysfunction. A, Representative fluoromyelin staining images of the white matter region (corpus callosum) at day 28. Scale bar, 100 μm. B, Relative intensity of fluoromyelin signals in corpus callosum. C, MR images (bregma +0.75 mm) of sham animals and vehicle- or edaravone-treated white matter injury groups at day 28. D, Alternation behavior (index of working/spatial memory) at day 28 in Y-maze test. Values are mean±SD. n=5 for A–C and n=10 for D. Ed indicates edaravone treatment group; and Ve, vehicle. *P<0.05.

Figure 3. Oxidative stress induced cell death in oligodendrocytes and oligodendrocyte precursors in prolonged cerebral hypoperfusion mice. A, Numbers of single-stranded DNA (ssDNA)–positive (ssDNA+) cells in corpus callosum. B, ssDNA staining with a oligodendrocyte precursor cell marker (PDGF-R-α) or a mature oligodendrocyte marker (GST-pi) in the vehicle-treated group at day 28. Scale bar, 10 μm. C, Representative images of GST-pi staining at day 28. Scale bar, 25 μm. D, Numbers of GST-pi–positive (GST-pi+) cells in the lateral side of corpus callosum at day 28. Values are mean±SD. n=5. Ed indicates edaravone treatment group; GST, glutathione S-transferase; PDGF-R-α, platelet-derived growth factor-receptor-α; and Ve, vehicle. *P<0.05.
OPC-to-oligodendrocyte differentiation. Finally, prolonged hypoperfusion stress blunted CREB signaling in affected white matter, and edaravone treatment recovered the level of phospho-CREB (pCREB) in the white matter (Figure 6A–6C), consistent with the involvement of CREB in OPC-to-oligodendrocyte maturation.

Discussion

It has now been well accepted that adult brains retain some regenerative capacities under certain conditions. In gray matter, adult neurogenesis in the neurovascular niche may play an essential role in maintaining and repairing neuronal function.25,26 Similarly, in white matter, oligodendrogenesis can mediate plasticity under normal conditions and repair after injury.27 Past studies have demonstrated that oligodendrogenesis after white matter injury may mirror well-defined processes that normally occur in the developmental period.5,28 OPCs may respond to short and sublethal ischemic injury that causes myelin damage,29 especially in the margins of infarcts after focal ischemia, as well as within ischemic white matter lesions after chronic cerebral hypoperfusion.8 Hence, OPCs may potentially mediate a compensatory response that underlies white matter repair after damage and disease.10,29 In this study, we used a combination of in vitro culture and in vivo mouse models to demonstrate that after cerebral hypoperfusion, oxidative stress disrupts OPC-to-oligodendrocyte differentiation and interferes with endogenous repair mechanisms in damaged white matter.

For normal physiology, OPCs play vital roles to maintain white matter homeostasis, and this phenomenon may be essential for sustaining connectivity in the brain.30 Of course, these cell types are susceptible to cell death after oxidative stress.31 But in addition to outright cell death, renewal and repair mechanisms may also be affected. Our data suggest that oxidative stress retards the compensative responses in oligodendrocyte regeneration under white matter injury, in part by blocking the requisite CREB signaling that promotes recovery. The CREB signaling may be one of the most important factors for oligodendrocyte regeneration. The CREB pathway is essential for cell survival in a broad way. The CREB/cAMP response element transcriptional pathway regulates the expression of both Bel-2 and brain-derived neurotrophic factor (BDNF),32,33 and cAMP response element–mediated gene expression enhances ischemic tolerance.34 Similarly, neurons

Figure 5. Reactive oxygen species suppression promoted compensative oligodendrocyte precursor cell differentiation. A, Numbers of Ki67-positive (Ki67+) cells in the white matter. B, Double staining of Ki67 with PDGF-R-α in the edaravone-treated group at day 7. Scale bar, 10 μm. Values are mean±SD of n=5. Ed indicates edaravone treatment group; PDGF-R-α, platelet-derived growth factor-receptor-α; and Ve, vehicle. *P<0.05.

Figure 6. Reactive oxygen species suppression promoted CREB activation in white matter brains. A, Representative images of pCREB staining in the white matter at day 28. Scale bar, 25 μm. B, Numbers of pCREB-positive (pCREB+) cells in the lateral side of corpus callosum at day 28. C and D, pCREB Western blot images in the white matter at day 28. β-actin is an internal control. Values are mean±SD of n=5. CREB indicates cAMP response element-binding; Ed, edaravone treatment group; pCREB, phospho-CREB; and Ve, vehicle. *P<0.05.
with ischemic preconditioning stimulus show more resistance to the following devastating injuries in a CREB-dependent manner. Also, in the white matter, CREB signaling protects and regenerates mature oligodendrocytes against chronic ischemic injury via activating Bcl-2 and cyclooxygenase-2 (COX-2) transcription. Our findings are generally consistent with this beneficial pathway.

There are 2 important caveats in this study. First, in vivo functional outcomes were only assessed with a single test, that is, the Y-maze test. For preclinical development of stroke therapeutics, multiple behavioral tests are typically required. However, in the present study, our purpose was not to develop edaravone as a stroke drug. Instead, edaravone was only used as a chemical probe to scavenge radicals to test our pathophysiological hypothesis that oxidative stress mediates the observed responses in hypoperfused white matter. Furthermore, Maki et al reported that both the radial 8-arm maze test and the Y-maze test would show similar results in this model. Nevertheless, this is an important caveat, and future studies should use other cognitive tests to examine the effects of antioxidants on white matter remodeling after hypoperfusion injury. Second, although OPCs are quite sensitive to oxidative stress and antioxidants such as minocycline can protect OPCs, it must be recognized that the balance between injury and repair depends on dose, that is, the levels of radicals involved. Although excessive free radicals generated in neurodegeneration are cytotoxic, low levels of radicals may be essential for brain homeostasis and remodeling. For example, N-methyl-D-aspartate (NMDA) activation by extracellular glutamate promotes oligodendrocyte differentiation and myelination from an adult multipotent stem cell population via oxygen radical generation. In addition, oxygen radicals may also participate in OPC migration, which is a critical step for oligodendrogenesis after white matter injury. Hence, basal levels of oxygen free radicals may act as a second messenger for sustaining oligodendrocyte function. We demonstrate that radical suppression by the scavenger edaravone promotes OPC-to-oligodendrocyte regeneration, but ultimately, long-term effects of antioxidant drugs on white matter remodeling after injury should be carefully examined to determine the balance between beneficial and potentially detrimental effects.

In conclusion, this proof-of-concept study demonstrates that during prolonged cerebral hypoperfusion, oxidative stress disrupts compensatory mechanisms of OPC-to-oligodendrocyte renewal, and this process may interfere with endogenous repair and worsen white matter dysfunction. Insofar as hypoperfusion may damage white matter in stroke and vascular dementia, antioxidant radical scavengers may provide a broad therapeutic approach for cerebrovascular disorders.

Sources of Funding
This work was supported, in part, by the Deane Foundation, the Executive Committee on Research Fund for Medical Discovery of Massachusetts General Hospital, American Heart Association, National Institutes of Health, Research Abroad from the Uehara Memorial Foundation, National Research Foundation of Korea through the World Class University Program (R31-2008-000-10103-0), and the Global Research Laboratory Program (2011-0021874).

Disclosures
None.

References

Oxidative Stress Interferes With White Matter Renewal After Prolonged Cerebral Hypoperfusion in Mice

Stroke. 2013;44:3516-3521; originally published online September 26, 2013; doi: 10.1161/STROKEAHA.113.002813

Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2013 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/44/12/3516

Data Supplement (unedited) at:
http://stroke.ahajournals.org/content/suppl/2013/09/26/STROKEAHA.113.002813.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org/subscriptions/
SUPPLEMENTAL MATERIAL

Oxidative stress interferes with white matter renewal after prolonged cerebral hypoperfusion in mice

Nobukazu Miyamoto, MD, PhD1, Takakuni Maki, MD, PhD1, Loc-Duyen D. Pham, MS1, Kazuhide Hayakawa, PhD1, Ji Hae Seo, PhD1,3, Emiri T. Mandeville, MD, PhD1, Joseph B. Mandeville, PhD2, Kyu-Won Kim, PhD3,4, Eng H. Lo, PhD1, Ken Arai, PhD1

1Neuroprotection Research Laboratory. Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, USA.
2Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, USA.
3NeuroVascular Coordination Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea.
4Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742, Korea.

Abbreviated title; oxidative stress and white matter recovery

Corresponding author: Ken Arai, Neuroprotection Research Laboratory, MGH East 149-2401, Charlestown, MA 02129, USA. Tel: 617.724.9503, Email: karai@partners.org
Supplemental Methods:

Cell culture – Primary cortical OPCs were prepared and maintained according to our previous work. To differentiate OPCs to myelin basic protein-positive oligodendrocytes, the culture medium was switched to Dulbecco's Modified Eagle's Medium (DMEM) containing 1% penicillin/streptomycin, 10 ng/ml ciliary neurotrophic factor (CNTF), 15 nM triiodo-L-thyronine (T3), and 2% B27 supplement (DMEM medium). To mimic chronic mild-hypoxic condition, OPCs were incubated with non-lethal cobalt chloride (CoCl₂ from Sigma). Edaravone (Mitsubishi Tanabe Pharma) were dissolved in dimethysulphoxide. The final concentration of dimethysulphoxide in the culture medium was less than 0.1%, which had no effects on OPC survival and function. In vitro experiments were performed in duplicate, repeated 3-6 times independently.

In vitro chemical hypoxic stress – OPC cultures were treated with sub-lethal (1 uM for 7 days) CoCl₂ to induce a prolonged chemical hypoxic conditions as described before. Hypoxic conditions were confirmed by increase of HIF-1alpha expression.

Cell proliferation/survival assay - Cell proliferation/survival was assessed by water-soluble-tetrazolium (WST) assay (Dojindo) according to the manufacturer’s instruction.

ROS assay - Intracellular levels of ROS were evaluated using dichlorofluorescein diacetate (DCF-DA) as a fluorescence probe. To detect ROS, the cells were pre-incubated at 37°C for 1 h with culture medium containing 10 mM DCF-DA dissolved in dimethyl sulfoxide (DMSO) at a final concentration of 0.1% (vol/vol). The culture medium was then replaced with DMEM medium containing CoCl₂ with/without Edarabone. After 24h, the fluorescence intensity for oxidized DCF-DA (excitation 488 nm and emission 525nm) in each well was measured by fluorescence microplate spectrophotometer.

Immunocytochemistry - After cells reached 70–80% confluence, they were washed with ice-cold PBS (pH 7.4), followed by 4% PFA for 15 min. After being further washed three times in PBS containing 0.1% Triton X-100, they were incubated with 1% bovine serum albumin in PBS for 1 h. Then cells were incubated with primary antibodies against MBP (1:100, abcam), GST-pi (1:100), and PDGFR-α (1:200) at 4°C overnight. After washing with PBS, they were incubated with secondary antibodies for 1 hour at room temperature. Finally, nuclei were counterstained with DAPI.

Cerebral prolonged hypoperfusion model - All experiments were performed following an institutionally approved protocol in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals. For inducing cerebral chronic hypoperfusion stress, a microcoil (0.18 mm diameter, Sawane Spring Co.) was applied to bilateral common carotid arteries. Male C57-black-6 (C57BL/6) mice (sham: 22 mice, vehicle-group: 37 mice, edaravone-group: 38 mice, 10weeks old, Charles River Institute) were anesthetized with 4.0% isoflurane and then maintained on 1.5% isoflurane in 70% N₂O and 30% O₂,
maintaining the rectal temperature between 36.5°C and 37.5°C. The operation time was approximately 20 min per mouse, and the interval between the two microcoils was 5 min. The cerebral blood flow was measured before/after the micro-coil placement as described previously.21 The radical scavenger edaravone (3 mg/kg ip) or vehicle was treated twice per week starting at day 0 until the mice were sacrificed. Animals were sacrificed on day 0, 7, 14, and 28. All in vivo experiments and measurements were performed in blinded and randomized manner. Animal numbers for each experiment are described in figure legends.

OPC differentiation assay in vivo - To detect cell differentiation, mice were intraperitoneally injected (50 mg/kg, bromodeoxyuridine (BrdU), Sigma-Aldrich) three times a day with 4-hour interval at day 14. The mice were sacrificed 14 days after the BrdU injection, and mouse brains were used for BrdU staining.

Cognitive test - Spontaneous alternative Y-maze cognitive test^4^ was conducted between 7:00 AM to 9:00 AM at day 28. Mouse was placed at the center of the start arm and allowed to move freely through the maze in a 8-minute session. This task was videotaped and the sequence of arm entries manually recorded in a blinded manner. An actual alternation was defined as entities into all the 3 arms on consecutive. The maximum alternation was subsequently calculated by measuring the total number of arm entries (as locomotor activity) minus 2 and the percentage of alternation was calculated as [actual alternation/maximum alternation] x100%. Y-maze animals were not used for histological, biochemical, MRI experiments.

Magnetic resonance imaging (MRI) – MRI was conducted once at day 28 after the surgery. Imaging employed a 4-channel phased array receiver coil inside a volume radio frequency (RA) transmitter on a 9.4 Tesla magnet (Bruker BioSpin Corporation, Billerica, MA). Multi-slice two-dimensional image acquisition covered whole brain from olfactory bulb to cerebellum using coronal slices with a thickness of 400-microns and an isotropic in-plane resolution of 150 microns. Diffusion tensor imaging (DTI) provided a white matter index in the form of fractional anisotropy (FA). Segmented echo planar imaging provided efficient temporal acquisition of DTI using six directions at a b-value of 1000 sec/mm², plus an additional acquisition with no diffusion weighting (averaged twelve times). Analysis resampled all MRI onto the Allen Mouse Brain Atlas at 250-micron coronal levels and a resolution of 125 microns in coronal planes. Maps of FA were computed for each animal, and results were averaged across animals within each cohort for comparison with histology. MRI animals were not used for histological, biochemical, and cognitive experiments.

Immunohistochemistry - Mouse brain was removed at days 0, 7, 14, and 28, and postfixed for 24 h in 4% paraformaldehyde (4% PFA) in phosphate-buffered saline (PBS) at 4°C before cryoprotection by bathing in 30% sucrose. Sixteen-µm-thick coronal sections were incubated overnight with anti-BrdU (1:50; Oxford Biotechnology, denature with 37°C for 30 min in 1N HCl). Double immunofluorescence staining was performed by simultaneously incubating the sections overnight at 4°C with anti-GST-pi (1:200, MBL; oligodendrocyte marker), anti-PDGFRα (1:100; SantaCruz, or anti-CD140α, 1:100, BD phamamigen; OPC maker), anti-Ki67 (1:100, abcam; proliferative cell marker). After washing with PBS, they were incubated
with secondary antibodies (1:200; Jackson Immunoresearch Laboratories) for 1 hour at room temperature, and
the slides covered with VECTASHIELD with DAPI (Vector Laboratories). Immunostaining was analyzed
with a fluorescence microscope (Olympus BX51).

Fluoromyelin staining – Twelve-µm-thick coronal sections (bregma +0.86 mm to +0.50 mm) were incubated
with FluoroMyelin Green fluorescent myelin stain (1:300, Molecular probes) for 20 minutes at room
temperature. Semi-quantification of the intensity of fluoromyelin staining was conducted on 10x
magnification images and viewed using a Nikon upright microscope. Intensity of fluoromyelin staining were
analyzed by quantifying mean intensity of the entire field of view for 3 brain sections of each animal, using
ImageJ analysis software with no thresholds set.

Western blotting - Tissue samples of corpus callosum and cell culture were dissected in Pro-PREPTM
Protein Extraction Solution (Boca scientific). Samples were heated with equal volumes of SDS sample buffer
(Novex) and 10 mM dithiothreitol (DTT) at 95 °C for 5 min, then each sample (20 µg per lane) was loaded
onto 4–20% Tris–glycine gels. After electrophoresis and transferring to polyvinylidene difluoride membranes
(Novex), the membranes were blocked in Brockace (AbD serotec), th
en incubated overnight at 4 °C with
primary antibodies against phospho-cAMP response element-binding protein (pCREB) (1:3000, upstate),
MBP (1:1000, Thermo scientific; a marker for myline sheath), HIF1α (1:3000, abcam; a marker for hypoxic
conditions), PDGFRα (1:3000), GST-pi (1:5000), or β-actin (1:10000, Sigma Aldrich) followed by incubation
with peroxidase-conjugated secondary antibodies and visualization by enhanced chemiluminescence
(Amersham). The Oxyblot protein oxidation detection kit (Chemicon) was used following the manufacturer's
instructions.

TUNEL - We detected in situ DNA fragmentation by terminal deoxynucleotidyl transferase-mediated
deoxyuridine triphosphate nick-end labeling (TUNEL) staining using an ‘DeadEnd™ Fluorometric TUNEL
System’ (Promega) on the 16-µm-thick free-floating coronal sections were used following the manufacturer's
instructions.

Cell counting for brain sections - An investigator blinded to the experimental groups counted the number of
stained cells in lateral side of corpus callosum (0.25 mm²) of GST-pi- and PDGFRα- stained section and in the
corpus callosum of three predefined BrdU, and TUNEL sections (bregma +1.18 mm, +0.98 mm, and +0.74
mm).

Statistical analysis – Power estimates were calculated based on α=0.05 and β=0.8 to obtain group sizes
appropriate for detecting effect sizes in the range of 30-50% for in vivo models and 40-50% for cell cultures
models. Statistical significance was evaluated using the unpaired t-test to compare differences between the
two groups and a one-way ANOVA followed by Tukey’s honestly significant difference test for multiple
comparisons. Data are expressed as mean ± S.D. A p value of <0.05 was considered statistically significant.
Supplemental Figures and Figure Legends:

Supplemental Figure I: A. Representative western blot images for cultured rat OPCs with CoCl₂ treatment (1 µM for 7 days). HIF1α is a marker for hypoxic conditions and β-actin is an internal control. PDGF-R-α: OPC marker, GST-pi and MBP: oligodendrocyte marker. B. DCF assay for 7-day CoCl₂-treated OPCs with or without edaravone. Values are mean ± SD of N=6. *P<0.05.
Supplemental Figure II: Quantitative data of western blot experiments for Figure 1. Values are mean ± SD of N=3 (Supplemental Figure IIA, IIB, and IIE) or N=4 (Supplemental Figure IIC and IID). *P<0.05.
Supplemental Figure III: In addition to myelin staining (Figure 2A-B) and MRI analysis (Figure 2C), MBP western blot approach confirmed that 28-day cerebral hypoperfusion induced white matter damage. Ve; vehicle, Ed; edaravone treatment group. Values are mean ± SD of N=5. *P<0.05.
Supplemental Figure IV: Numbers of entry (index of locomotor activity) at 28 day in the Y-maze test. Ve; vehicle, Ed; edaravone treatment group. Values are mean ± SD. N= 10.
Supplemental Figure V: The oxiblot assay confirmed that 28-day cerebral hypoperfusion induced excessive oxidative stress in the mouse white matter. Importantly, a radical scavenger edaravone ameliorated the ROS accumulation. β-actin is an internal control. Ve; vehicle, Ed; edaravone treatment group. Values are mean ± SD of N=3. *P<0.05.
Supplemental Figure VI: A. Numbers of TUNEL–positive (TUNEL+) cells in corpus callosum. TUNEL staining was conducted 28 days after the stress onset. B. Double staining of TUNEL with PDGFRα (OPC) or GST-pi (mature oligodendrocyte) in vehicle groups at day 28. Bar = 10 µm. Values are mean ± SD of N=5. *P<0.05.
Supplemental References:

