Advances in Stroke

Advances in Vascular Cognitive Impairment

Philip B. Gorelick, MD, MPH; Leonardo Pantoni, MD, PhD

We address 2 issues that may have impact on vascular cognitive impairment (VCI): delirium after acute stroke and the interaction among small vessel disease (SVD), brain atrophy, and degenerative mechanisms. Delirium is an acute confusional state, and it is estimated that as many as 1 in 8 patients experience delirium after acute stroke.1-3 Brain atrophy is a predictor of poor outcome in a number of neurological disorders. We discuss the coexistence of degenerative and vascular changes in VCI.

Delirium After Acute Stroke

Risk Factors and Associated Outcomes

Delirium after acute stroke is likely to occur in the first week after hospitalization. In one recent study of 527 consecu- tively hospitalized stroke patients who had a mean age of 72 years, independent risks for delirium were history of preexis- tent cognitive decline and infection, right hemisphere stroke, carotid artery circulation large artery stroke, high National Institutes of Health Stroke Scale score, and brain atrophy.2 Also, delirium was associated with duration of hospitalization, mortality, and worse functional status.2 In a systematic review and meta-analysis of 10 studies encompassing 2004 patients, stroke patients had higher inpatient mortality and mortality at 12 months compared with nondelirious patients, longer hospitalizations, and were more likely to be discharged to nursing homes or for other institutional care.3

Stroke and Postoperative Delirium

Delirium is common after surgery in the elderly, especially after cardiac surgery in which it may affect up to 75% of patients.4 It may take the form of postoperative cognitive decline as an early postoperative delirium (acute cognitive dysfunction) or a later onset and more persistent postopera- tive cognitive decline.5 There is a host of risk factors associ- ated with the development of postoperative delirium. These include but are not limited to factors, such as age, education, comorbidities, history of alcohol or drug use, duration of surgical procedure, apolipoprotein E4 status, and preoperative depression.5

The cognitive trajectory in persons who have undergone major cardiac surgery and who develop delirium is striking. For example, based on a Mini Mental Status Examination score, these persons may have a larger drop in cognition 2 days and at 1 and 12 months after surgery than those without delirium, and after adjustment of baseline differences, between group differences in the Mini Mental Status Examination score are significant at 1 month but not at 6 or 12 months (P=0.056).4 Furthermore, those with delirium were less likely to return to their baseline level of cognition at 6 months (40% versus 24%; P=0.01) but the difference was not significant at 1 year (31% versus 20%; P=0.055).4 Therefore, the trajectory of cognitive decline in persons with postoperative delirium may be characterized by initial decline and pro- longed impairment.

A risk score has been devised that includes preoperative predisposing factors for delirium of which stroke is one of the factors.5 Major factors are age ≥80 years and dementia or recent delirium. Minor features include history of stroke; older age (70–79 years); mild cognitive impairment; functional disability; high medical comorbidity including cardiovascular risk factors, alcohol, and sedative abuse; and depressive symptoms.

The pathogenesis of postoperative cognitive decline is not well defined but may include activation of the immune system to initiate an inflammatory response or anesthetic-induced neurotoxicity.7 When there is sepsis-associated encephalopathy, pathophysiology may include involvement of several major neurotransmitter pathways, mitochondrial, endothelial and blood brain barrier dysfunction, brain cell death, abnormal calcium homeostasis, and activation of inflammatory mediators and the complement system.6

Coexistence of Degenerative and Vascular Changes in VCI

Degenerative and vascular mechanisms may coexist at the pathological level in patients with cognitive impairment, particularly in older age.7,8 In a study of 54 normal subjects, cognitive performance was studied in relation to vascular features on magnetic resonance imaging and amyloid imaging.9 No interaction was found between measures of cerebrovascular disease and Pittsburgh Compound B-positron emission

Received November 19, 2012; final revision received November 21, 2012; accepted for publication November 27, 2012.

From the Department of Translational Science and Molecular Medicine, Hauenstein Neuroscience Center, Saint Mary’s Health Care, Michigan State University College of Human Medicine, Grand Rapids, MI (P.B.G.); and Department of Neurological and Psychiatric Sciences, University of Florence, Florence, Italy (L.P.).

Correspondence to Philip B. Gorelick, MD, MPH, Department of Translational Science and Molecular Medicine, Hauenstein Neuroscience Center, Saint Mary’s Health Care, Michigan State University College of Human Medicine, 220 Cherry St SE H 3037, Grand Rapids, MI 49503. E-mail pgorelic@trinity-health.org

(Stroke. 2013;44:307-308.)

© 2013 American Heart Association, Inc.

Stroke is available at http://stroke.ahajournals.org

DOI: 10.1161/STROKEAHA.111.000219
Brain Atrophy in Association With VCI

The independent contribution and interaction of medial temporal lobe atrophy (MTA), cortical and subcortical atrophy, and WML volume on cognitive decline were examined in the Leukoaraiosis and Disability Study. After 3-year follow-up, medial temporal lobe atrophy and subcortical atrophy predicted significantly a steeper rate of decline in global cognitive measures and composite scores for psychomotor speed, executive function, and memory after adjusting for other predictors of cognitive decline. Cortical atrophy independently predicted decline in psychomotor speed with WML volume significantly associated with cognitive decline even after controlling for atrophy scores. A significant synergistic interaction was found between WMLs and atrophy measures in overall cognitive performance across time and the rate of cognitive decline. A synergistic effect was also observed between baseline lacunar infarcts and all measures of atrophy on change in psychomotor speed.

Patients with SVD have various degrees of brain atrophy. It is uncertain whether this reflects the aging process, the concomitant presence of a degenerative mechanism, or is related to subcortical vascular changes.

Nikkan et al found that patients with SVD, in comparison with age- and sex-matched controls, had a significant smaller brain volume. Moreover, in SVD patients, there was a significant association between brain volume and executive function. Finally, progression of brain atrophy was higher in SVD patients than in controls. These data suggest that brain atrophy is part of the SVD pathological spectrum and is not a coincidental finding, a conclusion supported by the Cardiovascular Health Study.

Similar findings were recently reported by the SMART-MR Study (Second Manifestations of Arterial Disease-Magnetic Resonance). In 565 patients in their sixth decade with symptomatic atherosclerotic disease but without large infarcts, periventricular WML volume at baseline and its progression were independent of vascular factors, associated with greater decrease in cortical gray matter volume and greater increase in ventricular volume. Also, lacunar infarcts at baseline was associated with greater decline in total brain volume, whereas progression of lacunar infarcts with a greater decrease of total brain and cortical gray matter volume. In cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy, a genetically transmitted form of SVD, where neurodegenerative mechanisms are thought to be absent, cortical atrophy was related to lacunar lesions and clinical worsening.

In summary, the interaction between vascular and degenerative factors is complex and in VCI and SVD, brain atrophy is not likely to be a coincidental finding.

Disclosures

Dr Gorelick has nothing to disclose in relation to this manuscript. Dr Pantoni is a deputy coordinator and publication coordinator of the Leukoaraiosis and Disability Study.

References

本論文は血管性認知障害（VCI）をめぐる脳卒中後せん妄、および脳小血管病、脳萎縮、変性病態間の相互作用という2つの重要な問題を扱っている。

脳卒中後せん妄

脳卒中後せん妄の危険因子は、認知機能低下、感染症、右半球の脳卒中、頸動脈領域の主幹動脈脳卒中、NIHSS スコア高値、脳萎縮である。せん妄があると入院期間、死亡率、機能予後が悪化する傾向が認められた1。10 研究のメタ解析では、脳卒中せん妄があると入院期間中と 12 カ月後の死亡率が高く、入院が長期に亘り、ケア施設への転院が多い傾向があった。

術後せん妄：せん妄は術後高齢者では高頻度にあり、特に心臓手術の後には 75% も及ぶ。術後せん妄の発症には、年齢、教育歴、併存症、アルコールや薬物使用歴、手術時間、apo E4 遺伝子型、術前の抑うつなどが関与する。

心臓手術後のせん妄患者の認知機能を評価すると、1 カ月後には有意に低下しており、発症前のレベルに復する確率が 6 カ月でもまだ有意に少なかった（40% vs 24%；P=0.01）2。せん妄の発症を予測するスコアでは、年齢（80 歳以上）、認知症、最近のせん妄が主要な因子であった。

血管性認知障害（VCI）における変性病態と血管病理の共存

変性と血管性機序は認知機能障害のある高齢者で病理学的に伴存する。しかし、皮質下血管性認知障害の患者の 70% はアミロイド PET 陰性であり、陰性群は陽性群より記憶力が良好であった3。

血管性認知障害と脳萎縮：Leukoaraiosis and Disability Study (LADIS)では、内側側頭葉萎縮と皮質萎縮が、総合的認知機能および精神運動速度・実行機能・記憶の総合評点の急速な悪化の予測因子であった。皮質萎縮は精神運動速度の独立した予測因子であり、皮質萎縮度は認知機能障害と相関した4。同様の結果は最近の SMART-MR (Second Manifestations of Arterial Disease-Magnetic Resonance) 研究でも示されている5。本研究では 565 名の症候性アテローム硬塞症患者において、白質変性の重症度とその進行程度が皮質萎縮の減少、脳室拡大と相関していた。また、登録時のラクナ梗塞数はその後の脳萎縮と相関し、その増加は全脳萎縮および皮質萎縮の減少と関連していた。血管変性和変性病態の関係は複雑であるが、血管性認知障害や皮質下血管性認知障害における脳萎縮は偶然の産物ではないようである。

[文責：富本 秀和]

参考文献