A Risk Factor-based Predictive Model of Outcomes in Carotid Endarterectomy

The National Surgical Quality Improvement Program 2005–2010

Kimon Bekelis, MD*; Samuel F. Bakhoum, PhD*; Atman Desai, MD; Todd A. Mackenzie, PhD; Philip Goodney, MD; Nicos Labropoulos, PhD, DIC

Background and Purpose—Accurate knowledge of individualized risks and benefits is crucial to the surgical management of patients undergoing carotid endarterectomy (CEA). Although large randomized trials have determined specific cutoffs for the degree of stenosis, precise delineation of patient-level risks remains a topic of debate, especially in real world practice. We attempted to create a risk factor-based predictive model of outcomes in CEA.

Methods—We performed a retrospective cohort study involving patients who underwent CEAs from 2005 to 2010 and were registered in the American College of Surgeons National Quality Improvement Project database. These patients demonstrated a 1.66% risk of stroke, 0.69% risk of myocardial infarction, and 0.75% risk of death within 30 days after CEA. Multivariate analysis demonstrated that increasing age, male sex, history of chronic obstructive pulmonary disease, myocardial infarction, angina, congestive heart failure, peripheral vascular disease, previous stroke or transient ischemic attack, and dialysis were independent risk factors associated with an increased risk of the combined outcome of postoperative stroke, myocardial infarction, or death.

Conclusions—This national study confirms that risks of CEA vary dramatically based on patient-level characteristics. Because of limited discrimination, it cannot be used for individual patient risk assessment. However, it can be used as a baseline for improvement and development of more accurate predictive models based on other databases or prospective studies (Stroke. 2013;44:1085-1090.)

Key Words: carotid stenosis ■ carotid endarterectomy ■ risk prediction ■ NSQIP

Decision making regarding the need for carotid intervention is heavily dependent on whether the postoperative risk of stroke, myocardial infarction, or death outweighs the risks of conservative management. Since the publication of large randomized, controlled trials (RCTs), 1–5 carotid endarterectomy (CEA) has been favored over conservative management in select groups of patients. This benefit is contingent on a favorable operative risk profile of the patients. However, the rigorous selection criteria of RCTs restrict their results in certain patients with low operative risk and predefined age range. The comparison of an estimated risk of adverse events for each individual patient with these benchmarks could tailor the application of the results of evidence-based medicine. This strategy can also allow for the identification of modifiable risk factors associated with stroke, myocardial infarction (MI), and death in patients undergoing CEA.

There have been several studies attempting to identify such modifiable risk factors. Most of these have been retrospective analyses of single institution experiences,6–8 demonstrating results with limited generalization given their inherent selection bias. The interpretation of other systematic reviews or multicenter studies9–16 is equally limited given their focus on regional or subgroup data and administrative registries. The latter have been heavily criticized for not being independently validated and underreporting patient comorbidities and procedural complications.

These limitations are at least partially addressed by the American College of Surgeons (ACS) National Quality Improvement Program (NSQIP) database, which contains prospectively collected data from >180 private and academic hospitals across the country. It allows for the unrestricted study of the patient population in question through high quality...
Operating characteristics curve) was used to measure discriminatory ability. A value of 0.5 indicates a model of no discriminatory ability at all (not better than chance). A C-index corrected for overfitting bias was calculated using leave-out cross-validation (ie, leave 4% out or 40 events and total of 1427 patients, repeated 1000 times, as well as bootstrap validation, repeated 1000 times). The Hosmer-Lemeshow test was used to assess calibration of the model. Interactions were tested but none were significant at the threshold (0.001) that we set to correct for multiple testing (20*19/2=190 interactions in all), and, further, none improved the C-index by >0.002. Nonlinear functions of the continuous characteristics (age and body mass index) were explored using regression splines, but none improved the model. Statistical analyses were performed using the XLSTAT version 2011.2.01 (Addinsoft) and R (version 2.15.1).

Results

Demographics and Clinical Characteristics

In the selected study period there were 35 698 patients (mean age was 71.1 years, with 59.1% men) registered in NSQIP, of whom 20 015 were asymptomatic (56.1%) and 15 683 symptomatic (43.9%). The 2 groups demonstrated significant differences in the prevalence of the following risk factors: sex, COPD, history of peripheral vascular disease, congestive heart failure, history of percutaneous coronary angioplasty, coronary artery bypass grafting, history of bleeding disorders, and increased body mass index (Table 1).

Clinical Outcomes

The 30-day incidences of stroke, MI, death, or their combined after CEA were 1.64%, 0.69%, 0.75%, and 2.78%, respectively (Table 2). Symptomatic patients demonstrated a significantly higher incidence of stroke and death but not MI after CEA.

Multivariate Analysis of 30-Day Postoperative Outcomes

Stroke

Previous stroke was independently (Figure 1) associated with a higher risk of postoperative stroke within 30 days (odds ratio [OR], 2.55 [95% CI, 2.05-3.17]), death (OR, 2.98 [95% CI, 2.18-4.06]), and the composite outcome (OR, 2.26 [95% CI, 1.90-2.69]). In addition to having a previous stroke or TIA, the only other variable independently associated with a higher risk of postoperative stroke was history of angina (OR, 1.89 [95% CI, 1.19-2.99]).

Myocardial Infarction

Postoperative MI within 30 days (Figure 1) was independently associated with older age, previous history of angina (OR, 3.50 [95% CI, 2.07-5.93]), coronary angioplasty (OR, 1.59 [95% CI, 1.13-2.24]), stroke (OR, 1.59 [95% CI, 1.10-2.30]), and diabetes mellitus (OR, 1.57 [95% CI, 1.14-2.16]). No such association was identified with previous MI or congestive heart failure.

Death

Risk factors independently associated (Figure 1) with a higher risk of postoperative death within 30 days were: older age (OR, 1.05 [95% CI, 1.04-1.07]), history of COPD (OR, 2.78 [95% CI, 1.97-3.91]), MI (OR, 2.41 [95% CI, 1.25-4.66]), congestive heart failure (OR, 2.94 [95% CI, 1.52-5.68]), and history of coronary artery bypass grafting.
Combined Stroke, MI, or Death

The following risk factors were independently associated (Figure 1) with a higher risk of the composite outcome within 30 days: older age (OR, 1.02 [95% CI, 1.01-1.03]), sex (OR, 1.18 [95% CI, 1.01-1.37]), history of COPD (OR, 1.44 [95% CI, 1.17-1.78]), MI (OR, 1.59 [95% CI, 1.04-2.45]), angina (OR, 2.29 [95% CI, 1.66-3.16]), congestive heart failure (OR, 2.09 [95% CI, 1.32-3.31]), peripheral vascular disease (OR, 1.33 [95% CI, 1.06-1.67]), stroke (OR, 2.26 [95% CI, 1.90-2.69]), TIA (OR, 1.28 [95% CI, 1.09-2.50]), stroke without symptoms (OR, 1.50 [95% CI, 1.19-1.90]), and dialysis (OR, 2.05 [95% CI, 1.24-3.37]).

Table 2. Outcomes

<table>
<thead>
<tr>
<th>Variable</th>
<th>All Patients</th>
<th>Symptomatic</th>
<th>Asymptomatic</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stroke</td>
<td>585 (1.64%)</td>
<td>365 (2.33%)</td>
<td>220 (1.10%)</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>MI</td>
<td>247 (0.69%)</td>
<td>122 (0.78%)</td>
<td>125 (0.63%)</td>
<td>0.09</td>
</tr>
<tr>
<td>Death</td>
<td>267 (0.75%)</td>
<td>163 (1.04%)</td>
<td>104 (0.52%)</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Composite</td>
<td>994 (2.79%)</td>
<td>581 (3.70%)</td>
<td>413 (2.06%)</td>
<td>&lt;0.001</td>
</tr>
</tbody>
</table>

MI indicates myocardial infarction.

peripheral vascular disease (OR, 1.70 [95% CI, 1.14-2.53]), stroke (OR, 2.98 [95% CI, 2.18-4.06]), and dialysis (OR, 3.72 [95% CI, 1.85-7.45]).

COPD indicates chronic obstructive pulmonary disease; NA, not applicable; and TIA, transient ischemic attack.
Predictive Model Application

The predicted risk for stroke, MI, death, or their combination was plotted for the significant individual variables with the highest ORs, as well as for their combination against the patient age (Figure 2). An additive effect of the variables was observed on the risk of all 4 outcomes. For instance, symptomatic patients with angina appear to have double the risk of stroke (4%) in comparison with symptomatic patients without angina (2%; Figure 2A). Also, an 80-year-old patient with previous history of stroke has a much smaller risk of MI (0.5%) than similar patients with additional history of angina and diabetes mellitus (4%). Furthermore, the addition of COPD in the risk factors of symptomatic patients in their 80s with history of MI triples (from 2% to 6%) their risk of death (Figure 2C).

Interestingly, based on this model there was a steep effect of age on the risk of MI and death. Patients with previous history of stroke, angina and diabetes mellitus undergoing CEA in their 60s have a 2% risk of death. This risk appears to double in patients in their 80s (Figure 2B). The risk of death in symptomatic patients with previous history of MI and COPD triples for patients in their 80s in comparison with patients in their 60s (Figure 2C).

Accuracy of the Model

Our model demonstrated moderate discriminative ability. The area under curve or c-statistic of the receiver operating characteristic (Figure I in the online-only Data Supplement) was calculated to be 0.64, 0.70, 0.75, and 0.65 for postoperative stroke, MI, death, and combined risks, respectively. Our validated c-statistics yielded similar values. The cross-validated C-index was 0.63 (SE=0.11), 0.65 (SE=0.016), 0.73 (SE=0.015), and 0.64 (SE=0.008) for postoperative stroke, MI, death, and combined risks, respectively. The bootstrap validated C-index was 0.63 (SE=0.012), 0.66 (SE=0.019), 0.74 (SE=0.016), 0.64 (SE=0.008) for postoperative stroke, MI, death, and combined risks, respectively. In addition to the area under curve, we performed the Hosmer-Lemeshow test and found that, for 2 of the outcomes (MI and death), our model demonstrated good calibration (P=0.639 and P=0.371 respectively), whereas accuracy of models predicting stroke or combined outcomes yielded P values of 0.011 and 0.034, respectively, indicating that additional factors may be involved in predicting these events that were not included in our study. Our analysis was repeated with only the risk factors that were significant in the univariate analysis and yielded similar results.

Figure 2. Diagrams of the risk for stroke (A), myocardial infarction (MI; B), death (C), or their combination (D) for some of the individual variables that were found to be statistically significant in the multivariate analysis, as well as the combination of some of the variables against the age of the patient. The left y axis represents the absolute probability to develop an outcome for individual risk factors or their combination. The right y axis represents the absolute probability to develop an outcome for all risk factors combined (including nonsignificant ones).
Discussion

The identification of modifiable risk factors associated with poor prognosis and the development of predictive models for outcomes are the cornerstones of defining quality in surgical healthcare delivery. The NSQIP, as a high-quality prospectively collected database, can be very helpful for that purpose. Although its results are not strictly representative of the US population at large, the quality of the data from a broad range of academic and private institutions performing CEA allows for reliable risk factor identification and modeling. Some groups have previously used the NSQIP database to study the outcomes of CEA, including MI, as is commonplace in most recent RCTs, and did not involve the development of predictive models.

Previous stroke or TIA was recognized in the current analysis as an independent risk factor associated with a higher incidence of stroke, death, or their combination. Interestingly, there is no observed correlation of increased age and the risk of stroke, whereas such a correlation is evident in the risk of MI and death. This is supportive of the notion that CEA should be favored over stenting in older patients. The latter has been shown to have a significantly higher incidence of stroke in the octogenarians, as is evident by the lead-in phase of the Carotid Revascularization Endarterectomy versus Stenting (CREST) trial. Our observed 30-day incidence of stroke or death for symptomatic patients (2.3%) is lower but still comparable to what was reported in the CREST trial (3.2%) and lower than the corresponding rates in the Stent Protected Angioplasty versus Carotid Endarterectomy (SPACE) trial (6.3%), Endarterectomy versus Angioplasty - Symptomatic Severe Carotid Stenosis (EVA-SS) (3.9%), and International Carotid Surgery Study (ICSS) (3.4%). Similarly, the 30-day incidence of stroke in our asymptomatic cohort (1.1%) is comparable to the CREST trial (1.3%) and lower than Asymptomatic Carotid Atherosclerosis Study (ACAS) (2.3%) and Asymptomatic Carotid Atherosclerosis Study (ACST) (3.1%). The similar rates of periprocedural stroke in our sample compared with those observed in RCTs suggest that clinical trial-based complication rates can be achieved in nontrial practice.

As expected, there is independent correlation of angina, diabetes mellitus, and coronary angioplasty with the risk of MI. Previous MI does not appear to be independently associated with perioperative MI, probably because of the very strict definition of MI by NSQIP in the perioperative period, which is expected to be different from what was deemed as an MI in the clinical history of the patient. The association of stroke with persistent symptoms with the risk of postoperative MI requires special attention, given its concordance with the lack of such association with TIA and stroke without residual symptoms. This observation can be justified by the fact that symptomatic stroke is probably associated with a larger vascular distribution and potentially a higher general atherosclerotic burden for the patient, contributing to the higher rate of postoperative MI. Our observed incidence of MI was lower than the observed incidence (2.4%) in the CREST study. This could have resulted from the stricter definition of postoperative MI in the NSQIP group (defined as a new transmural acute MI occurring during surgery or within 30 days, manifesting by new Q-waves on ECG).

These results are important in the context of the ongoing debate on the appropriateness of CEA or carotid stenting in the treatment of carotid stenosis. Data from the CREST trial have supported the use of CEA in patients at higher risk for stroke and carotid stenting in patients at higher risk for an MI. Our proposed model can predict the risk of stroke, MI, death, or the composite outcome for patients in the NSQIP cohort. Although the c-statistic values demonstrated only modest discrimination and the models cannot be used for individual patient decision making, they may be of value as a baseline for improvement programs and the development of more accurate predictive models based on other databases or prospective studies. The similarity of rates reported in this analysis, as compared with those observed in RCTs, suggests that the results obtained in the more restricted population enrolled in clinical trials might be generalizable.

Despite providing some projections for all of the carotid stenosis patients, the interpretation of the results in asymptomatic patients will be limited. There is a national trend toward minimizing intervention for asymptomatic carotid stenosis in favor of medical treatment. This is driven by a paradigm shift in what constitutes best medical management, from aspirin in the initial RCTs to broad cardiovascular risk factor modification currently. Therefore, the risk predicted in the model cannot be readily compared with the current practice.

The present study has several limitations. The hospitals participating were not a random sample from the United States but were rather motivated to improve the quality of surgical care, although individual surgeons are unaware of the inclusion of their patients in the NSQIP database preoperatively. Hospitals participating in NSQIP are expected to be larger and more likely to have an academic affiliation than the average US hospital. However, the hospitals included were still diverse with respect to size, region, and academic status, supporting the generalizability of our findings. In addition, the current analysis contains the largest cohort of NSQIP patients investigated to date. The presented model demonstrates relatively poor discrimination for stroke but improved and acceptable discrimination for MI and death. In fact, the NSQIP database contains more general risk factors that are closely related to death or MI as an outcome and is lacking procedure specific risk factors that would provide better discrimination for specific postoperative complications such as stroke.

Several issues also arise with the definition of symptomatic patients that was used. The NSQIP database does not provide data on the timing of the stroke or its etiology. The interval between symptom onset and intervention, particularly for those with moderate symptomatic stenosis, is critical for determining the balance of risks and benefits. Therefore, categorizing patients with a previous history of stroke as symptomatic in this setting overestimates the prevalence of symptoms. Although this is a well-known pitfall of NSQIP, we categorized patients as symptomatic in agreement with all of the published literature in this database. However, the proportion of asymptomatic patients in this study is similar to that of regional registries, making the designation of symptomatic status likely accurate. On the other hand, the diagnosis of postoperative stroke...
is not necessarily based on postoperative examination by an independent neurologist certified on the National Institutes of Health Stroke Scale to identify the severity of the stroke, and there is no mention of Rankin scores. Therefore, the diagnosis might vary among providers. However, this is most likely representative of a real world experience, where a stroke might be diagnosed by the provider performing the procedure (ie, a neurosurgeon). In addition, there is no mention of sidedness, contralateral carotid occlusion, irregular or ulcerated plaques in the angiogram, or hemispheric versus retinal TIAls, which were all found to be risk factors in North American Symptomatic Carotid Endarterectomy Trial (NASCET). There is also no record of the use of statins or antiplatelet therapy, the history of atrial fibrillation, the timing of the intervention, or the technical details of the procedure. Finally, to create our multivariate model, we considered all of the preoperative patient-level risk factors available in the NSQIP database that are associated with vascular disease. Some risk factors that were thought to be unrelated or overlapping with others were excluded from the model. This introduces a slight selection bias.

Conclusions

The NSQIP database is a prospective database, appropriate for benchmarking in the quality of national healthcare delivery. Based on the results of the multivariate analysis, a risk factor-based predictive model of the postoperative 30-day risk of stroke, MI, death, or their combination was devised. Although the generalization of these predictions should be made with caution, the model can be used as a baseline for the improvement and development of more accurate predictive models based on other databases or prospective studies, but the level of discrimination is insufficient for use in individual patient decision making.

Disclosures

None.

References

Kimon Bekelis, Samuel F. Bakhoum, Atman Desai, Todd A. Mackenzie, Philip Goodney and Nicos Labropoulos

Stroke. 2013;44:1085-1090; originally published online February 14, 2013;
doi: 10.1161/STROKEAHA.111.674358
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2013 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/44/4/1085

Data Supplement (unedited) at:
http://stroke.ahajournals.org/content/suppl/2013/02/14/STROKEAHA.111.674358.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/
ONLINE SUPPLEMENT

A risk factor-based predictive model of outcomes in carotid endarterectomy: the National Surgical Quality Improvement Program 2005-2010

Kimon Bekelis, M.D. 1,*, Samuel F. Bakhoum, Ph.D. 2,*, Atman Desai, M.D. 1, Todd A. MacKenzy, Ph.D. 3, Philip Goodney, M.D. 4, Nicos Labropoulos, Ph.D., D.I.C. 5

1 Section of Neurosurgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH
2 Geisel School of Medicine at Dartmouth, Hanover, NH
3 Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH
4 Section of Vascular Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH
5 Section of Vascular Surgery, SUNY Stony Brook, Stony Brook, NY

*These authors contributed equally to this work and co-primary authors

Running Head: NSQIP: predictive model of CEA outcomes
Subject codes: [44], [49], [76]

Key words: carotid stenosis, carotid endarterectomy, risk prediction, NSQIP

Figures: 3, Tables: 2, Supplemental material: 1

Word count: 4,500

Corresponding Author:

Kimon Bekelis, M.D.
Dartmouth-Hitchcock Medical Center
One Medical Center Dr.
Lebanon, NH 03756
kbekelis@gmail.com
T: 603-650-5110
F: 603-650-4547
Supplemental Figures

Figure 1. Diagrams of receiver operating characteristic (ROC) curves demonstrating the sensitivity against the 1-specificity for all the predictive models for the 30-day postoperative risk of stroke, MI, death, or their combination (from left to right).

Figure 2. Multivariate analysis of the 30-day risk of stroke (A), myocardial infarction (B), death (C), or their combination after carotid endarterectomy (D). The odds ratios are represented with forest plots on the right side of each table.