Quantitative Video-Oculography to Help Diagnose Stroke in Acute Vertigo and Dizziness

Toward an ECG for the Eyes

David E. Newman-Toker, MD, PhD; Ali S. Saber Tehrani, MD; Georgios Mantokoudis, MD; John H. Pula, MD; Cynthia I. Guede, RN, BSN; Kevin A. Kerber, MD, MS; Ari Blitz, MD; Sarah H. Ying, MD; Yu-Hsiang Hsieh, PhD; Richard E. Rothman, MD, PhD; Daniel F. Hanley, MD; David S. Zee, MD; Jorge C. Kattah, MD

Background and Purpose—Strokes can be distinguished from benign peripheral causes of acute vestibular syndrome using bedside oculomotor tests (head impulse test, nystagmus, test-of-skew). Using head impulse test, nystagmus, test-of-skew is more sensitive and less costly than early magnetic resonance imaging for stroke diagnosis in acute vestibular syndrome but requires expertise not routinely available in emergency departments. We sought to begin standardizing the head impulse test, nystagmus, test-of-skew diagnostic approach for eventual emergency department use through the novel application of a portable video-oculography device measuring vestibular physiology in real time. This approach is conceptually similar to ECG to diagnose acute cardiac ischemia.

Methods—Proof-of-concept study (August 2011 to June 2012). We recruited adult emergency department patients with acute vestibular syndrome defined as new, persistent vertigo/dizziness, nystagmus, and (1) nausea/vomiting, (2) head motion intolerance, or (3) new gait unsteadiness. We recorded eye movements, including quantitative horizontal head impulse testing of vestibulo-ocular-reflex function. Two masked vestibular experts rated vestibular findings, which were compared with final radiographic gold-standard diagnoses. Masked neuroimaging raters determined stroke or no stroke using magnetic resonance imaging of the brain with diffusion-weighted imaging obtained 48 hours to 7 days after symptom onset.

Results—We enrolled 12 consecutive patients who underwent confirmatory magnetic resonance imaging. Mean age was 61 years (range 30–73), and 10 were men. Expert-rated video-oculography–based head impulse test, nystagmus, test-of-skew examination was 100% accurate (6 strokes, 6 peripheral vestibular).

Conclusions—Device-based physiological diagnosis of vertebrobasilar stroke in acute vestibular syndrome should soon be possible. If confirmed in a larger sample, this bedside eye ECG approach could eventually help fulfill a critical need for timely, accurate, efficient diagnosis in emergency department patients with vertigo or dizziness who are at high risk for stroke. (Stroke. 2013;44:1158-1161.)

Key Words: diagnosis ■ diagnostic techniques, neurological ■ dizziness ■ sensitivity and specificity ■ vertigo

Vertigo and dizziness account for 2.6 million US emergency department (ED) visits per year, ≈4% attributable to stroke.1 Roughly 250 to 500 000 involve a high-risk-for-stroke clinical presentation known as acute vestibular syndrome (AVS).2 AVS is a well-defined clinical syndrome of severe, continuous vertigo, or dizziness, nausea or vomiting, gait instability, head motion intolerance, and nystagmus lasting days to weeks.2-4 Most AVS patients have a benign peripheral vestibular cause (vestibular neuritis or nonbacterial labyrinthitis), but ≈25% have brain stem or cerebellar strokes.3 Other central causes, such as multiple sclerosis, are uncommon.3 Distinguishing dangerous central from benign peripheral vestibular causes can be challenging. Half of stroke patients presenting with AVS have no focal neurological signs.2 In the first 24 hours after onset of symptoms, computed tomography accurately detects cerebellar hemorrhages but not ischemic strokes (16% sensitivity).5 Even magnetic resonance imaging of the brain with diffusion-weighted imaging (MRI-DWI) identifies only ≈80% of posterior fossa infarctions in the first day.2

Three bedside eye movement findings (Head Impulse test, Nystagmus, Test-of-Skew [HINTS]) differentiate central from peripheral causes of AVS, even outperforming early MRI (Table I in the online-only Data Supplement).2 This is not

Received October 31, 2012; accepted December 7, 2012.
The online-only Data Supplement is available with this article at http://stroke.ahajournals.orglookup/suppl/doi:10.1161/STROKEAHA.111.000033/DC1.
Correspondence to David E. Newman-Toker, MD, PhD; The Johns Hopkins Hospital, Meyer 8–154, Baltimore, MD 21287. E-mail toker@jh.edu
© 2013 American Heart Association, Inc.
Stroke is available at http://stroke.ahajournals.org DOI: 10.1161/STROKEAHA.111.000033
surprising, given that structural anatomic changes from brain ischemia generally lag physiological dysfunction. These eye movement tests are rapid and noninvasive but unfamiliar to most nonspecialists. The horizontal head impulse test (h-HIT) is the single best predictor of stroke; a bilaterally normal result in AVS increases the odds of stroke 18-fold. Of the 3 tests, the h-HIT is the most technically demanding to perform, and interpretation varies with expertise. Even neuro-otology subspecialists can be deceived when interpreting the h-HIT nonquantitatively because it relies on perception of a fast, corrective eye movement during the test (Figure 1A, red chevrons) that may sometimes be hidden (covert saccades).7

An easy-to-use, lightweight, portable, noninvasive video-oculography device has been developed that accurately measures the h-HIT vestibulo-ocular reflex (VOR) under controlled, laboratory conditions. If this device works similarly in clinical practice, it could lead to earlier stroke diagnosis and more efficient ED testing and triage decisions for AVS patients. If fully automated, the device might eventually be used even without onsite expertise. This approach is conceptually analogous to diagnosis of myocardial infarction by electrocardiography in patients with high-risk chest pain. As a crucial first step toward automation for use in front-line care settings, we sought to determine whether the device could be used to help discriminate central from peripheral causes in ED patients with AVS.

Methods

We conducted a proof-of-concept study at 2 tertiary-care medical centers. Results of quantitative head impulse video-oculography were compared with neuroimaging for acute stroke diagnosis. We enrolled adult ED patients with AVS seen ≤7 days since symptom onset and still symptomatic. We included patients with continuous vertigo or dizziness having lasted ≥1 hour plus pathological nystagmus and ≥1 of the following: (1) nausea or vomiting, (2) head motion intolerance, or (3) new gait or balance disturbance. We excluded patients with relevant previous vestibular or ocular motor disorder, acute drug/alcohol intoxication, or new head trauma. The study protocol was approved by the institutional review board at both sites.

We used a noninvasive, quantitative video-oculography device (ICS Impulse, GN Otometrics, Taastrup, Denmark, http://www.icsimpulse.com/) to measure and record VOR responses. The h-HIT was applied as a rapid horizontal head rotation from lateral to center, with the patient visually fixating on a target roughly 5 to 10 feet away. The device records head and eye velocity traces (Figures 1A, 1B, 2A, and 2B). It plots the VOR gain ratio for each h-HIT trial (Figures 1C and 2C), and then calculates a side-specific mean across all trials for that patient (x in Figures 1C and 2C). We separately calculated the relative right-left asymmetry in mean VOR gain ratio (Figure 3A). Examiners also looked for nystagmus in different gaze positions and ocular alignment (Figure 3B).

Two independent, expert-masked neuro-otologists categorized each patient as a suspected central pattern (ie, bilaterally normal VOR), a suspected peripheral pattern (ie, unilaterally abnormal VOR), or equivocal, using only h-HIT results. They were then given the other expert clinical HINTS findings (nystagmus and skew) and asked to recode. Neuroimaging diagnoses (stroke versus no stroke) were rendered by 2 independent, masked neuroimaging experts. Stroke diagnoses were based on computed tomography or MRI showing acute hemorrhage. MRI-DWI showing acute ischemic stroke (any time after symptom onset), or delayed MRI-DWI showing no acute stroke (>48 hours but ≤7 days after symptom onset). For agreement between raters, Cohen κ was calculated using SPSS v17 (SPSS Inc, Chicago, IL).

Results

We identified 14 consecutive AVS patients who underwent confirmatory neuroimaging between August 2011 and June 2012. One was excluded for failed device calibration and one for previous vestibular neuritis. Among 12 enrollees, median age was 62 years (range 30–73; interquartile range 59–69), and 10 were men. Eight were white, non-Hispanic; 2 were Hispanic, 1 was black, and 1 American Indian/Alaskan native. All patients tolerated and completed oculomotor testing without difficulty or complications. Even those with head motion intolerance had no difficulty with multiple h-HIT maneuvers (presumably because of the very small amplitude of head motion); they experienced more nausea when initially asked to sit up than during testing.

All subjects underwent MRI-DWI obtained ≤10 hours to 5 days after symptoms began. There was excellent agreement between masked neuroimaging raters (11/12; 92%; κ 0.83); after adjudication, all final results matched original nonstudy radiology reports (6 stroke and 6 nonstroke). Of the patients with a vascular pathogenesis, 5 were ischemic strokes and 1...
was a small hemorrhage. All nonstroke patients had negative neuroimaging and were diagnosed clinically with vestibular neuritis.

Accuracy of central versus peripheral vestibular diagnosis by quantitative HINTS examination was 12 of 12 for both masked raters (κ 1.0). All expert h-HIT interpretations
matched simple quantitative rules based directly on VOR gain measures (ie, patients with absolute gain <0.6 or right-left asymmetry >20% were all coded by experts as having an abnormal h-HIT). Exemplar h-HIT results are shown in Figures 1 and 2, raw quantitative data (absolute mean VOR gains) in Figure II in the online-only Data Supplement and aggregate results in Figure 3.

Discussion

Our proof-of-concept findings suggest that a portable video-oculography device could someday be used in the acute setting to help nonspecialist physicians diagnose stroke in patients with acute vertigo or dizziness. Testing using the device was well tolerated by patients. Training of our research associates to perform the h-HIT maneuver and to operate the device was not difficult. A simple interpretation algorithm would have accurately classified all patients as central (stroke) or peripheral (vestibular neuritis): step 1—quantitative h-HIT first, diagnosing stroke if bilaterally normal; step 2—in those with unilateral vestibular deficit, search for direction-changing nystagmus and skew, diagnosing neuritis if both are absent.

In the future, quantitative HINTS testing might be used in the ED to discharge AVS patients unlikely to have a stroke without any imaging, speed access to acute therapy without awaiting MRI, or select patients for enrollment in treatment trials for acute posterior circulation stroke. In settings without ready access to MRI, it could be used to determine need for transport to regional centers with higher levels of stroke care. Because of the ability to capture raw eye movement videos as well as quantitative measures, such a device might also be applied in prehospital (eg, ambulance) or community-based care settings (eg, urgent care centers) as part of remote telestroke consultation.

This proof-of-concept study is limited by our small sample. Investigators and technicians were experienced in performing h-HITs and assessing oculomotor function. Despite restricting our patient population to those with MRI-DWI during the optimal diagnostic window (48 hours to 7 days after symptom onset), false-negative neuroimaging remains a theoretical possibility. Quantitative results were not interpreted in real time. Our device software did not quantify nystagmus or skew deviation, although future versions will, and similar devices already do (http://eyeseeacam.com/). These results only apply directly to a specific subset of patients with vertigo or dizziness (ie, AVS). Not all clinicians are familiar with selecting appropriate patients. Use of HINTS in all comers with dizziness, including transient or purely positional symptoms, would markedly increase MRI overuse.

Conclusions

Device-based identification of vertebrobasilar stroke in AVS could help fulfill a critical need for timely, accurate, and efficient diagnosis in patients presenting acute vertigo or dizziness with high-risk clinical features. Widespread use in EDs or urgent care clinics might involve a fully automated eye ECG read by local providers with backup telediagnosis by offsite experts. Educational efforts to teach providers to recognize AVS might also be needed; patient selection is critical because the HINTS approach relies on a normal physiological finding, rather than an abnormal one, to identify patients in need of neuroimaging. Future research should include larger comparative observational studies and randomized trials to establish the accuracy, added value, and cost-effectiveness of this novel diagnostic method.

Sources of Funding

ICS impulse devices were loaned to investigators by GN Otometrics. This work was supported by grants from the Swiss National Science Foundation (PBBEP2 136573), Agency for Healthcare Research and Quality (R18 HS017690), and National Institutes of Health (K23 RR024009, R01EY019347).

Disclosures

None.

References

Quantitative Video-Oculography to Help Diagnose Stroke in Acute Vertigo and Dizziness: Toward an ECG for the Eyes

Stroke. 2013;44:1158-1161; originally published online March 5, 2013;
doi: 10.1161/STROKEAHA.111.000033

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/44/4/1158

Data Supplement (unedited) at:
http://stroke.ahajournals.org/content/suppl/2013/03/05/STROKEAHA.111.000033.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/

Table I. ‘H.I.N.T.S.’ to ‘I.N.F.A.R.C.T.’: Oculomotor findings differentiate peripheral vestibulopathy from vertebrobasilar stroke in acute vestibular syndrome (AVS)* (estimates from Tarnutzer, et al., 2011)

<table>
<thead>
<tr>
<th>Oculomotor Finding on Clinical “H.I.N.T.S.” Battery (Head Impulse, Nystagmus, Test of Skew)</th>
<th>Vertebrobasilar Stroke</th>
<th>Vestibular Neuritis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impulse Normal†: horizontal head impulse test (h-HIT) measures normal VOR response*</td>
<td>99% (PICA/SCA); 62% (AICA‡)</td>
<td>5%</td>
</tr>
<tr>
<td>Fast-phase Alternating: direction-changing horizontal nystagmus† evoked by lateral gaze right and left</td>
<td>38%</td>
<td>8%</td>
</tr>
<tr>
<td>Refixation on Cover Test: vertical skew deviation‡ as assessed by alternate cover testing</td>
<td>30%</td>
<td>2%</td>
</tr>
<tr>
<td>No ‘I.N.F.A.R.C.T.’ eye signs: unilateral abnormal h-HIT, direction-fixed horizontal nystagmus, no skew deviation</td>
<td>2%</td>
<td>85%</td>
</tr>
</tbody>
</table>

AICA – anterior inferior cerebellar artery; PICA – posterior inferior cerebellar artery; SCA – superior cerebellar artery; VOR – vestibulo-ocular reflex

* The pooled sensitivity of the H.I.N.T.S. approach when applied clinically by experts is 98% (n=97/99) compared to 80% (n=220/275) for early, acute MRI (<24 hours after AVS onset).† A non-stroke H.I.N.T.S. result reduces the odds of stroke 50-fold (negative likelihood ratio 0.02, 95% CI 0.01-0.09).‡ Our systematic review found strong evidence (GRADE system) for adequately-trained providers to use these findings for stroke diagnosis in AVS.

† The H.I.N.T.S. approach is only effective if applied specifically to patients with AVS, since a normal physiologic finding (i.e., impulse normal) is considered a “bad sign” (i.e., predicts stroke). Using this approach in patients with transient or purely positional dizziness or vertigo will lead to many ‘false positive’ H.I.N.T.S. results. However, when AVS patients have persistent pathologic nystagmus of any kind (e.g., spontaneous or gaze-evoked), a normal head impulse result is a powerful (nearly perfect) predictor for the presence of a central lesion, usually stroke.

‡ AICA-territory strokes often mimic benign peripheral lesions more closely than other posterior fossa strokes. This is because the blood supply to the inner ear usually derives from the AICA, often leading to isolated labyrinthine or combined posterior fossa and labyrinthine infarctions that impair the VOR through direct ischemia to the inner ear. These ‘pseudo-labyrinthine’ cases are usually detectable by the presence of one or both of the other two H.I.N.T.S. signs (i.e., direction-changing nystagmus or skew deviation). The magnitude of this diagnostic problem clinically is small. Together, PICA and AICA strokes account for ~95% of strokes causing the AVS, and, in this population, PICA strokes outnumber AICA strokes roughly 5:1. In total, AICA strokes only account for about 15% of AVS presentations, and only 38% of AICA infarctions present with an abnormal head impulse. Thus, AICA strokes with clinically abnormal impulses (pseudo-labyrinthine) only account for about 6% of AVS presentations. Approximately 1-2% of all AVS presentations are due to AICA strokes with a pure peripheral mimic on all three H.I.N.T.S. tests.
Figure II. Absolute VOR gain abnormalities for 12 AVS patients with confirmed final diagnoses

Shown are results from the 12 AVS patients in whom gold-standard diagnostic neuroimaging was performed. Nine experienced vertigo but three had non-vertiginous dizziness (Patients #1, #3, #6). Associated clinical features included headache or neck pain in four (Patients #3, #8, #10, #11), and focal general neurologic signs in two (Patients #1, #6). All patients had pathologic (i.e., spontaneous, primary position [straight ahead gaze] or gaze-evoked) nystagmus; patients with gain asymmetries were more likely to have primary position nystagmus.

Results are from quantitative, bedside h-HIT testing using a video-oculography device. Patients are grouped by diagnosis and arrayed from least to greatest relative right-left VOR asymmetry (as shown in manuscript Figure 3A). The figure above shows mean right- and left-sided VOR absolute gain values and 95% confidence intervals. Borderline or abnormal gain values are shown in gray. Pink shading indicates patients with bilaterally normal VOR gains, all of whom had radiographic cerebrovascular events (four PICA strokes and one small cerebellar hemorrhage abutting the fourth ventricle in the region of the middle cerebellar peduncle). Among those with borderline (yellow shading) or abnormal (green shading) VOR gain values, AICA strokes could be differentiated from vestibular neuritis based on the presence of direction-changing nystagmus or skew deviation (manuscript Figure 3B). AICA strokes mimic vestibular neuritis more closely than PICA strokes because the blood supply to the inner ear usually derives from the AICA, frequently resulting in combined cerebellar and labyrinthine infarctions, the latter of which impair the VOR response. Approximately 80% of strokes causing AVS are PICA strokes.1

Abbreviations: AICA – anterior inferior cerebellar artery; AVS – acute vestibular syndrome; h-HIT – horizontal head impulse test; PICA – posterior inferior cerebellar artery; VOR – vestibulo-ocular reflex
Study Design
We conducted a proof-of-concept study at two tertiary-care academic medical centers (OSF Saint Francis Medical Center [SFMC], Peoria, IL; The Johns Hopkins Hospital [JHH], Baltimore, MD). Results of a new test (quantitative head impulse video-oculography) were compared to the reference standard (neuroimaging) for acute stroke diagnosis. To be included, all patients had to undergo stroke-protocol MRI within seven days of symptom onset; some also underwent CT. Tests were performed prospectively but analyzed post-hoc by masked experts.

Study Population
We enrolled adult (≥18 years) ED patients with AVS seen <7 days since symptom-onset and still symptomatic. Patients were recruited through a combination of active and passive surveillance during convenience shifts (generally business hours), but we report here a consecutive series of those who had the requisite imaging. We included patients with continuous vertigo or dizziness having lasted at least one hour plus pathologic nystagmus and at least one of the following: (1) nausea or vomiting, (2) head motion intolerance, or (3) new gait or balance disturbance. We defined pathologic nystagmus as (a) any spontaneous nystagmus appearing in the straight ahead gaze position, or (b) nystagmus on lateral gaze that was sustained or asymmetric. Visual fixation was blocked using Frenzel goggles in all patients to unmask any spontaneous or gaze-evoked nystagmus. We excluded patients with relevant prior vestibular or oculomotor disorder (e.g., vestibular neuritis, congenital nystagmus), acute drug/alcohol intoxication, or new head trauma. The study protocol was approved by the institutional review board at both sites.

Data Collection
We recorded demographic data, symptoms, and oculomotor signs through direct patient interview and examination. Two trained post-doctoral fellows (JHH) and either a trained nurse or neuro-otologist (SFMC) used a noninvasive, quantitative video-oculography device (ICS Impulse, GN Otometrics, Taastrup, Denmark, www.icsimpulse.com) to measure and record eye movements, including the quantitative horizontal head impulse test (h-HIT). Patients were examined seated upright. The h-HIT was applied as a rapid horizontal head rotation from lateral to center with the patient visually fixating on a target roughly 5-10 feet away. The amplitude of the movement applied was generally very small (usually 5-10 degrees). This amplitude is smaller than is often applied in non-quantitative clinical h-HIT testing. When using the device, a larger amplitude movement causes the eye to move out of the camera frame and is unnecessary because of the enhanced sensitivity of the device to small-amplitude refixation saccades. Optimal head velocity was 100-200 degrees/second, and at least 20 h-HIT trials to each side were performed. Examiners (either a neuro-otology fellow or expert neuro-otologist) also looked for a clinically-abnormal h-HIT, nystagmus in different gaze positions, and ocular alignment (alternate cover test for vertical misalignment of the eyes [skew deviation]).

The video-oculography device measures head velocity with an internal sensor. It records monocular eye movements with a high-speed infrared camera over the right eye (maximum frame capture rate 250 frames per second). Computer software (OTOsuite Vestibular Software Version 1·20 Build 310) detects eye position and velocity from the video in real time using an automated pupil-tracking algorithm. A brief (<1 minute), simple calibration procedure ensures accurate eye movement recordings; this involves asking the patient to look at a series of dots of light projected onto a flat surface (e.g., wall) in front of them. The device has been validated against the gold standard for oculomotor recordings (magnetic scleral search coils) to accurately measure the h-HIT in humans with normal and chronically-abnormal vestibular function. This device is sold commercially and was approved by the US Food and Drug Administration (FDA) as a vestibular function test device in February, 2013. During the conduct of our study, the device, sold commercially in Europe, was used in the US for research pending regulatory approval. The ICS Impulse device is not FDA-approved for the indication of diagnosing stroke or any other condition.

Stroke protocol MRI images at JHH included axial T2, FLAIR, and DWI (25 5-millimeter axial slices with an interslice gap of 1.5 millimeters) performed on a 1.5-T Aera MR imaging unit (Siemens, Erlangen, Germany). Stroke protocol MRI images at SFMC included axial T2, FLAIR, and DWI (20 5-millimeter axial slices with an interslice gap of 2 millimeters) performed on a 1.5-T MR imaging unit (GE Medical Systems, Milwaukee, WI). Original neuroimages were extracted from electronic medical records for masked review.
Outcome Measures
The device software recognizes and collects correctly-performed h-HIT maneuvers using a two-stage algorithmic filtering process. It discards inappropriately performed h-HITs (e.g., too fast or too slow a head velocity) and trials in which pupil tracking is lost (e.g., due to blinks). The software reports final h-HIT results graphically as overlaid head and eye velocity traces across multiple trials (manuscript Figures 1/2, panels A/B). It also plots the VOR gain ratio (eye velocity divided by head velocity using area-under-the-curve methods, after using an automated algorithm to ‘de-saccade’ the head impulse of any intrusive, fast eye movements) for each h-HIT trial, and then calculates a side-specific mean across all trials for that patient (manuscript Figures 1/2, panel C). We separately calculated the relative right-left asymmetry in mean VOR gain ratio \((1−\frac{\text{lower gain}}{\text{higher gain}}) \times 100\%\). The relative right-left asymmetry in the VOR gain (displayed in manuscript Figure 3A) was calculated as follows:

\[
\text{Asymmetry [\%]} = (1 - \frac{\text{lower gain}}{\text{higher gain}}) \times 100\%
\]

We did not apply Jongkees’ formula (normalized relative right-left asymmetry), which is typically used for comparing right and left VOR function during caloric testing.\(^{10}\) We chose our approach because there was no need to normalize the data—the head impulse input (peak head velocity) and output (peak eye velocity) is well defined (i.e., for a gain of 1.0, the expected output = input). By contrast, this is not the case in caloric testing, where the effective applied thermal energy varies across subjects and ears, so results must be normalized to have meaning.

The mean gain ratio is the primary composite measure of overall VOR function on each side (i.e., right and left). It may be supplemented by expert interpretation of the physiologic traces and graphical gain plots, which can indicate confirmatory physiologic patterns or help identify low-quality data. In this study, experts assessed all aspects of the h-HIT reports. We considered a mean gain ratio >0.8 normal, <0.6 abnormal, and 0.6-0.8 borderline (see Technical Notes below). If a mean absolute gain was borderline, a right-left asymmetry >20% was considered an abnormal h-HIT. Two independent, expert neuro-otologists masked to all other clinical information, including neuroimaging, categorized each patient as a suspected central pattern (i.e., bilaterally normal VOR), a suspected peripheral pattern (i.e., unilaterally abnormal VOR), or equivocal, using only h-HIT results (physiologic traces, gain value plots, mean gain). They were then given the other clinical H.I.N.T.S. findings (nystagmus and skew) and asked to re-code.

Results were compared to final radiographic diagnoses of “stroke” or “no stroke” (i.e., non-stroke cause evident by neuroimaging or no cause identified). Stroke diagnoses were based on CT or MRI showing acute hemorrhage, MRI-DWI showing acute ischemic stroke (any time post symptom-onset), or delayed MRI-DWI showing no acute stroke (>48 hours but <7 days after symptom-onset). Neuroimaging diagnoses (stroke vs. no stroke) were rendered by two independent neuroimaging experts, masked to all clinical information.

Statistical Analysis
We report descriptive statistics and detailed quantitative results for all patients. For agreement between raters, Cohen’s kappa was calculated using SPSS software version 17 (SPSS Inc., Chicago, IL).

Additional Note on Commercial Relationships and Choice of Device
The authors would like to make a final note regarding choice of the ICS Impulse device (http://icsimpulse.com/) over similar commercially-available products such as the EyeSeeCam (http://eyesecam.com/) or Video Head Impulse Test Ulmer (http://www.synapsys.fr/en/p-video-head-impulse-test-ulmer-vhit-ulmer-48.htm). As indicated in the disclosure section, no one on our team has any commercial or financial interest in the ICS Impulse device. Our choice to focus on using this particular device for this study was made for scientific reasons. To our knowledge, only the ICS Impulse and EyeSeeCam devices have been validated against magnetic scleral search coil recordings (the gold standard in eye movement recording techniques). Both companies have loaned their devices to our study team for research purposes. Although the EyeSeeCam has greater oculomotor measurement flexibility in its current software, the ICS Impulse has a simpler, unibody design without moving or detachable parts, is more comfortable, operates in a Windows rather than Macintosh environment, is fully UL and biocompatibility compliant, and was closer to FDA approval in the US (and, at the time of publication, had been approved by the FDA as a vestibular testing device). We believe these features make the ICS Impulse device more likely to be widely disseminated in an emergency department environment, especially in the US, so we chose to focus our initial efforts in AVS using this particular device. We have been using the EyeSeeCam preferentially for laboratory-based studies.
Technical Notes

Outlier values and test-retest reliability: Video-oculography is an imperfect measure relative to the gold standard for eye movement assessment (magnetic scleral search coil recordings). In general, our h-HIT values were clustered fairly tightly across multiple attempts (e.g., Figures 1/2, panel C). Sometimes, however, individual measures (or even h-HIT means) were outside the anticipated range. For example, patient #9 with vestibular neuritis (online-only Figure I above) had a mean measured VOR gain on the unaffected side of roughly 1.2. Theoretically, a normal gain value should not exceed ~1.0. Nevertheless, “normal” mean VOR gains of up to about 1.2 are sometimes seen using search coil recordings. Thus, some of our gain elevations (>1.0) may represent true physiologic values, but others could reflect measurement error using the device. Additional laboratory testing we have done with the ICS device indicates that goggles slippage may result in small, false gain elevations bilaterally (+ ~0.1-0.2). While this could have affected some of the absolute measures shown in online-only Figure I, they are unlikely to have affected the relative right-left measures (manuscript Figure 3A). Ultimately, because we are suggesting this method might eventually be used in clinical practice, we elected to include all relevant results (rather than removing outlier impulses, as might be done in a basic science study about VOR physiology). We believe our results show that the clinical diagnostic accuracy of the quantitative H.I.N.T.S. approach is robust to such minor measurement errors.

Normative values for quantitative head impulse results: Normative data from the outpatient setting using the ICS Impulse device indicate that quantitative head impulse results with gain <0.6 are clearly abnormal (ICS Impulse User Manual; ICS Impulse FAQ at http://icsimpulse.com/). However, VOR gain values between 0.6-0.8 have been reported using search coils in patients with acute vestibular neuritis, and these are presumed to represent true deficits, since the acute unilateral vestibular failure shown in these cases recovered over time.12 Head impulse VOR data measured by coils in normal subjects suggest that right-left asymmetries of ~15-20% or more are pathologic.11 In our study, the 0.8 and 20% asymmetry thresholds matched the clinical interpretation of abnormal impulses (based on inspection of eye movements by experts) and final anatomic diagnoses as rendered by gold standard MRI.

References