Response to Letter Regarding Article, “Impact of ACE2 Deficiency and Oxidative Stress on Cerebrovascular Function With Aging”

We appreciate the interest of Dr Tsuda in our study.1 In our article we showed that angiotensin-converting enzyme type 2 (ACE2) deficiency is associated with impaired endothelial function in cerebral arteries from adult mice and augmented endothelial dysfunction during aging. In those experiments, we used acetylcholine to gain insight into endothelial function because acetylcholine is also a neurotransmitter known to be involved in regulation of cerebral blood flow. Dr Tsuda asked whether we assessed vasodilator effects of bradykinin.

We did not test endothelium-dependent responses to bradykinin or expression of molecules of the kallikrein–kinin system in our study of ACE2-deficient mice. Previous studies suggest that interaction between these 2 systems is important for the regulation of vasomotor function in the cerebral vasculature. First, bradykinin dilates cerebral arteries in humans and in several animal models.2 Second, responses to angiotensin 1-7 in the cerebral circulation may be mediated in part by bradykinin.3 Third, angiotensin 1-7 may indirectly increase bradykinin levels.4 Fourth, bradykinin receptor signaling is affected by heterodimerization with other angiotensin receptors.5 It is possible that the angiotensin 1-7 receptor (Mas) may dimerize with bradykinin receptors and alter their signaling. Thus, responses and the impact of bradykinin in the cerebral circulation may be altered in mice genetically deficient in ACE2 or mas receptors.

Disclosures

None.

Response to Letter Regarding Article, "Impact of ACE2 Deficiency and Oxidative Stress on Cerebrovascular Function With Aging"

Ricardo A. Peña-Silva, Frank M. Faraci and Donald D. Heistad

*Stroke*. 2013;44:e35; originally published online March 5, 2013;
doi: 10.1161/STROKEAHA.111.000481

*Stroke* is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2013 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:

http://stroke.ahajournals.org/content/44/4/e35

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Stroke* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://ww.lww.com/reprints

Subscriptions: Information about subscribing to *Stroke* is online at:
http://stroke.ahajournals.org/subscriptions/