Tissue-Type Plasminogen Activator for Stroke Mimics
Continuing to Be Swift Rather Than Delaying Treatment to Be Sure

Waldo R. Guerrero, MD; Sean I. Savitz, MD

In the April issue of Stroke, we have yet another study on the safety of tissue-type plasminogen activator (tPA) for patients with stroke mimics (SM). Zinkstok et al. conducted a multi-center retrospective analysis of patients with SM treated with tPA at primary and community hospitals. With 100 patients reported in the largest series to date, the authors found, like all the previous cohort studies, a low rate of symptomatic intracerebral hemorrhage and death.2,3 There were no instances of orolingual edema or fatal intracerebral hemorrhages.

The incidence of SM in their cohort among all tPA-treated patients was on the lower end of other reports: 2% to 31%.2,4-6 This rate is also much lower than the 7% misdiagnosis rate reported for emergency departments in which tPA was administered without a stroke team evaluation.7 In fact, some community centers report as high as 25% to 29% of patients with SM.8,9 The variability in incidence from one report to another is likely because of a lack of a standardized definition of SM.4 In this study, the authors used the Hand criteria to define SM as patients in whom clinical details did not suggest a vascular pathogenesis but who had an alternate final diagnosis convincingly explain their symptoms. SM also were diagnosed in cases in which additional diagnostic tests did not assist in determining an alternate diagnosis and the physician was convinced on clinical grounds that the symptoms were not caused by cerebral ischemia.

MRI with diffusion-weighted sequences was not part of their SM definition, which likely explains, in part, the low incidence of SM in this cohort. Neuroimaging before and after treatment in the absence of an alternative diagnosis other than acute cerebral ischemia also could have allowed the authors to distinguish an averted stroke from SM.5 However, as the authors point out, primary and community hospitals often do not have MRI. Therefore, this study does add novel information on the safety of tPA in SM at community hospitals where advanced imaging may not be available to distinguish stroke from other causes of acute neurological deficits. Although brain imaging can help guide the diagnosis of stroke, we agree with the authors that bedside clinical assessment is still essential to help differentiate SM from true stroke. Unfortunately, in this study, it is not clear which clinical assessments the clinicians used to differentiate SM from true stroke.

However, to add to the validity of their findings, SM were more likely to be younger and women than patients with acute ischemic stroke, similar to previous studies.2,5 In addition, the authors also found, as previously reported, that global aphasia with minimal or no paresis was associated with SM. In the report by Scott and Silbergleit,7 global aphasia without hemiparesis was 10-times more frequent in the SM group than in the acute ischemic stroke group. Yet, this clinical feature seems not distinctive enough to assign individual patients to one or the other group.

Overall, this article supports the concept that we proposed in our study5 that even in acute emergency cases in which the diagnosis of stroke is not completely certain, the benefit of rapid treatment with tPA likely outweighs the minimal risk of complications associated with tPA in SM.

At this point, we would encourage an end to reporting further retrospective studies on the safety of tPA for SM. Let us now focus on trying to differentiate with more certainty SM from acute ischemic strokes and tackle the question articulated by Saver and Barsan10 in their editorial—in cases of uncertainty, how can we remain swift in administering tPA but become more sure that we are treating an acute ischemic stroke? Prospective studies are needed to identify and to validate a panel of variables, including clinical features, imaging, and perhaps biomarkers that can confidently and rapidly separate SM from AIS.

Sources of Funding
This study was supported by Specialized Programs of Translational Research in Acute Stroke (P50 NS 044227) and a National Institutes of Health Training Grant (5 T32 NS0077412-12).

Disclosures
None.

References


KEY WORDS: ischemic stroke □ mimics □ rtPA
Tissue-Type Plasminogen Activator for Stroke Mimics: Continuing to Be Swift Rather Than Delaying Treatment to Be Sure
Waldo R. Guerrero and Sean I. Savitz

Stroke. 2013;44:1213-1214; originally published online April 11, 2013;
doi: 10.1161/STROKEAHA.113.000927

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/44/5/1213

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org/subscriptions/