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Existing evidence has convincingly shown that short-term 
elevations in fine particulate matter air pollution (PM

2.5
) 

are associated with increased risk of acute cardiovascular 
events, including stroke.1 The mechanisms responsible for 
these effects are not fully understood, but there is substan-
tial evidence suggesting that vascular dysfunction is a central 
component. Specifically, several observational and controlled 
exposure studies in people have found an association between 
short-term changes in PM

2.5
 or its components and increased 

blood pressure, increased peripheral vascular resistance, 
decreased brachial artery diameter, and decreased brachial 
artery flow–mediated dilation.2–8 Further evidence of vascular 
effects of PM

2.5
 is provided by animal toxicological studies.9–11

In healthy individuals, cerebral blood flow is tightly 
regulated, such that it remains relatively constant over a wide 
range of arterial pressures. Derangements in cerebral vascular 

function have been associated with stroke incidence and poorer 
prognosis,12,13 as well as cognitive impairment, dementia, and 
depression.14,15 Given the documented associations between 
ambient air pollution and both cerebrovascular events and 
peripheral vascular function, PM

2.5
 may also affect cerebral 

vascular function. However, this hypothesis has not been 
previously investigated. Accordingly, the aim of this study was 
to evaluate the association between PM

2.5
 and cerebrovascular 

hemodynamics at rest and during provocative testing in a 
cohort of community-dwelling older adults.

Methods

Study Design
We evaluated the association between short-term changes in ambi-
ent PM

2.5
 and measures of cerebral blood flow velocity among 482 

Background and Purpose—Short-term elevations in fine particulate matter air pollution (PM
2.5

) are associated with increased 
risk of acute cerebrovascular events. Evidence from the peripheral circulation suggests that vascular dysfunction may be a 
central mechanism. However, the effects of PM

2.5
 on cerebrovascular function and hemodynamics are unknown.

Methods—We used transcranial Doppler ultrasound to measure beat-to-beat blood flow velocity in the middle cerebral 
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autoregulation) in 482 participants from the Maintenance of Balance, Independent Living, Intellect, and Zest in the 
Elderly (MOBILIZE) of Boston study. We used linear mixed effects models with random subject intercepts to evaluate the 
association between cerebrovascular hemodynamic parameters and mean PM

2.5
 levels 1 to 28 days earlier adjusting for age, 

race, medical history, meteorologic covariates, day of week, temporal trends, and season.
Results—An interquartile range increase (3.0 µg/m3) in mean PM

2.5
 levels during the previous 28 days was associated 

with an 8.6% (95% confidence interval, 3.7%–13.8%; P<0.001) higher cerebral vascular resistance and a 7.5% (95% 
confidence interval, 4.2%–10.6%; P<0.001) lower blood flow velocity at rest. Measures of cerebral vasoreactivity and 
autoregulation were not associated with PM

2.5
 levels.

Conclusions—In this cohort of community-dwelling seniors, exposure to PM
2.5

 was associated with higher resting 
cerebrovascular resistance and lower cerebral blood flow velocity. If replicated, these findings suggest that alterations in 
cerebrovascular hemodynamics may underlie the increased risk of particle-related acute cerebrovascular events.    (Stroke. 
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participants from the MOBILIZE Boston Study (MBS), a prospec-
tive, community-based cohort study of novel risk factors for falls in 
older adults.16 Briefly, between 2005 and 2008, we recruited 765 non-
institutionalized men and women ≥65 years of age, able to communi-
cate in English, residing ≤5 miles (8.0 km) from the study clinic, and 
able to walk 20 feet (6.1 m) without personal assistance. Individuals 
with a Mini-Mental State Examination score <18 were not eligible 
to participate. On enrollment, subjects participated in an in-home in-
terview followed within 4 weeks by a clinic examination. Participant 
characteristics, medical history, medication inventory, smoking his-
tory, blood pressure, height, and weight were assessed, as previously 
described.17 A second assessment consisting of an in-home interview 
and clinic examination was performed a median of 16.5 months after 
the baseline assessment. All subjects provided written informed con-
sent on enrollment. This analysis was approved by the Institutional 
Review Boards at Hebrew SeniorLife and Brown University.

Cerebrovascular Hemodynamics
During the clinic visit, we used transcranial Doppler ultrasonography 
(TCD) to noninvasively evaluate cerebrovascular hemodynamics at 
rest and during provocative stimulation, as previously described.16 
Briefly, we measured cerebral blood flow velocity continuously in the 
middle cerebral artery (MCA) while subjects sat in a chair. A 2-MHz 
TCD probe (MultiDop X4, DWL-Transcranial Doppler Systems Inc, 
Sterling, VA) was placed over the right or left temporal bone with 
the best signal and held in place during recordings using a Velcro 
headband. TCD data could not be obtained in some subjects be-
cause of the absence of a suitable acoustic window to insonate the 
MCA. We obtained continuous measures of arterial blood pressure 
using a Finometer photoplethysmographic system (Finapres Medical 
Systems, Arnhem, The Netherlands) placed on a finger and held at 
heart level with a sling. The envelope of the velocity waveform, de-
rived from a fast-Fourier analysis of the Doppler frequency signal, was 
digitized at 500 Hz, displayed simultaneously with the blood pressure, 
ECG, and end-tidal CO

2
 signals, and stored for later offline analysis.

After a 5-minute resting period, the hemodynamic responses to 
CO

2
 inhalation and posture change were evaluated. We assessed ce-

rebral vasoreactivity by asking participants to breathe room air nor-
mally for 2 minutes, inspire a gas mixture of 8% CO

2
, 21% O

2
, and 

balance nitrogen for 2 minutes, and then mildly hyperventilate to an 
end-tidal CO

2
 of ≈25 mm Hg for 2 minutes. Cerebral vasoreactivity 

was calculated as the slope of the linear regression of mean MCA 
blood flow velocity versus end-tidal CO

2
 during the maneuver.

We assessed cerebral autoregulation by asking participants to per-
form a sit-to-stand maneuver, as previously described.18 Briefly, par-
ticipants sat with their legs elevated at 90˚ in front of them on a stool 
for 5 minutes before standing for 1 minute. We calculated cerebrovas-
cular resistance with the following equation:

CVR MAP
BFV

=

where CVR, MAP, and BFV denote cerebrovascular resistance, mean 
arterial blood pressure, and mean MCA blood flow velocity, respec-
tively. The intraclass correlation coefficients for cerebrovascular re-
sistance, mean arterial pressure, and blood flow velocity ranged from 
0.81 to 0.84, indicating excellent within-person reproducibility of 
these measures over time.

Air Pollution and Meteorologic Data
PM

2.5
 was measured continuously at the Boston/Harvard ambient 

monitoring station, and daily averages were calculated, as previously 
described.19 This monitoring station is located <10 km from the study 
clinic site and <20 km from the residential address of any study par-
ticipant. We obtained hourly meteorologic data from the National 
Weather Service station at Boston’s Logan Airport.

Statistical Methods
For this analysis, we excluded 76 participants reporting a history of 
stroke. We used linear mixed models with a random subject intercept 

to evaluate the association between each outcome and PM
2.5

 levels 
while accounting for repeated measures within participants. In all 
analyses, we controlled for age (natural cubic spline with 3 degrees 
of freedom), sex, race (white versus other), smoking status (never 
versus ever), hypertension status (normotension, controlled hyperten-
sion, uncontrolled hypertension), diabetes mellitus, body mass index 
(natural cubic spline with 3 degrees of freedom), visit number, day of 
week, mean ambient and mean dew point temperature (natural cubic 
splines with 3 degrees of freedom each), season (sine and cosine of 
time with period of 1 year), and long-term temporal trends (time as 
linear and quadratic functions). We modeled PM

2.5
 as a continuous 

variable, and the assumption of a linear exposure–response relation-
ship was confirmed by standard techniques.

Previous studies have reported changes in vascular function asso-
ciated with PM

2.5
 levels averaged during 1 to 28 days before assess-

ment of the outcome. Accordingly, in separate models, we considered 
pollutant levels averaged during the 1, 3, 5, 7, 14, 21, and 28 days 
before cerebral hemodynamic assessment. We evaluated whether the 
observed associations with PM

2.5
 differed according to sex, and the 

presence or absence of hypertension, diabetes mellitus, and obesity 
(body mass index ≥30 versus <30), as well as season (warm versus 
cool with warm defined as April through September) by adding inter-
action terms to the model. Analyses were performed using SAS (v9.3; 
SAS Institute Inc, Cary, NC) and R statistical software (R v2.15). A 
2-sided P value of <0.05 was considered statistically significant.

Results
Data on cerebral blood flow velocity were available in 482 
participants, with 425 participants completing the cerebral 
vasoreactivity protocol and 424 participants completing the 
cerebral autoregulation protocol. Measures of cerebral blood 
flow velocity were available at both the baseline and follow-up 
visit in 72% of participants. Participants included in this anal-
ysis were predominantly white and women with a mean age 
of 77.9 (SD, 5.3) years at baseline (Table). Compared with the 
765 participants enrolled in the MBS, the subgroup included 
in this analysis was slightly younger, more likely to be white 
and men, and relatively healthier.

The mean daily PM
2.5

 level during the study period was 
8.6 µg/m3 (SD, 4.9). Because the most etiologically relevant 
exposure window is unknown, we assessed the association 
between measures of cerebral blood flow and PM

2.5
 levels 

averaged during the 1, 3, 5, 7, 14, 21, and 28 days before 
outcome assessment. PM

2.5
 levels averaged during the 

previous 3 to 28 days were associated with higher resting 
cerebrovascular resistance, reaching statistical significance 
in association with the 21- and 28-day averages of PM

2.5
 

(Figure 1A). Because cerebrovascular resistance is calculated 
as the ratio of mean arterial pressure to cerebral blood flow 
velocity, we assessed whether the observed increase in 
resistance was attributable to decreased blood flow velocity, 
increased mean arterial pressure, or a combination of both. 
We found that 21- and 28-day averages of PM

2.5
 levels 

were associated with statistically significant decreases in 
cerebral blood flow velocity (Figure 1B), with little evidence 
of change in resting mean arterial pressure (Figure  1C). 
Specifically, we observed an 8.6% (95% confidence interval, 
3.7%–13.8%) higher cerebrovascular resistance and a 7.5% 
(95% confidence interval, 4.2%–10.6%) lower blood flow 
velocity comparing the 75th with the 25th percentiles of 
PM

2.5
 levels averaged during the past 28 days. These results 

did not differ significantly according to sex, hypertension 
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status, diabetes mellitus, obesity, or season (Table I in the 
online-only Data Supplement).

Cerebral vasoreactivity was not associated with PM
2.5

 at any 
averaging period (Table II in the online-only Data Supplement). 
Measures of cerebral autoregulation were also not related to 
PM

2.5
. On standing from the sitting position, mean arterial 

pressure decreased by an average of 18.9±6.4 mm Hg and 
was accompanied by a 0.16±0.31 mm Hg/(cm/s) decrease in 
cerebrovascular resistance. The magnitude of the changes in 
cerebrovascular resistance and blood flow velocity on stand-
ing were not associated with PM

2.5
 (Figure 2)

.
 However, the 

decrease in mean arterial pressure observed on standing was 
smaller after 1 to 5 days with higher average PM

2.5
.

Discussion
The results of this study suggest that exposure to fine 
particulate matter air pollution may be associated with 
adverse changes in the cerebral vasculature. Specifically, in 
this population-based cohort of community-dwelling older 
adults, we found that PM

2.5
 levels within the past month were 

associated with higher cerebrovascular resistance and lower 
MCA blood flow velocity at rest in the absence of significant 
changes in resting mean arterial pressure. Our results did not 
differ significantly among participants with diabetes mellitus, 
hypertension, smoking, or by sex or season.

Although we are not aware of any previous studies exam-
ining this hypothesis, short-term exposure to ambient air 
pollution has been linked with changes in the peripheral vas-
culature, including increased arterial blood pressure, increased 
peripheral vascular resistance, decreased brachial artery diam-
eter, decreased brachial artery flow–mediated dilation, and 
decreased small-vessel elasticity.2–8 Additionally, studies in 
humans and animals have shown that air pollution exposure 
can attenuate the vascular response to the endothelium-depen-
dent vasodilators acetylcholine and bradykinin, and potentiate 
the vasoconstriction induced by phenylephrine.9,20 These find-
ings support the notion that short-term exposure to ambient 
air pollution can alter endothelial function in the peripheral 
vasculature.

The results of the current study extend this previous work 
and suggest that ambient air pollution may also be detrimental 
to cerebrovascular endothelial function. Basal resting cerebral 
blood flow is determined, at least in part, by release of NO 
from vascular endothelial cells.21,22 Moreover, resting cerebral 
blood flow velocity declines with age, is lower in obese indi-
viduals and those with diabetes mellitus with microvascular 
complications, and is correlated with indices of systemic arte-
rial stiffness.23–25 These observations suggest an important role 
of endothelium in the maintenance of resting cerebral blood 
flow, although multiple other factors are also clearly involved.

In healthy participants, cerebral blood flow is altered in 
response to fluctuations in arterial CO

2
 concentrations via a 

mechanism that also depends on endothelium-derived NO.26 
Thus, cerebral vasoreactivity has been proposed as a marker 
of cerebrovascular endothelial function analogous to brachial 
artery flow–mediated dilation.26 Contrary to our expectations, 
we did not find an association between ambient pollution and 
cerebral vasoreactivity. In this regard, our results seem clos-
est to those of Brook et al,2 who observed a reduction in bra-
chial artery diameter but no change in flow-mediated dilation 
after controlled exposure to PM

2.5
 and ozone. Like flow-medi-

ated dilation, cerebral vasoreactivity represents a dynamic 

Table. Baseline Characteristics of 482 Participants ≥65 Years 
of Age From the MOBILIZE Boston Study With Measurements 
of MCA Blood Flow During Either the Sit-to-Stand or CO2 
Reactivity Protocols, 2005 to 2009

Characteristics
Cerebral Autoregulation 

Protocol (n=424)
Cerebral Vasoreactivity 

Protocol (n=425)

Age, mean±SD 77.7±5.2 77.9±5.3

Women, n (%) 238 (56.1) 242 (56.9)

White, n (%) 365 (86.1) 366 (86.1)

Hypertension, n (%)

  Normotension 109 (25.8) 106 (25.1)

  Controlled hypertension 225 (53.3) 230 (54.5)

 � Uncontrolled 
hypertension

89 (21.0) 86 (20.4)

Diabetes mellitus, n (%) 65 (15.3) 65 (15.3)

Hyperlipidemia, n (%) 203 (47.9) 202 (47.5)

Ever smoker, n (%) 243 (57.3) 232 (54.6)

Body mass index, 
mean±SD

26.5±4.7 26.8±4.8

Figure 1. Association between ambient fine particles (PM2.5) and resting cerebrovascular resistance (CVR; A), blood flow velocity (BFV; B), 
and mean arterial pressure (MAP; C). The y-axis denotes the change in each outcome per interquartile range (IQR) increase in PM2.5 aver-
aged during 1 to 28 days before assessment. The x-axis denotes the length of the PM2.5 averaging period in days.
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response to an acute stimulus, whereas basal cerebral blood 
flow represents an assessment of flow under steady-state con-
ditions. Although NO is thought to be involved in both static 
and dynamic responses, the physiological mechanisms and 
pathophysiological influences are likely quite different.27,28

We also did not observe an association between PM
2.5

 and 
cerebral autoregulation as assessed by the change in either 
MCA blood flow velocity or cerebrovascular resistance on 
standing from a seated position. This finding is not sur-
prising given that the maintenance of cerebral blood flow 
in response to acute changes in arterial pressure is largely 
attributable to a myogenic response (ie, mechanoregulation) 
without key involvement of either neurogenic or endothelial 
factors.21,26

Short-term changes in ambient PM
2.5

 levels have been 
associated with increased risk of ischemic stroke onset,29 and 
long-term exposure to higher levels of PM

2.5
 has been associ-

ated with higher risk of stroke30 and faster cognitive decline.31 
Indeed, within the MOBILIZE Boston Study cohort, we have 
found an association between long-term exposure to traffic 
pollution and lower cognitive function.32 If causal, the results 
of the current study suggest a potential common mechanism 
for these observations mediated through alterations in endo-
thelial function, potentially leading to cerebral hypoperfusion.

Our study has some important limitations. First, we were 
not able to obtain TCD measurements on 37% of participants, 
and those participants with TCD measurements tended to be 
healthier than those without measurements. Although a TCD 
acoustic window is expected to be absent in about one third 
of elderly participants,33 the observation that participants with 
versus without TCD acoustic windows tended to be healthier 
may limit the generalizability of our results. Second, because 
it is likely that the effects of PM

2.5
 vary depending on pollu-

tion sources, particle constituents, and age or other participant 
characteristics, our results are not necessarily generalizable to 
other geographic locations or study populations. Identifying 
the sources of PM

2.5
 responsible for observed health effects 

remains a top research priority, and additional analyses using 
detailed PM

2.5
 speciation data are currently underway. Third, 

TCD provides a measure of cerebral blood flow velocity 
rather than absolute flow. However, studies using a variety of 
techniques have confirmed that MCA blood flow velocity is 

correlated with regional cerebral blood flow, and that relative 
changes in cerebral blood flow velocity are representative of 
changes in cerebral blood flow.34–36 Fourth, use of PM

2.5
 mea-

surements from a single monitoring site is expected to lead to 
some exposure misclassification, decreasing the precision of 
our estimates but not otherwise biasing our results.37 However, 
all participants lived <20 km from the PM

2.5
 monitoring site, 

limiting the potential for misclassification. Finally, we did not 
have data on the amount of time participants spent indoors. 
However, studies suggest that ambient PM

2.5
 is a relatively 

good surrogate of personal exposure to PM
2.5

 of ambient ori-
gin,38,39 the metric on which current environmental regulations 
are based.

Important strengths of our study include detailed assess-
ment of hemodynamic responses in a large, prospective cohort 
of community-dwelling elderly subjects evaluated repeatedly. 
Because MOBILIZE Boston Study participants are represen-
tative of seniors in the Boston area in terms of age, sex, race, 
and ethnicity,16 our results are broadly relevant to elderly indi-
viduals rather than a selected patient population. Additionally, 
these associations were observed at PM

2.5
 levels that are com-

mon in urban environments and below the current standards 
set by the US government.

In conclusion, the current study found that short-term expo-
sure to ambient PM

2.5
 was associated with lower resting cere-

brovascular flow velocity and higher resting cerebrovascular 
resistance in community-dwelling elderly participants. If con-
firmed in future studies, these findings suggest that ambient 
air pollution may be detrimental to endothelial function in 
the cerebral vasculature and suggest a novel mechanism for 
pollution-related cerebrovascular events.
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Figure 2. Association between fine particles (PM2.5) and ∆cerebrovascular resistance (∆CVR; A), ∆blood flow velocity (∆BFV; B), and 
∆mean arterial pressure (∆MAP; C) assessed during the cerebral autoregulation protocol. ∆CVR, ∆BFV, and ∆MAP denote standing 
minus sitting values for CVR (in units of [cm/s]/mm Hg), BFV (cm/s), and MAP (mm Hg), respectively. The y-axis denotes the change in 
each outcome per interquartile range (IQR) increase in PM2.5 averaged during 1 to 28 days before assessment. The x-axis denotes the 
length of the PM2.5 averaging period in days.
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Table S1: Association of blood flow velocity and cerebrovascular resistance with PM2.5 
levels averaged over the 28 days prior to evaluation, overall and stratified by participant 
characteristics. 
 

Participant Subgroup % Difference in  
Flow Velocity* 

(95% CI) 

Ph % Difference in 
Resistance* 

(95% CI) 

Ph 

Overall -7.5 (-10.6, -4.2)†  8.6 (3.7, 13.8)†  

Sex     

Female -6.2 (-9.7, -2.6) 0.078 7.0 (1.6, 12.6) 0.14

Male -9.4 (-13.1, -5.6)  11.3 (5.1, 17.8)  

Hypertension Status     

Normotension -5.4 (-9.6, -1.0) 0.13 5.6 (-0.8, 12.4) 0.40

Controlled Hypertension -7.6 (-11.2, -3.8)  10.3 (4.5, 16.4)  

Uncontrolled Hypertension -10.7 (-15.1, -6.0)  9.4 (2.1, 17.3)  

Diabetes     

No -7.6 (-10.8, -4.2) 0.86 8.4 (3.3, 13.8) 0.75

Yes -7.1 (-12.0, -1.9)  9.6 (1.8, 18.1)  

Obesity     

BMI<30 -7.5 (-10.8, -4.0) 0.99 9.5 (4.2, 15.1) 0.34

BMI≥30 -7.5 (-11.7, -3.0)  6.3 (-0.4, 13.4)  

Season     

Cool -10.6 (-14.7, -6.2) 0.084 8.2 (1.3, 15.5) 0.81

Warn -5.1 (-9.6, -0.4)  9.4 (2.4, 16.9)  

*Estimates represent the percent difference in each outcome per interquartile range increase in 
PM2.5 levels. †:p<0.05. BMI: body mass index. IQR: interquartile range. Ph: P-value from test 
for homogeneity. 



 
Table S2: Association between cerebral vasoreactivity and PM2.5 levels averaged 1 to 
28 days prior to assessment. 

PM2.5 Averaging Period 
(Days) 

IQR 
(µg/m3) 

Difference in Cerebral 
Vasoreactivity* 

(95% CI) 

1 4.8 3.0 (-0.8, 6.9) 

3 4.4 0.9 (-3.7, 5.5) 

5 3.9 0.0 (-4.7, 4.7) 

7 3.8 -0.3 (-5.5, 4.8) 

14 3.4 -0.6 (-6.1, 4.8) 

21 3.2 -2.8 (-8.7, 3.1) 

28 3.0 -1.5 (-7.7, 4.7) 

*Change in cerebral vasoreactivity is expressed in units of (100 cm/s)/mmHg per 
interquartile range increase in PM2.5. IQR: interquartile range. 

 


