The Promise of Neuro-Recovery After Stroke

Motor System Plasticity in Stroke Models
Intrinsically Use-dependent, Unreliably Useful

Theresa A. Jones, PhD; Rachel P. Allred, PhD; Stephanie C. Jefferson, PhD; Abigail L. Kerr, PhD; Daniel A. Woodie, BS; Shao-Ying Cheng, PhD; DeAnna L. Adkins, PhD

Functional impairment is a powerful incentive for behavioral change. The natural response to disability in one limb is to learn new ways of using the other limb. Animals, including humans, with upper extremity impairments spontaneously learn to use the less-affected (nonparetic) hand in novel ways to perform daily activities.1-3 In intact brains, the acquisition of manual skills depends on practice-dependent synaptic structural and functional reorganization of motor cortex (MC).4,5 After stroke, this skill acquisition overlaps with ongoing degenerative and regenerative responses to the injury, many of which are also neural activity dependent6,7 and sensitive to behavioral manipulations.8-10 When they converge on the same circuits, ischemia-induced and experience-driven remodeling responses interact.3 Learning to rely on the nonparetic hand is a particularly prevalent and profound form of poststroke behavioral compensation, but compensatory strategies can be found across different impairment modalities, body sides, and injury loci.11-13 Their development is among the most reliable consequences of brain injury survival. The implication is that understanding the brain’s typical adaptation to stroke will require understanding its interactions with compensatory behavioral changes.

The compensatory reliance on the better functioning limb after stroke has long been thought to contribute to persistent dysfunction in the affected (paretic) limb by encouraging its disuse (ie, learned nonuse).14 Our recent findings suggest that it can go well beyond this to directly disrupt the neural substrates of the paretic limb functional improvements. Here we overview these findings, as revealed in rodent models of chronic activity-dependent neural reorganization in this same region—learning a single new motor skill with the nonparetic limb—reduces spontaneous and functional impairments.15-17 After unilateral ischemic MC damage in rats, a relatively subtle variation in behavioral experience—learning a single new motor skill with the nonparetic limb—reduces spontaneous recovery and limits functional improvements resulting from subsequent rehabilitative training of the paretic limb, but without affecting infarct size or cell loss.15-17 This is found in rats trained to perform a unimanual reach-to-grasp task, first with the nonparetic limb (nonparetic forelimb training [NPT]) for the first few weeks after the infarcts and subsequently with the paretic limb, as rehabilitative training (Figure). Deleterious NPT effects are found when the reaching skill is novel to either limb at the time of the infarct or was established in the to-be-paretic limb before the infarct.15,16 Learning a skill with one hand does not normally result in such notable decrements in the other. For example, in intact rats (sham-operators), training one limb in skilled reaching has no detrimental effect on the other limb.16 Bilateral skill training and unskilled use of the nonparetic limb are not deleterious for the paretic limb.16 It is specifically deleterious to learn new way of using the better functioning limb on its own or in a dominant manner.

The loss of rehabilitative training efficacy that results from unimanual skill learning with the nonparetic limb is linked with reduced neuronal activation of peri-infarct MC. This can be detected in the neuronal expression of ΔFosB, a transcription factor that is cumulatively and persistently expressed with repeated neuronal activation. As result of prior NPT, this expression is greatly dampened during a rehabilitative training period, even though the paretic limb’s training activity is not reduced.16 Thus, NPT diminishes the neural responsiveness of peri-infarct MC to the paretic limb’s activity. Activity-dependent neural reorganization in this same region is well-established to contribute to functional improvements in the paretic limb.19 These findings suggest that the behavioral manifestations of learned nonuse can reflect, in part, the nonparetic limb’s functional disruption of a peri-infarct region that could otherwise mediate better function in the paretic limb.

Although peri-infarct MC is a neuroanatomical substrate for the maladaptive effects of skill learning with the nonparetic limb, interhemispheric connections are a route. The MC of either hemisphere is heavily interconnected via callosal projections, such that damage in 1 MC partially denervates the other. The callosal projections of contralesional MC also have a propensity to sprout into peri-infarct MC.20,21 Layer V pyramidal neurons are the origin of most of these projections. If these connections are absent at the time of skill learning with the nonparetic limb (as a result of callosal transections), there are no deleterious effects of NPT.16 Furthermore, training one limb after bilateral MC injury has no negative impact on the other.16 Thus, the interhemispheric projections of contralesional MC mediate the maladaptive effects of skill learning with the nonparetic limb.
In intact animals, skill training of 1 forelimb results in dendritic growth and synaptogenesis in the contra-to-training MC. As a result of the convergence with reactive plasticity instigated by denervation of callosal projections to layer V, skill training of the nonparetic forelimb after unilateral MC infarcts results in an exaggerated growth response in contralesional MC, particularly in the basilar dendrites of layer V pyramidal neurons. Not only do these contralesional growth responses have no known benefit for the paretic limb, but they also result from the same skill training that worsens its function. Callosal transections block deleterious NPT effects on the paretic limb but not its promotion of contralesional dendritic growth, indicating that any contribution of the growth responses to paretic limb dysfunction is mediated by callosal projections. We postulate that skill learning with the nonparetic limb drives changes in interhemispheric projections that interfere with more functionally relevant (for the paretic side) reorganization. The involvement of interhemispheric connections in the disruptive effects of skill learning with the nonparetic limb makes it seem likely that these experiences can contribute to clinical observations of abnormal interhemispheric activity after stroke. It also leads to the prediction that their influence will vary with injury loci and size. For example, if the MC of the injured hemisphere is too devastated to contribute to functional improvements in the paretic limb, or if the involvement of contra MC in regenerative plasticity is negligible, there is potentially no harm in compensatory skill learning with the nonparetic limb.

A more general implication of these findings is that different types of behavioral experience have the capacity to interfere with one another in driving reorganization of injured central nervous system. The results are reminiscent of experience-expectant plasticity, a brain developmental process in which experiences present during early sensitive periods sculpt circuitry patterns using mechanisms of activity-dependent synaptic competition (eg, resulting in ocular dominance columns), after which time the connectional patterns are relatively resistant to later change. We speculate that a similar form of competitive circuitry remodeling occurs in converging projection areas of the injured and intact MC (Figure [C]) and that it underlies the maladaptive effects of learning with the nonparetic limb. Ischemic cortical injury reveals an impressive capacity for reactive axonal sprouting of these projections. The neural activity-dependence of these responses should make them inherently sensitive to experiences that act on the same circuits. These responses are also time dependent, which may create an opportunity for the nonparetic limb to dominate reorganizational patterns in a manner that later becomes difficult to reverse.

In conclusion, learning to rely on the less-affected upper extremity promotes neural changes that subserve its function, while impacting the injured hemisphere in a manner that interferes with functional improvements in the affected limb. The general implication is that, simply by adopting a natural strategy for resuming everyday activities, some stroke survivors could inadvertently squelch the potential for better functionality.
in the paretic side. We postulate that experience-driven interhemispheric competition in circuitry remodeling underlies the disruptive effects of learning with the nonparetic limb. We also expect that these effects will vary with injury locus and size because of the pathway specificity of experience-driven and postemschic neural plasticity. A better understanding of the neural mechanisms of this phenomenon and its generalization across injuries and functional modalities could be useful for therapeutic decisions on when to promote versus discourage compensation with less-affected modalities and, ultimately, for understanding how to optimize function bilaterally after stroke.

Acknowledgments

We thank Dr Hsu for help with the figure.

Sources of Funding

The study was supported by grant from National Institutes of Health (NS056839).

Disclosures

None.

References

Key Words: experience-expectant plasticity ■ learned nonuse ■ manual skill ■ motor cortex ■ motor rehabilitative training
Motor System Plasticity in Stroke Models: Intrinsically Use-dependent, Unreliably Useful
Theresa A. Jones, Rachel P. Allred, Stephanie C. Jefferson, Abigail L. Kerr, Daniel A. Woodie, Shao-Ying Cheng and DeAnna L. Adkins

Stroke. 2013;44:S104-S106
doi: 10.1161/STROKEAHA.111.000037

Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2013 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/44/6_suppl_1/S104

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Stroke* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Stroke* is online at:
http://stroke.ahajournals.org//subscriptions/