Cognitive Rehabilitation for Executive Dysfunction in Adults With Stroke or Other Adult Nonprogressive Acquired Brain Damage

Charlie Chung, MSc; Alex Pollock, PhD; Tanya Campbell, PhD; Brian Durward, PhD; Suzanne Hagen, PhD

Executive functions are cognitive processes essential for controlling goal-oriented behavior and responding to new and novel situations. Executive function includes the processes of planning, initiation, organization, inhibition, problem solving, self-monitoring, and error correction. It has been estimated that ≥75% of stroke survivors experience impaired executive function (executive dysfunction), resulting in reduced capacity to regain independence in activities of daily living, particularly when new movement strategies are necessary to compensate for limb weakness. A variety of cognitive rehabilitation interventions are implemented within clinical practice in an attempt to improve executive function and, consequently, independence with activities of daily living.1

Objectives
To determine the effects of cognitive rehabilitation on executive dysfunction for adults with stroke or other nonprogressive acquired brain injuries.

Methods
We searched: Cochrane Stroke Group Trials Register, the Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE, CINAHL, PsycINFO, and AMED (last search August 2012). We also searched an additional 11 databases, hand-searched journals and conference proceedings, and contacted experts.

We included randomized trials in adults with stroke or other adult acquired brain injury in which the intervention was cognitive rehabilitation, and outcomes included executive function measures or cognitive outcome measures with separable executive function scores. The primary outcome of interest was measures of global executive function; secondary outcomes included assessments of specific components of executive function and activities of daily living.

Two review authors independently screened abstracts, extracted data, and appraised trials. Assessments of methodological quality for allocation concealment, blinding of outcome assessors, method of dealing with missing data, and other potential sources of bias were undertaken. For continuous data, we calculated the treatment effect using standardized mean differences and 95% confidence intervals where different studies used different scales for the assessment of the same outcome, and using mean differences and 95% confidence interval where studies all used the same method of measuring outcome. We used a random-effect model for all analyses.

Main Results
Nineteen studies (907 participants) met the inclusion criteria for this review. Data were available for inclusion within meta-analyses from 13 studies (660 participants, including 234 with stroke) that investigated a range of interventions, including problem-solving training (6 studies), self-awareness or self-monitoring training (4 studies), general cognitive rehabilitation (2 studies), and working memory training (1 study).

Six of the included studies (333 participants) compared cognitive rehabilitation with no treatment or placebo; none reported the primary outcome measure and data from 4 studies demonstrated no statistically significant effect of cognitive rehabilitation on secondary outcomes. Ten studies (448 participants) compared an experimental cognitive rehabilitation approach with a standard cognitive rehabilitation approach. Only 2 of these studies (82 participants) reported the primary outcome; no statistically significant effect was found. Data from 8 studies (404 participants) demonstrated no significant effect on the secondary outcomes. Three studies (134 participants) compared cognitive rehabilitation with sensorimotor therapy. None reported the primary outcome, and data were only available relating to the secondary outcomes from 1 study.

Conclusions
There is insufficient high-quality evidence to reach any generalized conclusions about the effect of cognitive rehabilitation on executive function or independence in activities of daily living. Further high-quality research comparing cognitive rehabilitation with nonintervention, placebo, or sensorimotor interventions is recommended.

Sources of Funding
The Nursing, Midwifery, and Allied Health Professions Research Unit is funded by the Chief Scientist Office, Scottish Government.

Received May 6, 2013; accepted May 10, 2013. From the Victoria Hospital Stroke Unit, Kirkcaldy, United Kingdom (C.C.); Nursing, Midwifery, and Allied Health Professions Research Unit (A.P., S.H.), Department of Occupational Therapy (T.C.), Glasgow Caledonian University, Glasgow United Kingdom; and NHS Education Scotland, Edinburgh, United Kingdom (B.D.).

Correspondence to Charlie Chung, MSc, Victoria Hospital Stroke Unit, Hayfield Rd, Fife, Kirkcaldy KY2 5AH, United Kingdom. E-mail chungsongyau@aol.com

(Stroke. 2013;44:e77-e78.) © 2013 American Heart Association, Inc. Stroke is available at http://stroke.ahajournals.org DOI: 10.1161/STROKEAHA.113.002049
United Kingdom. The work presented here represents the view of the authors and is not necessarily that of the funding bodies.

This article is based on a Cochrane Review published in The Cochrane Library 2013, Issue 4 (www.thecochranelibrary.com for information). Cochrane Reviews are regularly updated as new evidence emerges and in response to feedback, and The Cochrane Library should be consulted for the most recent version of the review.

Disclosures

None.

Reference


Key Words: cognitive impairment ■ cognitive rehabilitation ■ executive dysfunction ■ systematic review
Cognitive Rehabilitation for Executive Dysfunction in Adults With Stroke or Other Adult Nonprogressive Acquired Brain Damage
Charlie Chung, Alex Pollock, Tanya Campbell, Brian Durward and Suzanne Hagen

Stroke. 2013;44:e77-e78; originally published online June 18, 2013;
doi: 10.1161/STROKEAHA.113.002049

Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2013 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/44/7/e77