Coronary heart disease (CHD) is usually considered a significant cause of morbidity and mortality in patients who have had a stroke or a transient ischemic attack (TIA).1 Although recurrent strokes occur more commonly than cardiac events over the long term after stroke, cardiac events still account for a greater proportion of mortality.2,3 Identifying severe occult coronary artery stenosis, in particular those with left main trunk or 3-vessel disease, may help to improve prevention of cardiac events in stroke/TIA patients. The prevalence of severe (≥50% reduction in diameter) occult coronary artery stenosis has been reported to be between 18% and 38% in patients with stroke or TIA and no previous history of CHD.3,4 We recently showed that in these patients traditional vascular risk factors, assessed individually or through the Framingham Risk Score (FRS), and the severity of cervicocephalic atherosclerosis are strongly and independently associated with severe coronary artery stenosis detected by 64-section CT angiography.4 These associations have been confirmed in other studies.4,5 The aim of this study was to derive and validate a simple prediction score for severe occult coronary artery stenosis in stroke/TIA patients.

Background and Purpose—Identifying occult coronary artery stenosis may improve secondary prevention of stroke patients. The aim of this study was to derive and validate a simple score to predict severe occult coronary artery stenosis in stroke patients.

Methods—We derived a score from a French hospital–based cohort of consecutive patients (n=300) who had an ischemic stroke or a transient ischemic attack and no previous history of coronary heart disease (Predicting Asymptomatic Coronary Artery Disease in Patients With Ischemic Stroke and Transient Ischemic Attack [PRECORIS] score) and validated the score in a similar Korean cohort (n=1602). In both cohorts, severe coronary artery stenosis was defined by the presence of at least 1 ≥50% coronary artery stenosis as detected by 64-section CT angiography.

Results—A 5-point score (Framingham Risk Score–predicted 10-year coronary heart disease risk [≥20%=3; 10–19%=1; <10%=0] and cervicocephalic artery stenosis [≥50%=2; <50%=1; none=0]) was predictive of occult ≥50% coronary artery stenosis risk in the derivation cohort (C-statistic=0.77 [0.70–0.84]) and in the validation cohort (C-statistic=0.66 [0.63–0.68]). The predictive ability of the score was even stronger when only ≥50% left main trunk disease or 3-vessel disease were considered (C-statistic=0.83 [0.74–0.92] and 0.70 [0.66–0.74] in derivation and validation cohorts, respectively). The prevalence of occult ≥50% coronary artery stenosis and ≥50% left main trunk or 3-vessel disease increased gradually with the PRECORIS score, reaching 44.2% and 13.5% in derivation cohort and 49.8% and 12.8% in validation cohort in patients with a PRECORIS score ≥4.

Conclusions—The PRECORIS score can identify a population of stroke or transient ischemic attack patients with a high prevalence of occult severe coronary artery stenosis. (Stroke. 2014;45:82-86.)

Key Words: coronary artery disease • risk factors

Continuing medical education (CME) credit is available for this article. Go to http://cme.ahajournals.org to take the quiz.

Received September 4, 2013; accepted October 8, 2013.

From Paris Descartes University, Centre de Psychiatrie et Neurosciences INSERM UMR 894, Paris, France (D.C., G.T., J.-L.M.); Department of Neurology, Centre Hospitalier Sainte-Anne, Paris, France (D.C., G.T., J.-L.M.); Departments of Neurology (D.S., J.Y., J.H.H.) and Radiology (B.W.C.), Yonsei University College of Medicine, Seoul, Korea; and Department of Radiology, Centre Cardiologique du Nord, Saint-Denis, France (J.-L.S.).

The online-only Data Supplement is available with this article at http://stroke.ahajournals.org/lookup/suppl/doi:10.1161/STROKEAHA.113.003414/-/DC1.

Correspondence to Jean-Louis Mas, MD, Service de Neurologie, Hôpital Sainte-Anne, 1 rue Cabanis, 75674 Paris Cedex 14, France. E-mail jl.mas@ch-sainte-anne.fr

© 2013 American Heart Association, Inc.

Stroke is available at http://stroke.ahajournals.org

DOI: 10.1161/STROKEAHA.113.003414
Methods

Derivation Cohort

The score to PREdict asymptomatic CORonary artery disease in patients with ischemic stroke and TIA (PRECORIS score) was derived from a French hospital–based cohort of 300 consecutive patients with noncardioembolic ischemic stroke or definite TIA admitted to Sainte-Anne Hospital stroke unit (Paris Descartes University, Paris, France) from January 2006 to February 2009. Patients were between 45 and 75 years old and had no previous history of CHD. All patients had a standardized etiologic work-up (Table I in the online-only Data Supplement). Detailed methods of the PRECORIS study have been reported elsewhere.4 The objective of this study was to assess the prevalence of ≥50% occult coronary artery stenosis, detected by 64-section CT, in patients with ischemic stroke or TIA and whether the prevalence is related to traditional vascular risk factors and cervicocephalic atherosclerosis.5

The study was approved by the local ethics committee, and all patients provided informed consent. FRS was calculated for each patient.4 All patients had a detailed standardized etiologic work-up.4 An investigator blinded to clinical data and results of the 64-section CT coronary angiography reviewed all available arterial investigations for the presence of cervicocephalic atherosclerosis. The presence of cervicocephalic atherosclerosis was defined by ≥1 lesion in ≥1 of the following arterial segments: extracranial carotid artery, intracranial carotid artery, extracranial vertebral artery, intracranial vertebral artery, basilar artery, anterior cerebral artery, middle cerebral artery, and posterior cerebral artery. Each arterial segment was classified as normal, <50% stenosis, ≥50% stenosis, or plaque, mild to moderate coronary artery stenosis (1 lesion <50% ≥50%), and severe coronary artery stenosis (≥2 lesions ≥50%).

The study had excellent agreement between 2 investigators for the detection of coronary artery stenosis. The presence of cervical arterial atherosclerosis was assessed using 64-section CT coronary angiography.4,5 We previously reported excellent agreement between 2 investigators for the detection of coronary artery stenosis in segments ≥1.5 mm in diameter.4 In the present study, all 64-section CT coronary angiographies were reviewed by a single experienced radiologist blinded to clinical data and results of cervicocephalic atherosclerosis assessment.

Patients were categorized as having normal coronary arteries (no plaque), mild to moderate coronary artery stenosis (1 lesion <50% and no stenosis ≥50%), and severe coronary artery stenosis (≥2 lesions ≥50%). Among patients with at least 1 ≥50% stenosis, those with ≥50% left main trunk or 3-vessel disease were identified.

Validation Cohort

The PRECORIS score was tested in a Korean hospital–based cohort of 1602 consecutive patients with acute ischemic stroke or TIA admitted to Severance Hospital neurology department (Yonsei University Health System, Seoul, Korea) between July 2006 and September 2012. All patients had a detailed standardized etiologic work-up (Table I in the online-only Data Supplement), and those with no previous history of CHD were asked to undergo 64-section CT examination of coronary arteries if they had at least 1 of the following: (1) presence of atherosclerosis in intracranial or extracranial cerebral arteries; (2) presence of ≥2 risk factors for CHD, such as hypertension, diabetes mellitus, dyslipidemia, cigarette smoking, and central obesity; and (3) old age (men ≥45 years; women ≥55 years). The study was approved by the institutional review board of Severance Hospital, Yonsei University Health System, and informed consent was obtained from all patients. For the purpose of this study, we used data of women between 55 and 75 years old and of men between 45 and 75 years old.6,10 Cervicocephalic atherosclerosis and coronary artery stenosis were categorized using the same criteria as those used in the derivation cohort.6

Statistical Analysis

Parametric and nonparametric comparisons of categorical and continuous variables were done with χ2, t tests, and Mann–Whitney U tests, where appropriate. All significance tests were 2-sided. The score was built using the variables associated with the presence of ≥50% occult coronary artery stenosis in the PRECORIS study, namely the FRS dichotomized into 3 strata (<10%, 10–19%, and 20%–10-year risk of CHD) and the severity of cervicocephalic stenosis, categorized as absent, mild to moderate (≥1 lesion <50% and no stenosis ≥50%), and severe (≥2 lesions ≥50%). The weighted scoring system of the score was based on adjusted odds ratios of predictors in the derivation cohort as follows: FRS-predicted 10-year risk for CHD <10%, 0 point; FRS-predicted 10-year risk for CHD 10% to 19%, 1 point; FRS-predicted 10-year risk for CHD ≥20%, 3 points; cervicocephalic atherosclerosis: none, 0 point; ≥1 stenosis <50% and no stenosis ≥50%, 1 point; ≥2 stenosis ≥50%, 2 points. The overall predictive 5-point score was the sum of these 2 items. The observed risks of ≥50% occult coronary artery stenosis and of left main trunk or 3-vessel disease were assessed separately and stratified according to the PRECORIS score. To quantify the predictive value of the score, we calculated areas under the receiver operating characteristic curve (C-statistic) and 95% confidence intervals (CIs). Ideal discrimination produces a C-statistic of 1.0, whereas discrimination that is no better than chance produces a C statistic of 0.5. We assessed internal validation of the derivation score using 1000 bootstrap replicates. To quantify the predictive value of the severity of cervicocephalic atherosclerosis in addition to FRS, we compared the C-statistic of the 5-point PRECORIS score with that of the 3-point FRS.

Table 1. Score Items in the Derivation (French) and Validation (Korean) Cohorts and Their Respective ORs for the Presence of ≥50% Occult Coronary Artery Stenosis and for the Presence of ≥50% Left Main Trunk or 3-Vessel Disease

<table>
<thead>
<tr>
<th>Derivation Cohort (N=274)</th>
<th>Validation Cohort (N=1593)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥50% Coronary Artery Stenosis</td>
<td>≥50% Left Main Trunk or 3-Vessel Disease*</td>
</tr>
<tr>
<td>Framingham Risk Score</td>
<td></td>
</tr>
<tr>
<td><10%</td>
<td>7/109</td>
</tr>
<tr>
<td>10% to 19%</td>
<td>18/102</td>
</tr>
<tr>
<td>≥20%</td>
<td>25/63</td>
</tr>
<tr>
<td>Cervicocephalic atherosclerosis</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>6/89</td>
</tr>
<tr>
<td><50%</td>
<td>19/109</td>
</tr>
<tr>
<td>≥50%</td>
<td>25/76</td>
</tr>
</tbody>
</table>

Cl indicates confidence interval; and OR, odds ratios.

*ORs not calculable because of the absence of patients with left main trunk or 3-vessel disease in the stratum of patients with no cervicocephalic atherosclerosis.
Results
FRS and cervicocephalic atherosclerosis could be assessed in all patients from both cohorts. Sixty-four-section CT coronary angiography was performed in 274 (91.3%) of derivation cohort and in 1593 (99.4%) of validation cohort. Table 1 shows the distribution of patients according to FRS and severity of cervicocephalic atherosclerosis, with corresponding adjusted odds ratios for the presence of ≥50% occult coronary artery stenosis. The 5-point PRECORIS score was 0.66 (95% CI, 0.63–0.68) for left main trunk or 3-vessel disease, according to the PRECORIS score. Patients of the derivation cohort had on average a lower PRECORIS score (mean, 2.0±1.5 versus 2.9±1.5 in validation cohort; P<0.001), a lower prevalence of ≥50% occult coronary artery stenosis (18.3% versus 35.1% in validation cohort; P<0.001), and a lower prevalence of left main trunk or 3-vessel disease (4.0% versus 7.3% in validation cohort; P=0.047).

The prevalence of ≥50% occult coronary artery stenosis and that of left main trunk or 3-vessel disease increased gradually with PRECORIS score in both derivation and validation cohorts (P for trend was <0.001 in both cohorts for both ≥50% occult coronary artery stenosis and left main trunk or 3-vessel disease). In the derivation cohort, the C-statistic of PRECORIS score was 0.77 (95% CI, 0.70–0.84) for ≥50% occult coronary artery stenosis and 0.83 (95% CI, 0.74–0.92) for left main trunk or 3-vessel disease with excellent cross-validation based on 1000 bootstrap replicates (C-statistic=0.77 [95% CI, 0.70–0.83] for ≥50% occult coronary artery stenosis; C-statistic=0.81 [95% CI, 0.75–0.91] for left main trunk or 3-vessel disease). In the validation cohort, the C-statistic was 0.66 (95% CI, 0.63–0.68) for ≥50% occult coronary artery stenosis and 0.70 (95% CI, 0.66–0.74) for left main trunk or 3-vessel disease. The 5-point PRECORIS score was better than the 3-point FRS at predicting the presence of occult ≥50% coronary artery stenosis (C-statistic=0.77 [95% CI, 0.70–0.84] versus 0.72 [95% CI, 0.64–0.80] in the derivation cohort; P=0.03; and C-statistic=0.66 [95% CI, 0.63–0.68] versus 0.63 [95% CI, 0.60–0.66] in the validation cohort; P=0.003). Table II in the online-only Data Supplement shows the predictive value of the score, assessed by C-statistic, for the presence of occult ≥50% coronary artery stenosis according to patient sex, stroke cause, and score items in the derivation and validation cohorts.

Figures 1 and 2 show the prevalence of ≥50% occult coronary artery stenosis and of left main trunk or 3-vessel disease according to PRECORIS score divided into 3 strata (0 or 1; 2 or 3; 4 or 5). Patients with a PRECORIS score ≥4 had similar prevalences of ≥50% occult coronary artery stenosis (44.2% versus 49.8% in the validation cohort; P=0.44) and of left main trunk or 3-vessel disease (13.5% versus 12.8% in the validation cohort; P=0.90). Patients with a PRECORIS score <2 had a low prevalence of left main trunk or 3-vessel disease (0% versus 1.2% in the validation cohort). Figures 3 and 4 show the proportion of patients with ≥50% occult coronary artery stenosis and the proportion of patients with left main trunk or 3-vessel disease that could be identified according to PRECORIS score cutoffs. For example, using a cutoff ≥4, the PRECORIS score could identify 46.0% (derivation cohort) and 48.7% (validation cohort) of patients with ≥50% occult coronary artery stenosis, and 63.7% and 60.3% of those with left main trunk or 3-vessel disease. Patients with a PRECORIS score ≥4 accounted for 19.0% of derivation cohort and 34.3% of validation cohort.

Discussion
We derived and validated a simple score—the PRECORIS score—based on FRS and severity of cervicocephalic atherosclerosis to predict the risk of ≥50% occult coronary artery

Table 2. Prevalence of ≥50% Occult Coronary Artery Stenosis and of ≥50% Left Main Trunk or 3-Vessel Disease According to PRECORIS Score Strata in Derivation (n=274) and Validation (n=1593) Patients

<table>
<thead>
<tr>
<th>PRECORIS Score</th>
<th>Patients of Derivation Cohort, n (%)</th>
<th>≥50% Occult Coronary Artery Stenosis, n (Prevalence, 95% CI)</th>
<th>Left Main Trunk and 3-Vessel Disease, n (Prevalence, 95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>45 (16.4)</td>
<td>1 (2.2, 0–6.5)</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>75 (27.4)</td>
<td>5 (6.7, 1.0–12.4)</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>63 (23.0)</td>
<td>11 (17.5, 9.4–26.9)</td>
<td>3 (4.8, 0–10.0)</td>
</tr>
<tr>
<td>3</td>
<td>39 (14.2)</td>
<td>10 (25.6, 14.8–36.4)</td>
<td>1 (2.6, 0–6.5)</td>
</tr>
<tr>
<td>4</td>
<td>26 (9.5)</td>
<td>10 (38.5, 19.8–57.2)</td>
<td>3 (11.5, 0–23.8)</td>
</tr>
<tr>
<td>5</td>
<td>26 (9.5)</td>
<td>13 (50.0, 30.8–69.2)</td>
<td>4 (15.5, 1.5–29.2)</td>
</tr>
<tr>
<td>Total</td>
<td>274 (100)</td>
<td>50 (18.3, 13.7–22.8)</td>
<td>11 (4.0, 1.7–6.3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patients of the Validation Cohort, n (%)</th>
<th>≥50% Occult Coronary Artery Stenosis, n (Prevalence, 95% CI)</th>
<th>Left Main Trunk and 3-Vessel Disease, n (Prevalence, 95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>98 (6.2)</td>
<td>14 (14.3, 7.4–21.2)</td>
</tr>
<tr>
<td>1</td>
<td>236 (14.8)</td>
<td>48 (20.3, 15.1–25.4)</td>
</tr>
<tr>
<td>2</td>
<td>278 (17.5)</td>
<td>66 (23.7, 18.7–28.7)</td>
</tr>
<tr>
<td>3</td>
<td>435 (27.3)</td>
<td>159 (36.6, 32.1–41.1)</td>
</tr>
<tr>
<td>4</td>
<td>158 (9.9)</td>
<td>73 (46.2, 38.4–54.0)</td>
</tr>
<tr>
<td>5</td>
<td>388 (24.4)</td>
<td>199 (51.3, 46.3–56.3)</td>
</tr>
<tr>
<td>Total</td>
<td>1593 (100)</td>
<td>559 (35.1, 32.8–37.4)</td>
</tr>
</tbody>
</table>

CI indicates confidence interval.
stenois in patients who present with an ischemic stroke or a TIA. The PRECORIS score had a good predictive ability to identify patients with ≥50% occult coronary artery stenosis, in particular those with left main trunk or 3-vessel disease.

A few studies have recently assessed the prevalence of severe coronary artery stenosis in patients with ischemic stroke or TIA and no previous history of CHD; the prevalence of ≥50% coronary artery stenosis ranged from 18% to 38% using 64-section CT,4,7,11 conventional angiography,12 or autopsy.13 As in our study, the prevalence of ≥50% occult coronary artery stenosis was lower in European (18–26%)4,5 than in Asian cohorts (32–38%).6,7 A rapid increase in CHD incidence has been observed in the Asia Pacific region,14,15 and increases in levels of risk factors seem to account for a substantial amount of CHD increase.14 In our study, Korean patients had a higher PRECORIS score compared with French patients. This higher burden of vascular risk factors, together with a potential greater susceptibility of Asian subjects to proatherogenic effects of traditional vascular risks factors, could have accounted for the higher prevalence of severe occult coronary artery stenosis in Korean patients.16,17

The finding that a score based on FRS and severity of carotid atherosclerosis had a good predictive ability to identify patients with severe occult coronary artery stenosis is consistent with recent studies,18 showing that in patients with ischemic stroke and no known CHD, a high FRS (≥20%) and presence of a carotid stenosis are associated with a higher risk of subsequent coronary events and vascular death.19,20 These findings also support recommendations to consider patients with atherosclerotic stroke to be at high risk (≥20% over 10 years) of further atherosclerotic coronary events.21

However, the optimal management of patients with asymptomatic coronary artery stenosis is unresolved.1,22–24 In particular, systematic revascularization of patients with occult coronary artery stenosis is not recommended.23,24 In contrast, there is some evidence for benefit of revascularization in patients with left main trunk or 3-vessel disease.25–27 The high predictive ability of the PRECORIS score to identify patients with the most severe occult coronary artery stenosis, in particular those with left main trunk or 3-vessel disease, is of interest. Beyond potential benefit of specific revascularization treatment, identification of such high-risk patients may also improve compliance and adherence to risk-modifying interventions.26

Our study has potential limitations. The PRECORIS score was derived and validated in hospital-based cohorts of patients between 45 and 75 years of age who had noncardioembolic ischemic stroke or definite TIA. The generalizability of the score remains to be confirmed in further studies. A potential selection bias might have altered the prevalence of severe occult coronary stenosis, but it is unlikely that this potential...
bias would affect the relative effects observed in both popu-
lations and the predictive ability of the PRECORIS score to
detect occult severe coronary artery stenosis. In fact, we showed
that the PRECORIS score has a good predictive ability in both
derivation and validation cohorts, in which the prevalence of
severe occult coronary artery stenosis differed substantially.

In conclusion, our study cannot address the value of screen-
ing for occult severe coronary artery stenosis in patients who
had a stroke or a TIA. However, our study emphasizes the
possibility of identifying ischemic stroke or TIA patients with
a high prevalence of severe occult coronary artery stenosis,
particularly those with left main trunk or 3-vessel disease.
The PRECORIS score based on easily available parameters
may be useful to target a population of ischemic stroke or
TIA patients in whom the usefulness of screening for severe
occult coronary artery stenosis could be specifically assessed
through a randomized controlled trial.

Sources of Funding
This study was financially supported in part by the Institut de
l’Athérothrombose and by Sanofi-Aventis and Bristol-Myers-Squibb
Pharmaceuticals, which had no role in the analysis or interpretation
of the data or in the decision to publish this article. The authors, who
are not employees of the companies providing support, had control of
the data and information submitted for publication.

Disclosures
None.

References
1. Adams RJ, Chimowitz MI, Alpern JS, Awad IA, Cerquera MD, Fayad P
 et al. Coronary risk evaluation in patients with transient ischemic attack
 and ischemic stroke: a scientific statement for healthcare profession-
 als from the Stroke Council and the Council on Clinical Cardiology
 2003;34:2310–2322.
2. Dhamoon MS, Sicca RA, Rundek T, Sacco RL, Elkind MS. Recurrent
 stroke and cardiac risks after first ischemic stroke: the Northern
3. Touzé E, Varenne O, Chatellier G, Peyrand S, Rothwell PM, Mas JL.
 Risk of myocardial infarction and vascular death after transient isch-
 emic attack and ischemic stroke: a systematic review and meta-analysis.
 Prevalence of asymptomatic coronary artery disease in ischemic stroke
5. Amarenco P, Lavallée PC, Labreuche J, Ducrocq G, Juliard JM, Feldman
6. Yoo J, Yang JH, Choi BW, Kim YD, Nam HS, Choi HY, et al. The fre-
 quency and risk of preclinical coronary artery disease detected using
 multichannel cardiac computed tomography in patients with ischemic
 cerebral infarction: impact of metabolic syndrome and intracranial large
8. D’Agostino RB, Russell MW, Huse DM, Ellison RC, Silberschatz H,
 Wilson PW, et al. Primary and subsequent coronary risk appraisal:
 new results from the Framingham study. Am Heart J. 2000;139(2 pt
 et al. Coronary artery stenosis in high-risk patients: 64-section CT and
 coronary angiography—prospective study and analysis of discordance.
 evaluation of coronary artery disease and aortic atherosclerosis in acute
 ischemic stroke patients: usefulness based on Framingham risk score and
11. Hanley JA, McNeil BJ. A method of comparing the areas under receiver
 operating characteristic curves derived from the same cases. Radiology.
12. Amarenco P, Goldstein LB, Sillesøe H, Benavente O, Zweifler RM,
 Callahan A III, et al; Stroke Prevention by Aggressive Reduction in
 Cholesterol Levels Investigators. Coronary heart disease risk in patients
 with stroke or transient ischemic attack and no known coronary heart
 disease: findings from the Stroke Prevention by Aggressive Reduction in
13. Gongora-Rivera F, Labreuche J, Jaramillo A, Steg PG, Hauw JJ,
 Amarenco P. Autopsy prevalence of coronary atherosclerosis in patients
14. Ueshima H, Sekikawa A, Miura K, Turin TC, Takashima N, Kita Y,
 et al. Cardiovascular disease and risk factors in Asia: a selected review.
15. Hong JS, Kang HC, Lee SH, Kim J. Long-term trend in the incidence of
16. Woo KS, Choop T, Raitakari OT, McQuillan B, Feng JZ, Celemajer DS.
 Westernization of Chinese adults and increased subclinical atherosclero-
18. Töвшlghi A, Markovic D, Orbiagbele B. Utility of Framingham Coronary
 Heart Disease Risk Score for predicting cardiac risk after stroke. Stroke.
 Prediction of mortality by ultrasound screening of a general population
20. Touzé E, Warlow CP, Rothwell PM. Risk of coronary and other non-
 stroke vascular death in relation to the presence and extent of atheroscle-
21. Lackland DT, Elkind MS, D’Agostino R Sr, Dhamoon MS, Goff DC Jr,
 Higashida RT, et al; American Heart Association Stroke Council; Council
 on Epidemiology and Prevention; Council on Cardiovascular Radiology
 and Intervention; Council on Cardiovascular Nursing; Council on
 Peripheral Vascular Disease; Council on Quality of Care and Outcomes
 Research. Inclusion of stroke in cardiovascular risk prediction instru-
 ments: a statement for healthcare professionals from the American Heart
22. Touzé E, Varenne O, Calvet D, Mas JL. Coronary risk stratification in
 patients with ischemic stroke or transient ischemic stroke attack. Int J
 STS/AATS/AHA/ASCN/HSFA/SCCT 2012 Appropriate use criteria for
 coronary revascularization focused update: a report of the American
 College of Cardiology Foundation Appropriate Use Criteria Task Force,
 Society for Cardiovascular Angiography and Interventions, Society of
 Thoracic Surgeons, American Association for Thoracic Surgery, American
 Heart Association, American Society of Nuclear Cardiology, and the
 on myocardial revascularization: The Task Force on Myocardial
 Revascularization of the European Society of Cardiology (ESC) and the
 European Association for Cardio-Thoracic Surgery (EACTS). Eur
 Heart J. 2010;31:2501–2555.
 Effect of coronary artery bypass graft surgery on survival: overview of
 10-year results from randomised trials by the Coronary Artery Bypass
26. Shah PK. Screening asymptomatic subjects for subclinical athero-
 sclerosis: can we, does it matter, and should we? J Am Coll Cardiol.
Predicting Asymptomatic Coronary Artery Disease in Patients With Ischemic Stroke and Transient Ischemic Attack: The PRECORIS Score

David Calvet, Dongbeom Song, Joonsang Yoo, Guillaume Turc, Jean-Louis Sablayrolles, Byoung Wook Choi, Ji Hoe Heo and Jean-Louis Mas

Stroke. 2014;45:82-86; originally published online November 7, 2013; doi: 10.1161/STROKEAHA.113.003414

Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2013 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/45/1/82

Data Supplement (unedited) at:
http://stroke.ahajournals.org/content/suppl/2013/11/07/STROKEAHA.113.003414.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Stroke_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Stroke_ is online at:
http://stroke.ahajournals.org/subscriptions/
Supplementary Table I – Details on derivation and validation cohorts and standardized etiological work-up performed in cohorts

<table>
<thead>
<tr>
<th>Study</th>
<th>Derivation cohort</th>
<th>Validation cohort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Included / Analysed patients (n)</td>
<td>300 / 274</td>
<td>1602 / 1593</td>
</tr>
<tr>
<td>Period of inclusion</td>
<td>January 06 to February 09</td>
<td>July 06 to September 12</td>
</tr>
<tr>
<td>Brain imaging</td>
<td>100% (MRI* in 99%)</td>
<td>100% (MRI* in 99%)</td>
</tr>
<tr>
<td>Arterial work-up</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cervical and transcranial Doppler ultrasound</td>
<td>100%</td>
<td>73%</td>
</tr>
<tr>
<td>3-D TOF† MRA‡ of the circle of Willis</td>
<td>99%</td>
<td>90%</td>
</tr>
<tr>
<td>Cervical gadolinium-enhanced MRA‡</td>
<td>96%</td>
<td>90%</td>
</tr>
<tr>
<td>64-section CT § angiography</td>
<td>4%</td>
<td>43%</td>
</tr>
<tr>
<td>Conventional angiography</td>
<td>3%</td>
<td>25%</td>
</tr>
<tr>
<td>Cardiac investigations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-lead ECG</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Prolonged 3-lead cardiac monitoring</td>
<td>100%</td>
<td>79%#</td>
</tr>
<tr>
<td>Echocardiography</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transthoracic</td>
<td>100%</td>
<td>20%</td>
</tr>
<tr>
<td>Transesophageal</td>
<td>96%</td>
<td>57%</td>
</tr>
<tr>
<td>Coronary artery atherosclerosis</td>
<td>64-section CT</td>
<td>64-section CT</td>
</tr>
<tr>
<td>assessment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median Time interval between stroke and CT coronary angiography</td>
<td>68 days</td>
<td>4 days</td>
</tr>
</tbody>
</table>
In case of contraindication to magnetic resonance angiography or discrepancies between Doppler ultrasound and magnetic resonance angiography, 8% additional patients had Holter without prolonged 3-lead cardiac monitoring.
Supplementary Table II - Predictive value of the score for the presence of occult ≥50% coronary artery stenosis according to patient gender, stroke cause, and score items in the derivation and validation cohorts. ONLINE SUPPLEMENT

<table>
<thead>
<tr>
<th></th>
<th>Derivation cohort c statistic (95% CI)</th>
<th>Validation cohort c statistic (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>0.72 (0.64-0.80)</td>
<td>0.65 (0.61-0.68)</td>
</tr>
<tr>
<td>Women</td>
<td>0.80 (0.53-1.00)</td>
<td>0.62 (0.57-0.68)</td>
</tr>
<tr>
<td>Stroke cause</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small vessel disease</td>
<td>0.81 (0.67-0.96)</td>
<td>0.74 (0.66-0.82)</td>
</tr>
<tr>
<td>Large artery</td>
<td>0.60 (0.44-0.74)</td>
<td>0.65 (0.58-0.71)</td>
</tr>
<tr>
<td>Undetermined</td>
<td>0.76 (0.64-0.87)</td>
<td>0.63 (0.59-0.66)</td>
</tr>
<tr>
<td>Score</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRECORIS score</td>
<td>0.77 (0.70-0.84)</td>
<td>0.66 (0.63-0.68)</td>
</tr>
<tr>
<td>Framingham Risk Score*</td>
<td>0.72 (0.64-0.80)</td>
<td>0.63 (0.60-0.66)</td>
</tr>
<tr>
<td>PRECORIS score using cervical rather than cervicocephalic atherosclerosis</td>
<td>0.76 (0.70-0.83)</td>
<td>0.67 (0.64-0.70)</td>
</tr>
<tr>
<td>PRECORIS score using the severity and the extent of cervicocephalic atherosclerosis†</td>
<td>0.77 (0.71-0.84)</td>
<td>0.66 (0.63-0.69)</td>
</tr>
</tbody>
</table>

* dichotomized into 3 strata (as in the PRECORIS score)
† The severity and the extent of cervicocephalic atherosclerosis were classified as follows: normal, 1 stenosis <50%, ≥2 stenosis <50%, 1 stenosis ≥ 50%, and ≥2 stenosis ≥ 50%.