Sickle Cell Trait and Incident Ischemic Stroke in the Atherosclerosis Risk in Communities Study

Melissa C. Caughey, MPH; Laura R. Loehr, MD, PhD; Nigel S. Key, MB, ChB; Vimal K. Derebail, MD, MPH; Rebecca F. Gottesman, MD, PhD; Abhijit V. Kshirsagar, MD, MPH; Megan L. Grove, MS; Gerardo Heiss, MD, PhD

Background and Purpose—Numerous case reports describe stroke in individuals with sickle cell trait (SCT) in the absence of traditional risk factors for cerebrovascular disease. To date, no prospective epidemiological studies have investigated this association.

Methods—A population-based sample of blacks (n=3497; mean age=54 years; female=62%) was followed from 1987 to 2011 in the Atherosclerosis Risk in Communities (ARIC) study, contributing a total of 65 371 person-years. Hazard ratios and incidence rate differences for ischemic stroke were estimated, contrasting SCT to homozygous hemoglobin A. Models were adjusted for age, sex, smoking, diabetes mellitus, hypertension, total cholesterol, atrial fibrillation, and coronary heart disease.

Results—SCT was identified in 223 (6.4%) participants. During a median follow-up of 22 years, 401 subjects experienced incident stroke (89% ischemic). Incident ischemic stroke was more frequent among those with SCT (13%) than those with homozygous hemoglobin A (10%). SCT was associated with an ischemic stroke hazard ratio of 1.4 (1.0–2.0) and an incidence rate difference amounting to 1.9 (0.4–3.8) extra strokes per 1000 person-years.

Conclusions—We observed an increased risk of ischemic stroke in blacks with SCT. Further investigation of the incidence and pathophysiology of stroke in patients with SCT is warranted. (Stroke. 2014;45:2863-2867.)

Key Words: epidemiology ■ sickle cell trait ■ stroke

Black are disproportionately burdened by cerebrovascular disease. In the United States, the prevalence of stroke in blacks aged ≥18 years is nearly twice that of non-Hispanic whites (4.0% versus 2.3%).1 Although stroke incidence has been decreasing since the 1990s for whites, this trend has not been observed in blacks.2 Stroke incidence is not only higher in blacks, it occurs at a younger age, resulting in substantial morbidity with direct and indirect costs.2 Traditional risk factors explain much of the disparity in stroke outcomes for blacks; however, genetics likely have a role.

Sickle cell trait (SCT), the heterozygous carrier state of sickle cell anemia, is a debated risk factor for stroke.3,4 With a heterozygous allelic frequency of 7% to 9% in blacks and 0.2% in non-Hispanic whites,5 SCT is estimated to affect >3 million Americans. The correlation between sickle cell anemia and stroke is well known6; however, increasing evidence suggests the heterozygous carrier state may be associated with thromboembolism,7 a potential cause of stroke. In addition, numerous case reports describe stroke in young individuals with SCT, in the absence of traditional risk factors.8–11 Intrigued by these findings, we conducted a prospective epidemiological investigation of SCT and ischemic stroke by analyzing a cohort of blacks followed in the Atherosclerosis Risk in Communities (ARIC) study.

Methods

The ARIC Study

Initiated in 1987, the ARIC study is an ongoing epidemiological cohort representing 4 US areas. Along with white study participants recruited from Minneapolis, MN, and Washington County, MD, a population-based sample (n=4270) of blacks aged 45 to 64 years was recruited with written informed consent, from Jackson, MS, and Forsyth County, NC.12 The ARIC study encompasses 5 cohort examinations, with annual telephone surveys during interim years and ongoing surveillance of hospitalized events. Study participant retention has been excellent, with 94% of survivors participating in the annual survey in 2010. All study protocols were approved by the University of Mississippi and Wake Forest University Institutional Review Boards.

Genotyping

Genotyping was performed using functionally tested TaqMan SNP Genotyping Assays in accordance with manufacturer protocols (Life Technologies, Grand Island, NY). Hemoglobin S was identified from biallelic variation (missense change [Glu7Val]) in the single-nucleotide polymorphism rs334, using the following custom primer and probe:

Received May 11, 2014; final revision received July 15, 2014; accepted August 1, 2014.
From the Departments of Medicine (M.C.C., N.S.K., V.K.D., A.V.K.) and Epidemiology (M.C.C., L.R.L., G.H.), University of North Carolina at Chapel Hill; Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD (R.F.G.); and School of Public Health, Human Genetics Center, The University of Texas Health Science Center, Houston (M.L.G.).
Correspondence to Melissa C. Caughey, MPH, University of North Carolina at Chapel Hill, Center for Heart and Vascular Care, Campus Box 7310, Chapel Hill, NC 27599-7075. E-mail caughey@med.unc.edu

© 2014 American Heart Association, Inc.

Stroke is available at http://stroke.ahajournals.org

DOI: 10.1161/STROKEAHA.114.006110

2863
sequences: Forward-TCAAACAGACACATGGTGCAAT, Reverse-CCACGGGCTAGAAGC, VIC-TGACTCTCTGAGGGAGAA-MGB, 6FAM-CTGACTCTCTCTGAGGAA-MGB. Hemoglobin C was identified from single-nucleotide polymorphism rs33930165 (missense change [Glu7Lys]), using custom primer and probe sequences: Forward-AAACAGACACATGGTGCAAT, Reverse-CCACGGGCTAGAAGC, VIC-TGACTCTCTCTGAGGAA-MGB (designed on the complement strand). For quality assurance, blind duplicate genotyping of hemoglobin S and hemoglobin C was performed in a random sample representing 5% of the total assays (k coefficients, 0.83 and 0.93, respectively).

Ancestry and Relatedness
Ancestry was quantified using EIGENSTRAT 5.0.1 (David Reich, open source), based on genomic variation characterized by the HumanExome BeadChip v1.0 (Affymetrix, Santa Clara, CA), as previously described. First-degree relatives were identified by PLINK (Shaun Purcell, http://pngu.mgh.harvard.edu/purcell/plink). Relatedness pairs were broken by randomly dropping 1 first-degree relative from each set, irrespective of SCT status or stroke outcomes.

Stroke History
History of stroke was ascertained at the study baseline by self-reported signs and symptoms. Based on the responses, a computer algorithm diagnosed stroke and determined the vascular distribution involved. The algorithm performance was previously validated, classifying prevalent stroke with a sensitivity of 87.8% and a specificity of 71.9%.

Incident Stroke
Incident stroke during the course of follow-up was captured by hospital surveillance, as previously described. Medical records from hospitals with diagnosis codes 430 to 438 and neurological deficits exceeding 24 hours were abstracted for physician review. Stroke diagnosis was verified by the discharge summary, imaging reports, neurological consults, and medical history and categorized as either definite or probable. For quality assurance, diagnoses were also determined by a computer algorithm. Any disagreements between the physician diagnosis and computer algorithm were adjudicated by a second physician reviewer. Agreement rates between the physician reviewer and computer algorithm were 78%. In the major-
Table 1. Baseline (1987–1989) Demographics and Clinical Characteristics of Black Participants in the ARIC Study

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>SCT (n=223)</th>
<th>HbAA (n=3274)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age, y</td>
<td>53±6</td>
<td>54±6</td>
<td>0.7</td>
</tr>
<tr>
<td>Female</td>
<td>113 (63)</td>
<td>1571 (62)</td>
<td>0.9</td>
</tr>
<tr>
<td>Medical history</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current smoker</td>
<td>56 (25)</td>
<td>989 (30)</td>
<td>0.1</td>
</tr>
<tr>
<td>Hypertension</td>
<td>121 (54)</td>
<td>1826 (56)</td>
<td>0.7</td>
</tr>
<tr>
<td>Hypercholesterolemia</td>
<td>69 (31)</td>
<td>851 (26)</td>
<td>0.1</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>42 (19)</td>
<td>642 (20)</td>
<td>0.8</td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td>0</td>
<td>6 (0.2)</td>
<td>1.0</td>
</tr>
<tr>
<td>Coronary heart disease</td>
<td>8 (4)</td>
<td>133 (4)</td>
<td>0.7</td>
</tr>
<tr>
<td>Body mass index, kg/m²</td>
<td>30±6</td>
<td>30±6</td>
<td>0.4</td>
</tr>
</tbody>
</table>

HbAA indicates homozygous hemoglobin A; and SCT, sickle cell trait.

Table 2. Crude Incidence Rates of Ischemic Stroke Occurring During Follow-Up Period (1987–2011), Stratified by SCT Status and Age at Study Baseline

<table>
<thead>
<tr>
<th>Genotype</th>
<th>n</th>
<th>Strokes</th>
<th>Person-Years</th>
<th>Crude Incidence Rate*</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCT</td>
<td>223</td>
<td>29</td>
<td>4063</td>
<td>7.1 (5.4–9.5)</td>
</tr>
<tr>
<td><55 y</td>
<td>134</td>
<td>17</td>
<td>2659</td>
<td>6.4 (4.5–9.0)</td>
</tr>
<tr>
<td>≥55 y</td>
<td>89</td>
<td>12</td>
<td>1404</td>
<td>8.5 (5.3–13.7)</td>
</tr>
<tr>
<td>HbAA</td>
<td>3274</td>
<td>326</td>
<td>61308</td>
<td>5.3 (4.9–5.8)</td>
</tr>
<tr>
<td><55 y</td>
<td>1892</td>
<td>149</td>
<td>38121</td>
<td>3.9 (3.5–4.4)</td>
</tr>
<tr>
<td>≥55 y</td>
<td>1382</td>
<td>177</td>
<td>23188</td>
<td>7.6 (6.8–8.6)</td>
</tr>
</tbody>
</table>

HbAA indicates homozygous hemoglobin A; and SCT, sickle cell trait.

* Per 1000 person-years.

Discussion

This is the first prospective, epidemiological study to examine associations between SCT and incident stroke. After adjusting for demographics and traditional cerebrovascular risk factors, we observed a greater ischemic stroke risk in blacks with SCT, compared with those with the HbAA genotype.

Several case reports have previously described stroke in individuals with SCT. These are remarkable in that strokes occurred in children and young adults, with no underlying traditional risk factors for cerebrovascular disease. However, in large retrospective studies, associations between SCT and hospital discharge for stroke have been conflicting. The first, conducted from 1965 to 1969 at North Carolina Memorial Hospital, included 227 patients with SCT and found no increased risk of stroke in SCT compared with HbAA. The second study, conducted in the French Caribbean colony of Guadeloupe, analyzed the prevalence of SCT in 295 hospitalizations for stroke. Interestingly, a 10-fold higher risk for hemorrhagic stroke and a 15-fold lower risk for ischemic stroke were observed in patients with SCT, compared with Guadeloupans with normal hemoglobin. This study has been criticized for diagnosing stroke type by computed tomography, which may not distinguish between primary hemorphages and hemorrhagic bleeding secondary to infarctions, causing possible underdiagnosis of ischemic stroke. It is also uncertain whether the Guadeloupian population, an admixture of European, African, Indian, and Amerindian ancestries, can be generalized to black Americans.

Finally, a recently conducted analysis based on 13964 black adults (2642 with SCT and 139 with sickle cell anemia) registered with the Kaiser Permanente Northern California health system reported no differences in stroke diagnoses for patients with SCT, sickle cell anemia, or HbAA. However, the mean age of the study population was only 35 years. In adult populations, only pregnant black women are routinely tested for sickle hemoglobinopathies, and if positive, the fathers are tested as well. Because of the young age of the study population and low number of ischemic stroke events, this analysis was inadequately designed to detect differences in stroke prevalence by hemoglobin status.

Although studies examining SCT and cerebrovascular disease have been limited, many have established sickle cell anemia as a risk factor for stroke. Sickle cell anemia is characterized by hemolysis, acute chest syndrome, and pain and is further complicated by thrombosis, microvascular occlusions, vasculopathy, and intimal hyperplasia of the cerebral arteries. In the Cooperative Study of Sickle Cell Disease, which prospectively followed 4082 patients, 24% with sickle cell anemia experienced a first stroke by the age of 45. The association between sickle cell disease and stroke is further confirmed by administrative claims data. In patients with sickle cell disease aged 35 to 64 years, the incidence of ischemic stroke is reported to be 7.4 per 1000 person-years, much higher than 2.7 per 1000 person-years for blacks aged 35 to 64 years overall. These estimates yield a stroke incidence rate ratio of 2.7 and an incidence rate difference of 4.7 strokes per 1000 person-years; however, it is noteworthy that the reference group of blacks from the general population includes individuals with SCT.

Even in heterozygous carriers, hemoglobin S is associated with hypercoagulability, which may be a pathogenic pathway to stroke. Under conditions of exertion, dehydration, and high altitude, SCT erythrocytes are known to sickle and polymerize. The sickling deformation exposes phosphatidylserine on the cell membrane surface, facilitating the assembly of coagulation enzymatic complexes. Laboratory assays of healthy individuals with SCT show elevated markers of coagulation activity.

Increased prevalence of thrombotic infarctions has also been associated with hypercoagulability. 26-27
been observed by postmortem examination. In an autopsy series of 128 patients with SCT, obvious visceral infarcts were observed in 18%, but were detected in <1% of similarly aged blacks without SCT.31 The spleen was the most common site of infarction in SCT cases, followed by the kidneys, lung, and notably, the brain.31 However, autopsy series are based on highly selected populations and may be subject to postmortem artifact.

In addition to hypercoagulability, the SCT phenotype has been associated with cerebral vasculopathy and subclinical small vessel disease. In a small case–control study examining children by cerebral MRI, ectasia of the basilar artery was observed in 19% and white matter hyperintensities in 10% of children with SCT; yet, neither of these findings were noted in HbAA sibling controls.32 Dolichoectasia, characterized by tortuous, dilated vessels causing bidirectional blood flow, stasis, and thrombus formation, has been associated with lacunar stroke in the general population.33 White matter hyperintensities, often indicative of cerebral hypoperfusion and axon demyelination, have been correlated with cognitive decline and future stroke.34 The presence of these lesions in children with SCT may herald future cerebrovascular events. However, to date, no large, epidemiological studies have examined associations between SCT and cerebral vasculopathy, and these results are yet to be replicated.

Despite the biological and observational evidence supporting our findings of an association between SCT and stroke, our analysis has important limitations. Observations were based on a relatively small number of stroke events in a single cohort and warrant validation in other populations. We were also unable to consider rare hemoglobinopathies or sickle β-thalassemia; however, the likelihood of these genotypes is low. In the United States, the birth prevalence of sickle β-thalassemia in black neonates is reported to be 0.02%, whereas the prevalence of compound hemoglobin S with hemoglobin E or hemoglobin S with hemoglobin D is reported to be 0.0016% each.35 Despite this limitation, the ARIC study is well suited for the analysis of SCT and stroke because of the large sample of older blacks with extensive genomic characterization, who were prospectively followed for 2 decades. Phenotypic data were meticulously collected with quality assurance, and study participant retention was excellent. To ensure the best possible measurement of exposure, we based our analysis on SCT that was genotyped, rather than imputed. Our estimations of stroke risk associated with SCT yielded an HR of 1.4, with a stroke rate that was 1.9 strokes per 1000 person-years higher than those with HbAA. This seems plausible, considering the reported stroke HR associated with sickle cell disease is 2.7 in black adults, with a stroke rate that is elevated by 4.7 strokes per 1000 person-years. It follows that the stroke risk (if any) associated with SCT would be attenuated, compared with sickle cell disease.

In conclusion, we observed a greater ischemic stroke risk in blacks with SCT, compared with those with HbAA. If our findings are confirmed by other studies, further investigation into the pathophysiology of stroke in patients with SCT and potential interventions to mitigate risk would be warranted.

Acknowledgments

We thank the staff and participants of the ARIC study for their important contributions.

Sources of Funding

The Atherosclerosis Risk in Communities Study is performed as a collaborative study supported by National Heart, Lung, and Blood Institute (NHLBI) contracts (HHSN268201100005C, HSN268201100006C, HHSN268201100007C, HHSN268201100008C, HHSN268201100009C, HHSN268201100010C, HHSN268201100011C, and SN268201100012C). Genotyping of hemoglobin S and hemoglobin C was funded by grant SK12HL087097. Support for ARIC exome chip genotyping was provided by Building on GWAS for NHLBI-diseases: the US CHARGE consortium through the National Institutes of Health (NIH) American Recovery and Reinvestment Act of 2009 (ARRA; SRC2HL102419). Dr Key was supported by grant 1U01HL117659 and the Doris Duke Foundation.

Disclosures

Dr Kshirsagar is a consultant for Fresenius Medical Care. The other authors report no conflicts.

References

Table 3. Relative and Absolute Risks of Incident Ischemic Stroke Associated With Sickle Cell Trait

<table>
<thead>
<tr>
<th>Model Adjustments</th>
<th>Hazard Ratio</th>
<th>Incidence Rate Difference*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude</td>
<td>1.4 (0.9 to 2.0)</td>
<td>1.8 (–0.1 to 2.0)</td>
</tr>
<tr>
<td>Age and sex</td>
<td>1.3 (0.9 to 1.9)</td>
<td>2.1 (0.3 to 4.2)</td>
</tr>
<tr>
<td>Age, sex, and clinical covariates†</td>
<td>1.4 (1.0 to 2.0)</td>
<td>1.9 (0.4 to 3.8)</td>
</tr>
</tbody>
</table>

*Per 1000 person-years.
†Clinical covariates include smoking, diabetes mellitus, hypertension, total cholesterol, atrial fibrillation, and coronary heart disease.

Sickle Cell Trait and Incident Ischemic Stroke in the Atherosclerosis Risk in Communities Study
Melissa C. Caughey, Laura R. Loehr, Nigel S. Key, Vimal K. Derebail, Rebecca F. Gottesman, Abhijit V. Kshirsagar, Megan L. Grove and Gerardo Heiss

Stroke. 2014;45:2863-2867; originally published online August 19, 2014;

doi: 10.1161/STROKEAHA.114.006110

Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2014 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:

http://stroke.ahajournals.org/content/45/10/2863

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Stroke* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Stroke* is online at:
http://stroke.ahajournals.org//subscriptions/