Aspirin Should Be Discontinued After Lobar Intracerebral Hemorrhage

Guido J. Falcone, MD, ScD, MPH; Jonathan Rosand, MD, MSc

Managing patients with spontaneous, nontraumatic intracerebral hemorrhage (ICH) can be frustrating. ICH represents 15% of all strokes, or 60,000 new cases each year in the United States and carries a grim prognosis, with 40% mortality and 50% severe disability among survivors. Making matters worse, for those patients lucky to survive their ICH, recurrent ICH is a substantial risk.

The first important finding to consider in this patient is the lobar location of the bleeding. This information provides an important clue to the likely mechanism underlying the hemorrhage. In turn, identification of the involved mechanism allows stratification of the patient’s risk of recurrence, as well as tailoring of preventive strategies to decrease the risk of recurrence. Supratentorial ICH is classified as deep or lobar based on location. Deep hemorrhages affect deep supratentorial structures (basal ganglia and thalamus) and generally accompany chronic damage to small perforating brain vessels, the kind most often seen in long-standing hypertension. In contrast, lobar hemorrhages emerge from the cortical–subcortical junction and, in the elderly, are most often accompanied by cerebral amyloid angiopathy (CAA), caused by the deposition of amyloid-β peptide in brain vessels of small and medium size. Although a definitive diagnosis of CAA requires biopsy or postmortem histopathologic examination of brain tissue, the Boston criteria allow reliable ascertainment of CAA based on clinical and radiological information. In our patient, the single symptomatic lobar macrobleed and her age qualify her for the diagnosis of possible CAA-related ICH.

A second key finding in this patient is the presence of cerebral microbleeds. It would be important to know their precise location because lobar microbleeds correlate with CAA, whereas deep microbleeds generally do not. If the microbleeds in this patient were lobar in location then she would qualify for the designation of probable CAA-related ICH, which is 90% sensitive and 80% specific for the diagnosis of CAA-related ICH at autopsy. The patient’s previous history of cognitive impairment further supports the hypothesis that she has underlying CAA.

This patient will be better off without aspirin. A diagnosis of CAA as the probable underlying pathology makes benefit from antiplatelet medication unlikely: although accumulating evidence suggests that CAA can lead to ischemic and hemorrhagic strokes, there is no evidence to support a role for antiplatelet agents for the prevention of CAA-related ischemic stroke. However, there is substantial evidence to suggest that an antiplatelet agent could cause harm. Survivors of lobar hemorrhages have a higher risk of recurrent ICH when compared with deep ICH. Among 207 ICH survivors, 2-year recurrence risks were 22% for lobar ICH and 4% for deep ICH, respectively. When the effect of aspirin was examined, it was associated with a 4-fold increase in recurrence risk among patients with definite/probable CAA based on the Boston criteria.

Finally, aspirin has been associated with a 27% increase in mean admission hematoma volume, the most potent predictor of outcome in ICH, in subjects with a first lobar hemorrhage. This finding supports the concern that treatment with an antiplatelet agent in our patient may not only increase risk but also result in a more severe course if a recurrence takes place.

Our recommendations follow the principle of primum non nocere. Our patient already has cognitive impairment, is close to attaining the average life expectancy for women in the United States, and has a 50% risk of severe disability after ICH. Exposure to aspirin is likely to increase risk of recurrence and worsen clinical outcome in the event of a second ICH. In addition to withholding aspirin, we advocate for strict blood pressure control because elevated blood pressure probably also increases the risk of recurrent CAA-related ICH.

Sources of Funding
This work has been supported by the National Institutes of Health-National Institute of Neurological Disorders and Stroke grants R01NS059727 and P50NS061343.

Disclosures
Dr Rosand is a consultant, Boehringer Ingelheim. Dr Falcone reports no conflicts.
References


Key Words: aspirin ◼ cerebral hemorrhage ◼ stroke
Aspirin Should Be Discontinued After Lobar Intracerebral Hemorrhage
Guido J. Falcone and Jonathan Rosand

*Stroke*. 2014;45:3151-3152; originally published online September 9, 2014;
doi: 10.1161/STROKEAHA.114.005787
*Stroke* is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2014 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/45/10/3151

Data Supplement (unedited) at:
http://stroke.ahajournals.org/content/suppl/2016/04/10/STROKEAHA.114.005787.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Stroke* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Stroke* is online at:
http://stroke.ahajournals.org/subscriptions/
Введение пациентов со спонтанным нетравматическим внутримозговым кровоизлиянием (ВМК) может вызывать затруднение. На долю ВМК в Соединенных Штатах приходится 15% всех инсультов, или 60 000 новых случаев инсульта каждый год, прогноз при этом заболевании крайне неблагоприятный, уровень смертности составляет 40%, а среди выживших у 50% пациентов развивается тяжелая инвалидизация [1]. Усугубляет ситуацию существенный риск развития повторного ВМК среди тех пациентов, которым посчастливилось выжить после перенесенного ВМК [2].

В первую очередь у данной пациентки следует учитывать лобарную локализацию кровоизлияния. Эта информация является важным ключом к вероятным механизмам, лежащим в основе развития кровоизлияния. В свою очередь определение механизма развития позволяет стратифицировать риск рецидива у пациентов, а также оптимизировать превентивные стратегии для его снижения. По локализации супратенториальные ВМК классифицируются на глубокие и лобарные. Глубокие кровоизлияния поражают глубокие супратенториальные структуры (базальные ганглии и таламус) и, как правило, развиваются на фоне хронического поражения мелких перфузионных церебральных сосудов, что наиболее часто встречается при длительной артериальной гипертензии [3]. В отличие от них, лобарные кровоизлияния развиваются на границе кортикальных и субкортикальных структур, в пожилом возрасте наиболее часто на фоне церебральной амилоидной ангиопатии (ЦАА), вызванной отложением белка β-амилоида в сосудах головного мозга молого и среднего калибра [4]. Несмотря на то что для окончательного диагноза ЦАА необходима биопсия или посмертное гистологическое исследование ткани головного мозга, Бостонские критерии позволяют достоверно установить диагноз ЦАА на основе клинических и рентгенологических данных. Наличие у нашей пациентки единичного симптоматического лобарного микро кровоизлияния и ее возраст позволяют предположить у нее ЦАА-связанное ВМК [5].

Вторым ключевым моментом является то, что у данной пациентки присутствуют церебральные микрокровоизлияния. Важно знать их точную локализацию, поскольку лобарные микрокровоизлияния коррелируют с ЦАА в отличие от глубоких микро кровоизлияний. Если у данной пациентки микрокровоизлияния были лобарными, то, скорее всего, у нее развились ЦАА-связанное ВМК, которое имеет 90% чувствительность и 80% специфичность для диагностики ЦАА-связанного ВМК при аутопсии [5]. Наличие в анамнезе нарушения когнитивных функций также подтверждает гипотезу о том, что в основе развития ВМК у данной пациентки лежит ЦАА [6].

Этой пациентке не следует принимать аспирин. Диагноз ЦАА в качестве вероятной основной патологии не позволяет думать о пользе применения антиагрегантов: накопленные данные свидетельствуют о том, что ЦАА может быть причиной развития ишемического и геморрагического инсультов, и нет никаких доказательств в поддержку роли антиагрегантных препаратов в профилактике развития ЦАА-связанного ишемического инсульта. Тем не менее есть существенные доказательства, позволяющие предположить, что антиагрегантная терапия может причинить вред здоровью. У пациентов, выживших после лобарного кровоизлияния, риск развития повторного ВМК выше, чем после глубокого ВМК. Среди 207 пациентов, выживших после ВМК, риск развития повторного ВМК в течение 2 лет составил 22% для долевого ВМК и 4% для глубокого ВМК соответственно [7]. При изучении влияния применения аспирина обнаружили, что оно было ассоциировано с 4-кратным повышением риска развития повторного ВМК среди пациентов с вероятной/подтвержденной ЦАА на основании Бостонских критериев [2]. И, наконец, применение аспирина было ассоциировано с увеличением на 27% самого мощного предиктора исхода при ВМК – среднего объема гематомы при поступлении, у пациентов с впервые развившимся лобарным кровоизлиянием [8]. Это подтверждает опасения, что антиагрегантная терапия у нашей пациентки может не только повысить риск, но и привести к более тяжелому течению заболевания при развитии рецидива.

В наших рекомендациях мы придерживаемся принципa primum non nocere (не навреди). У пациентки есть нарушение когнитивных функций, ее возраст близок к средней продолжительности жизни для женщин в США, и риск развития тяжелой инвалидности после ВМК у нее составляет 50% [8]. Применение аспирина, вероятно всего, приведет к повышению...
Литература