Asymptomatic Carotid Stenosis
Identifying Patients at High Enough Risk to Warrant Endarterectomy or Stenting

J. David Spence, MD, FRCPC; David Pelz, MD, FRCPC; Frank J. Veith, MD, FACS

See related article, p 702.

In this issue of Stroke, Hirt1 reports that substantial progression of carotid stenosis predicted ipsilateral stroke or transient ischemic attack among patients randomized to medical therapy in the Asymptomatic Carotid Surgery Trial (ACST).2 This might be regarded as another justification to perform carotid endarterectomy (CEA) or stenting (CAS) in some patients with asymptomatic carotid stenosis (ACS), and Hirt’s article may help in the selection for invasive treatment of those ACS patients at highest risk of having a stroke.

However, the proportion of patients with progression by ≥2 grades (which carried a high enough risk to identify patients who might benefit from invasive intervention) was small. Among the 1469 patients in the study, there were events in only 50 (3.4%), among the 117 (8%) of patients with progression by ≥2 grades of stenosis. It must also be understood that the ACST trial was conducted before the widespread implementation of intensive medical therapy that has diminished the stroke risk picture markedly.

The current situation in the United States is deplorable: as many as 95% of CEA and CAS procedures are being performed in patients with asymptomatic stenoses,3 and most of these patients are more likely to be harmed than helped by these interventions. This is being justified on the basis of historical stroke risks in the ACST2 and the Asymptomatic Carotid Surgery Trial.4 These risks no longer pertain. Three recent studies have shown that in the era of intensive medical therapy, the ipsilateral stroke risk of patients with ACS is now well below the risks of stenting or endarterectomy, even in the recent Carotid Revascularization Endarterectomy Versus Stenting Trial (CREST) trial.

A meta-analysis,5 a population-based study in Oxfordshire, UK,6 and a stroke prevention clinic study in Canada7 have all shown that with more intensive medical therapy, the 2-year risk of ipsilateral stroke is now between 0.34% and 1%, well below that of CEA or CAS. In CREST, the procedural (30-day) risk of stroke or death for asymptomatic patients was 2.5% for stenting and 1.4% for endarterectomy; the 4-year risk was 4.5% with stenting and 2.7% with endarterectomy.8 The 2011 report of Wang et al9 documents in Medicare patients a 1-year risk of stroke or death of 16.7% for stenting and 11% for endarterectomy. It is now clear that stenting carries a higher risk of stroke than does CEA and a higher risk than that with intensive medical therapy. Some have objected that the risk is higher in patients with more severe stenosis, but Naylor has recently shown that this may not be the case.9

Interventionalists, who because they often do not consider advances in other therapies or changes in natural history, are indiscriminately stenting patients with ACS for what Henry Barnett calls the Mount Everest indication; when Mallory was asked why he climbed Mount Everest, he said “because it was there.” CEA is often performed for the same reason. Indeed, there is an important misunderstanding on the part of many vascular specialists that contributes to this misguided and unnecessarily costly treatment.

Carotid endarterectomy and CAS are not about increasing blood flow to the brain; they are or should be about preventing emboli (Figures 1 and 2). The circle of Willis is remarkably effective at maintaining blood flow in the face of unilateral (or even bilateral) carotid stenosis. In the North American Symptomatic Carotid Endarterectomy Trial (NASCET), the risk of stroke declined among patients with near occlusion.10 In a total of 100 years of practice in stroke neurology or vascular intervention, we have seen >50 000 patients, but we can count on 2 hands the number who had convincing hemodynamic transient ischemic attacks. Spence et al have shown that in patients with asymptomatic stenosis, intensive medical therapy reduces the proportion of patients with microemboli on transcranial Doppler from 12.6% to 3.7% and reduces the 2-year risk of stroke or myocardial infarction to 1%. This is a much safer way to prevent emboli than either surgery or stenting.

CAS is being justified on the grounds that it causes fewer myocardial infarctions than does endarterectomy, but carotid procedures are not done to prevent myocardial infarction; they are done to prevent stroke. CAS, uniformly to date, causes more strokes than does CEA.11–12

This widespread application of CAS and CEA to treat ACS is at best misguided and at worst unjustified. We are concerned that too many of these procedures are being done because of the remuneration for them.11
The recent guidelines of the American Heart Association and other organizations suggest that the indications for CAS be extended to include low-risk patients. This may make a bad situation worse by opening the flood gates for increased use of CAS in patients with ACS when most of these patients are best treated with intensive medical therapy. The value of Hirt’s report is that it describes a way to select ACS patients at higher risk for stroke so that they can be treated invasively and the much larger remaining group of ACS patients can be treated medically as is appropriate. However, whether high-risk ACS patients, when treated by current medical regimens, will derive additional benefit from invasive treatment still remains to be shown by appropriate randomized trials.

Finally, there are other ways to identify among ACS patients the few who might benefit from invasive intervention. Detection of microemboli, detection of ulceration on 3-dimensional ultrasound, and intraplaque hemorrhage on MRI are some approaches that may identify the approximately 10% of ACS patients who are most likely to benefit from CEA or CAS. Nicolaides et al have suggested other approaches, combining clinical features such as diabetes and smoking with ultrasound features such as echolucent plaque, that may identify a somewhat larger proportion of ACS patients at high risk, but their patients were enrolled before the implementation of intensive medical therapy. Most patients, approximately 90%, cannot benefit from such intervention. Thus, the current rush to intervene indiscriminately in ACS patients should be resisted by payers such as private insurance companies and by the Centers for Medicare and Medicaid. The vast majority of patients with asymptomatic carotid stenosis would be better served by intensive medical therapy than by either CAS or CEA.

Disclosures

None.

References


Figure 1. A large carotid ulcer. This was a stenotic plaque until the blood rushing past the stenosis, by the Bernoulli principle, created suction on the surface of the plaque and ripped off the cap, resulting in embolization to the brain.

Figure 2. An embolus of atherosclerotic debris in a cerebral blood vessel. Emboli of atheroembolic debris laden with cholesterol crystals (the pointed slender white structures seen in this image) are not prevented by antiplatelet agents; they are prevented by endarterectomy. Stents with a fine mesh might prevent many such emboli, but open stents will not. Intensive medical therapy reduces microemboli detected on transcranial Doppler in patients with asymptomatic carotid stenosis.

Key Words: asymptomatic carotid stenosis □ carotid artery □ carotid endarterectomy □ endarterectomy □ stenting
Asymptomatic Carotid Stenosis: Identifying Patients at High Enough Risk to Warrant Endarterectomy or Stenting
J. David Spence, David Pelz and Frank J. Veith

Stroke. 2014;45:655-657; originally published online July 28, 2011;
doi: 10.1161/STROKEAHA.111.626770

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/45/3/655

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/