Transcranial direct current stimulation (tDCS) may be used to improve the function and activities of daily living (ADL) after stroke.

Objectives

To assess the effects of tDCS on ADL and motor function in people with stroke.

Methods

We searched the Cochrane Stroke Group Trials Register (March 2013), the Cochrane Central Register of Controlled Trials (CENTRAL; The Cochrane Library, May 2013), MEDLINE (1948 to May 2013), EMBASE (1980 to May 2013), CINAHL (1982 to May 2013), AMED (1985 to May 2013), Science Citation Index (1899 to May 2013), and 4 additional databases. Two review authors independently assessed risk of bias of included trials and extracted data. We included only randomized controlled trials that compared tDCS versus control in adults with stroke. The primary outcome was ADL performance at study end and at follow-up; secondary outcomes were function, muscle strength, dropouts, and adverse events.

Main Results

We included 15 studies involving a total of 455 participants. At the end of the intervention phase, tDCS did not improve ADL (mean difference=5.31 Barthel index points; 95% confidence interval, –0.52 to 11.14; P=0.07), but at follow-up, ADL was improved (mean difference=11.13 Barthel index points; 95% confidence interval, 2.89–19.37; \(P=0.008 \)). TDCS improved arm function (mean difference=3.45 upper extremity Fugl–Meyer score points; 95% confidence interval, 1.23–5.67; \(P=0.002 \); Figure). Dropouts and adverse events were rare and comparable between groups.

Implications for Clinical Practice and Future Research

This review of 15 trials involving 455 participants found evidence of very low to low quality on the effectiveness of tDCS in enhancing rehabilitation outcomes regarding ADL and function. Future research should investigate the effects of anodal and cathodal tDCS on lower limb function.

Disclosures

Two review authors (Dr Mehrholz and Pohl) were involved in one of the included trials. The other authors report no conflicts.

Reference

Table. Active transcranial direct current stimulation (tDCS) vs sham for improving upper extremity function measured by upper extremity Fugl-Meyer assessment (UE-FM) at the end of intervention phase. CI indicates confidence interval.
Transcranial Direct Current Stimulation for Activities After Stroke: What Is the Evidence?
Bernhard Elsner, Joachim Kugler, Marcus Pohl and Jan Mehrholz

Stroke. 2014;45:e36-e37; originally published online December 26, 2013;
doi: 10.1161/STROKEAHA.113.004314
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2013 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://stroke.ahajournals.org/content/45/3/e36

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/