Prothrombin G20210A Mutation Is Associated With Young-Onset Stroke
The Genetics of Early-Onset Stroke Study and Meta-Analysis

Baijia Jiang, BS; Kathleen A. Ryan, MPH; Ali Hamedani, MD, MHS; Yuching Cheng, PhD; Mary J. Sparks, RSN, BN; Deborah Koontz, PhD; Christopher J. Bean, PhD; Margaret Gallagher, PhD; W. Craig Hooper, PhD; Patrick F. McArdle, PhD; Jeffrey R. O’Connell, DPhil; O. Colin Stine, PhD; Marcella A. Wozniak, MD, PhD; Barney J. Stern, MD; Braxton D. Mitchell, PhD; Steven J. Kittner, MD, MPH; John W. Cole, MD, MS

Background and Purpose—Although the prothrombin G20210A mutation has been implicated as a risk factor for venous thrombosis, its role in arterial ischemic stroke is unclear, particularly among young adults. To address this issue, we examined the association between prothrombin G20210A and ischemic stroke in a white case–control population and additionally performed a meta-analysis.

Methods—From the population-based Genetics of Early Onset Stroke (GEOS) study, we identified 397 individuals of European ancestry aged 15 to 49 years with first-ever ischemic stroke and 426 matched controls. Logistic regression was used to calculate odds ratios (ORs) in the entire population and for subgroups stratified by sex, age, oral contraceptive use, migraine, and smoking status. A meta-analysis of 17 case–control studies (n=2305 cases <55 years) was also performed with and without GEOS data.

Results—Within GEOS, the association of the prothrombin G20210A mutation with ischemic stroke did not achieve statistical significance (OR=2.5; 95% confidence interval [CI]=0.9–6.5; P=0.07). However, among adults aged 15 to 42 years (younger than median age), cases were significantly more likely than controls to have the mutation (OR=5.9; 95% CI=1.2–28.1; P=0.03), whereas adults aged 42 to 49 years were not (OR=1.4; 95% CI=0.4–5.1; P=0.94). In our meta-analysis, the mutation was associated with significantly increased stroke risk in adults ≤55 years (OR=1.4; 95% CI=1.1–1.9; P=0.02), with significance increasing with addition of the GEOS results (OR=1.5; 95% CI=1.1–2.0; P=0.005).

Conclusions—The prothrombin G20210A mutation is associated with ischemic stroke in young adults and may have an even stronger association among those with earlier onset strokes. Our finding of a stronger association in the younger young adult population requires replication. (Stroke. 2014;45:961-967.)

Key Words: genetics ■ risk factors

Prothrombin (coagulation factor II) G20210A (rs1799963) is a single-nucleotide polymorphism (guanine to adenine) at position 20210 located at the 3′ untranslated region of the noncoding region of the prothrombin gene on chromosome 11.1 The minor A allele of this polymorphism is found in 2% of individuals of European ancestry and is slightly less common than the minor A allele associated with factor V Leiden (3.5%; rs6025).2,3 The prothrombin G20210A mutation (A allele) is exceedingly rare in those of African or Asian ancestry.2,3 Prothrombin is a precursor to thrombin, a key regulator of blood coagulation in the clotting cascade, and carriers of the prothrombin G20210A mutation have elevated blood plasma prothrombin levels.2 The prothrombin G20210A mutation plays a role in hypercoagulability and has been associated with a 2- to 4-fold higher risk for venous thrombosis.3,4 Although this polymorphism has been well characterized for venous thrombosis, its role in arterial vascular disease still remains uncertain, particularly in young adults with ischemic stroke. To address this issue, we examined the association between the prothrombin G20210A mutation and first-ever ischemic stroke in young white adults from the Genetics of Early Onset Stroke (GEOS) study. In addition, we also performed a meta-analysis of 17 previously published association studies of the prothrombin G20210A polymorphism and ischemic stroke in young adults aged ≤55 years.
Methods

GEOS Study
The GEOS Study is a population-based case–control study designed to identify the genetic determinants of early-onset ischemic stroke and to characterize the interactions of identified stroke genetic variants with environmental risk factors such as smoking and oral contraceptive (OC) use. Cases aged 15 to 49 years with a first ischemic stroke were identified between 1992 and 2007 by discharge surveillance from 1 of 59 hospitals in the greater Baltimore/Washington, DC, area and by direct referral from regional neurologists. Details of the recruitment of cases and controls have been previously published.5–7 In brief, cases and controls were recruited in 3 different time periods: Stroke Prevention in Young Women-1 conducted from 1992 to 1996; Stroke Prevention in Young Women-2 conducted from 2001 to 2003, and Stroke Prevention in Young Men conducted from 2003 to 2007. Stroke Prevention in Young Women-1 included cases between 15 and 44 years of age who were recruited within 1 year of stroke and was designed with a 1:2 case-to-control ratio. Stroke Prevention in Young Women-2 and Stroke Prevention in Young Men included cases 15 to 49 years of age who were recruited within 3 years of stroke and were designed with a 1:1 case-to-control ratio. Control participants without a history of stroke were identified by random digit dialing. Controls were balanced to cases by age and region of residence in each study and were additionally balanced for ethnicity in Stroke Prevention in Young Women-2 and Stroke Prevention in Young Men. Given the rarity of the prothrombin G20210A mutation in non-European ethnicities, only 2 of 392 nonwhites in our study had the mutation; both were cases), we limited our analyses to whites, for whom there were 397 cases and 426 matched nonstroke controls.

The abstracted hospital records of cases were reviewed and adjudicated for ischemic stroke subtype by a pair of vascular neurologists according to previously published procedures,5–7 with disagreements resolved by a third vascular neurologist. Stroke subtypes were classified using the Trial of ORG 10172 in Acute Stroke8 (TOAST) criteria9 if (1) neuroimaging was used to confirm clinical diagnoses of ischemic stroke, (2) controls were derived from the same population as cases, (3) prothrombin G20210A genotypes were available for all participants, (4) the numbers of cases and controls with and without prothrombin G20210A were provided in the article, and (5) the study included only cases with first stroke ≤55 years of age (most identified studies classified young stroke as ≤55 rather than ≤49 as consistent with GEOS), or the number of cases in this age group with and without prothrombin G20210A could be clearly obtained from the study. We also excluded case series restricted to those with known patent foramen ovale (PFO).

Data analysis was performed using Comprehensive Meta-Analysis version 2.0 by Biostat (http://www.meta-analysis.com). The numbers of cases and controls stratified by prothrombin G20210A carrier status were extracted from each study and odds ratios (ORs) calculated. A pooled OR was calculated using a variance-weighted approach under both fixed-effects and random-effects models. The fixed-effects model assumes that the effects are the same across studies, whereas the random-effects model allows for heterogeneity of effects. The calculation for the genetic effect of prothrombin variant assuming fixed-effects model was repeated with each of the studies’ individual removed from the analysis to confirm that no single study was principally responsible for the findings. Between-study heterogeneity was assessed using the I^2 test, which is based on comparing the estimated study-specific I^2 statistic that describes the proportion of variation across studies attributable to heterogeneity rather than chance.10

Results

Genetics of Early Onset Stroke
Clinical characteristics of cases (n=397) and controls (n=426) are summarized in Table 1. Cases were older than controls and were more likely to report a history of hypertension, diabetes mellitus, myocardial infarction, to be current smokers, to have history of migraine with aura, and, among women, to be OC users. A total of 20 subjects were carriers of a prothrombin G20210A minor A allele, 14 cases (3.5%) and 6 controls (1.4%). This difference was statistically significant ($P<0.05$). Controls were in Hardy–Weinberg equilibrium for the prothrombin G20210A mutation. There was 1 homozygote in the study population, a case, which was also a factor V Leiden heterozygote. As an established hypercoagulable state, by TOAST subtype criteria, this homozygote case was classified as a stroke of other determined pathogenesis. Evaluating the distribution of 13 heterozygote cases with the prothrombin 20210A allele by TOAST stroke subtype demonstrated

G20210A and other characteristics among cases and controls were compared using t tests for continuous variables and Mantel–Haenszel χ^2 tests for categorical variables. The association between prothrombin G20210A and ischemic stroke was then examined within predefined subgroups using χ^2 tests (or Fisher exact tests in the event of small sample sizes). Comparisons were repeated using a logistic regression model adjusted for age and sex in a basic model and for the basic model plus hypertension, diabetes mellitus, history of myocardial infarction, current OC use, current smoking status, and migraine with aura in a full model. Two-tailed P values of <0.05 were considered statistically significant.

Meta-Analysis
Using the key words prothrombin G20210A mutation, ischemic stroke, and young-adults, we searched PubMed and Web of Science databases for case–control studies of ischemic stroke in young adults published before June 2012. Any identified articles were then hand-searched for references to identify additional relevant studies. Studies were included in the meta-analysis according to standard criteria11 if (1) neuroimaging was used to confirm clinical diagnoses of ischemic stroke, (2) controls were derived from the same population as cases, (3) prothrombin G20210A genotypes were available for all participants, (4) the numbers of cases and controls with and without prothrombin G20210A were provided in the article, and (5) the study included only cases with first stroke ≤55 years of age (most identified studies classified young stroke as ≤55 rather than ≤49 as consistent with GEOS), or the number of cases in this age group with and without prothrombin G20210A could be clearly obtained from the study. We also excluded case series restricted to those with known patent foramen ovale (PFO).
cardioembolic, 1 large-artery atherosclerotic, 4 small vessel, and 7 undetermined pathogenesis (cryptogenic).

Analysis of prothrombin G20210A and ischemic stroke risk are presented in Table 2 stratified by demographic and established risk factors for stroke, including sex, current smoking status, migraine, and OC use. In the overall white population, cases had more than a 2-fold greater odds of having the prothrombin G20210A mutation than controls, although this difference did not achieve statistical significance (14 of 397 cases versus 6 of 426 controls; OR=2.5; 95% CI=0.9–6.5; P=0.07). Stratification by sex, current OC use (among women), current smoking status, and migraine did not alter these results. However, in a post hoc analysis, the association was more pronounced in younger-onset cases (ie, <the median age of 42 years; OR=5.9; 95% CI=1.2–28.1; P=0.03) than in older-onset cases (ie, ≥ age 42 years; OR=1.4; 95% CI=0.4–5.1; P=0.94).

Meta-Analyses Without and With GEOS Data
Seventeen studies matched our selection criteria and were included in the meta-analysis.11–27 Table 3 shows the demographic characteristics of studies included in the meta-analysis. The results of the meta-analysis performed with and without GEOS data are shown in Figure 1. The studies were conducted in several European countries (prothrombin G20210A prevalence is highest in Southern European countries),2 the United States, and Brazil, and the majority of participants were of white ancestry. In 13 of these studies, the reported OR for prothrombin G20210A and ischemic stroke was ≥1, and in 2 of these studies, the OR was significantly >1 (P<0.05). Across prior studies, prothrombin G20210A was detected in 80 of 1908 cases (4.2%) and in 175 of 5551 controls (3.2%), yielding an OR of 1.4 (95% CI=1.1–1.9; P=0.02). After including GEOS data, prothrombin G20210A was present in 94 of 2305 cases (4.0%) and in 181 of 5977 controls (3.0%), yielding a pooled OR of 1.5 (95% CI=1.1–2.0; P=0.005), based on fixed effect. There was no significant heterogeneity between the studies (Q value=13.2; I²=0.0). Repeating the meta-analysis with each of the studies removed individually did not significantly alter the calculated OR (data not shown). To assess

Table 1. Demographic and Clinical Characteristics of Cases and Controls of European Ancestry in the GEOS Study

<table>
<thead>
<tr>
<th></th>
<th>Cases (n=397)</th>
<th>Controls (n=426)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex, male</td>
<td>62.7%</td>
<td>55.4%</td>
<td>0.03</td>
</tr>
<tr>
<td>Mean age, y</td>
<td>41.1</td>
<td>39.4</td>
<td>0.0004</td>
</tr>
<tr>
<td>Hypertension</td>
<td>31.7%</td>
<td>16.0%</td>
<td><0.0001</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>11.4%</td>
<td>2.1%</td>
<td><0.0001</td>
</tr>
<tr>
<td>Previous MI</td>
<td>5.1%</td>
<td>0.7%</td>
<td>0.0002</td>
</tr>
<tr>
<td>Current oral contraceptive use*</td>
<td>23.0%</td>
<td>10.5%</td>
<td>0.002</td>
</tr>
<tr>
<td>Current smoking</td>
<td>42.6%</td>
<td>24.2%</td>
<td><0.0001</td>
</tr>
<tr>
<td>History of migraines</td>
<td>33.2%</td>
<td>29.1%</td>
<td>0.21</td>
</tr>
<tr>
<td>Migraine with aura</td>
<td>26.8%</td>
<td>20.2%</td>
<td>0.03</td>
</tr>
<tr>
<td>Migraine without aura</td>
<td>6.4%</td>
<td>8.9%</td>
<td>0.17</td>
</tr>
<tr>
<td>Prothrombin G20210A mutation</td>
<td>3.5%</td>
<td>1.4%</td>
<td>0.05</td>
</tr>
</tbody>
</table>

GEOS indicates Genetics of Early Onset Stroke; and MI, myocardial infarction.

*Women only.

Table 2. Odds Ratios for Prothrombin G20210A and Ischemic Stroke in Young Adults of European Ancestry as Stratified by Risk Factors

<table>
<thead>
<tr>
<th></th>
<th>No. FII/No. of Cases</th>
<th>No. FII/No. of Controls</th>
<th>OR (Basic Model)</th>
<th>95% CI</th>
<th>P Value (Basic Model)*</th>
<th>P Value (Full Model)†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entire population</td>
<td>14/397</td>
<td>6/426</td>
<td>2.5</td>
<td>0.9–6.5</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>11/249</td>
<td>4/236</td>
<td>2.8</td>
<td>0.9–8.9</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>Female</td>
<td>3/148</td>
<td>2/190</td>
<td>1.9</td>
<td>0.3–11.8</td>
<td>0.47</td>
<td>0.47</td>
</tr>
<tr>
<td>OC use</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>1/34</td>
<td>0/20</td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
</tr>
<tr>
<td>No</td>
<td>2/114</td>
<td>2/170</td>
<td>1.7</td>
<td>0.2–12.0</td>
<td>0.62</td>
<td>0.45</td>
</tr>
<tr>
<td>Current smoking</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>4/169</td>
<td>1/103</td>
<td>2.2</td>
<td>0.2–20.3</td>
<td>0.49</td>
<td>0.38</td>
</tr>
<tr>
<td>No</td>
<td>10/228</td>
<td>5/323</td>
<td>3.0</td>
<td>1.0–8.8</td>
<td>0.05</td>
<td>0.12</td>
</tr>
<tr>
<td>Migraine with aura‡</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>3/105</td>
<td>0/86</td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
</tr>
<tr>
<td>No</td>
<td>10/287</td>
<td>6/340</td>
<td>2.0</td>
<td>0.7–5.5</td>
<td>0.20</td>
<td>0.24</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><42</td>
<td>8/167</td>
<td>2/235</td>
<td>5.9</td>
<td>1.2–28.1</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>≥42</td>
<td>6/230</td>
<td>4/191</td>
<td>1.4</td>
<td>0.4–5.1</td>
<td>0.63</td>
<td>0.94</td>
</tr>
</tbody>
</table>

CI indicates confidence interval; FII, factor II; NE, not estimable; OC, oral contraceptive; and OR, odds ratio.

*Includes age and sex.

†Includes age, sex, hypertension, diabetes mellitus, previous myocardial infarction, current oral contraceptive use, current smoking, and migraine with aura.

‡Five case subjects did not have migraine information available.
publication bias, we created a funnel plot of all the studies used in the meta-analysis (Figure 2), which conformed to the expected shape of the curve and demonstrated overall left-right symmetry.28

Discussion

Our meta-analysis of 2305 young-onset stroke cases reveals a moderately strong association between the prothrombin G20210A polymorphism and ischemic stroke in those of European ancestry. Although the GEOS results were not significant, they were of a similar magnitude and direction, and adding them to the meta-analysis increased the significance of the association. Moreover, stratifying the GEOS data by age of stroke onset revealed the effect of the prothrombin allele to be most pronounced in the youngest subjects.

When we analyzed our GEOS population as a whole, we failed to find an overall statistically significant association between the prothrombin G0210A polymorphism and ischemic stroke in those of European ancestry. We further hypothesized that prothrombin G20210A might be associated with ischemic stroke risk in specific subpopulations, such as those with cryptogenic stroke or those having ≥1 vascular risk factors such as hypertension, diabetes mellitus, history myocardial infarction, OC use, migraine headache, and current smoking status. We did not find an association among patients with cryptogenic stroke or those with cardiovascular risk factors as stratified individually or when analyzed in aggregate (results not shown). This could be because of the fact that stratification of the GEOS study population yielded small sample sizes with limited power to detect such associations.

However, in the GEOS population, we demonstrated that the prothrombin G20210A mutation is a significant risk factor in the youngest population of young adults with ischemic stroke (age less than the median age of 42 years in our study). This suggests that the prothrombin minor A allele has a stronger association among patients with earlier onset strokes. In the youngest group of young adults with a light disease burden, the prothrombin minor A allele could be a significant risk factor for ischemic stroke, whereas in older individuals, the progression of disease and other risk factors makes the presence of the prothrombin minor A allele less of a contributing stroke risk factor. In other words, in the absence of traditional risk factors (eg, smoking, OC use, heart disease), the heritability of stroke risk may be enhanced. We also emphasize that from a clinical standpoint, it is generally not advocated to perform screening hypercoagulability workups in all patients with stroke.29,30 Typically, patients to be screened for coagulation defects will have a prior history of ≥1 unexplained thromboembolic events. The yield for diagnosing a hypercoagulable state is typically greatest for young patients with stroke or those with a family history of thrombosis and who have no other explanations for their stroke (ie, cryptogenic stroke).29,30

Although the GEOS study is among the largest study to date to have examined the association between prothrombin G20210A and ischemic stroke in young adults, our study has several limitations. First, the low frequency of prothrombin 20210A minor allele in our study population limits our ability to evaluate the effect of homozygosity. Third, the population-based design of the GEOS study with recruitment at >50 regional hospitals precluded consistent assessment of the presence of PFO and potential paradoxical embolism
among cases. This is important because the prothrombin minor A allele can cause ischemic stroke through venous thrombosis and paradoxical venous-to-arterial embolus through a PFO or potentially via the PFO in and of itself. In our meta-analysis, we specifically excluded studies that considered only in patients with stroke with the prothrombin 20210A minor allele and PFO because risk has been shown to be consistently higher in this setting. It is important to note that among the studies included in our meta-analyses, the absence or presence of a PFO was not consistently reported. As such, paradoxical embolism may have played a significant role in the pathogenesis of cryptogenic stroke occurring in those studies. Last, because blood chemistries were not obtained for the GEOS controls, we were unable to evaluate potential relationships between dislipidemia and the prothrombin 20210A mutation.

Figure 1. A, Meta-analysis results without Genetics of Early Onset Stroke (GEOS) data. B, Meta-analysis with GEOS data. CI indicates confidence interval.
All studies included in this meta-analysis were case–control association studies. The case–control approach is an efficient design for studying genetic risk factors for early-onset stroke because the outcome, stroke in young adults, is rare with a potentially long latency period. Although case–control studies in general can be prone to selection bias, this is unlikely in our study because the exposure is genotype. However, unlike cohort studies, case–control studies may be subject to survival bias because cases characterized by high fatality rates are less likely to be included in the study sample. Last, to reduce genotyping error, GEOS cases and controls were plated together for genotyping.

Conclusions

We report that the prothrombin G20210A mutation is associated with ischemic stroke in young adults and may have an even higher association among the youngest group of young adults. Specific to the GEOS data, in adults with first-ever ischemic stroke before the age of 42 years, the prothrombin G20210A mutation may be a contributing factor. In PFO cases where a venous source is not identified, positive prothrombin G20210A screening might increase the likelihood that the PFO was involved. Our results suggest the need for the study sample. Last, to reduce genotyping error, GEOS cases and controls were plated together for genotyping.

Sources of Funding

This work was supported, in part, by the Department of Veterans Affairs, Baltimore, Office of Research and Development, Medical Research Service; the Department of Veterans Affairs Stroke Research Enhancement Award Program; the Department of Veterans Affairs, Baltimore, Geriatrics Research, Education, and Clinical Center of Excellence; the National Institute of Neurological Disorders and Stroke (grants U01 NS069208-01 and R01 NS39987); the National Institutes of Health Office of Research on Women’s Health (grant R01 NS45012); the National Human Genome Research Institute (grant U01 HG004436). The Centers for Disease Control and Prevention partially supported data collection and genotyping. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the article. There was no additional funding received for this study.

Disclosures

None.

References

Prothrombin G20210A Mutation Is Associated With Young-Onset Stroke: The Genetics of Early-Onset Stroke Study and Meta-Analysis

Stroke. 2014;45:961-967; originally published online March 11, 2014; doi: 10.1161/STROKEAHA.113.004063

Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2014 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/45/4/961

Data Supplement (unedited) at:
http://stroke.ahajournals.org/content/suppl/2016/04/03/STROKEAHA.113.004063.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org/subscriptions/
プロトロンビン G20210A 変異が若年成人における脳卒中と関連
若年性脳卒中の遺伝学的研究とメタアナリシス

Prothrombin G20210A Mutation Is Associated With Young-Onset Stroke
The Genetics of Early-Onset Stroke Study and Meta-Analysis

Baijia Jiang, BS1; Kathleen A. Ryan, MPH2; Ali Hamedani, MD, MHS1 et al.
Departments of 1 Neurology; and 2 Medicine, University of Maryland School of Medicine, Baltimore.