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Cerebral cavernous malformations (CCMs) are cerebro-
vascular disorders with an approximate prevalence of 1 

in 200. The CCM pathology is typified by abnormally dilated 
clusters of blood vessels with defective endothelial cell–cell 
junctions, sluggish blood flow, and almost always associ-
ated with hemosiderin deposition in the surrounding paren-
chyma.1–3 CCM can arise sporadically or be inherited in an 
autosomal dominant pattern.4–6 In some cases, CCMs cause 
hemorrhagic stroke that elicits neurological defects and rarely 
death. Extravasataion of blood components and hematoma 
expansion can often occur asymptomatically. Three structur-
ally unrelated genes, CCM1 (KRIT1), CCM2 (MGC4607), and 
CCM3 (PDCD10), have been implicated in CCM pathobiol-
ogy.7–9 It is now thought that the CCM proteins form a ternary 
complex near the plasma membrane of endothelial cells and act 
as scaffolds linking the junctional proteins, integrins and vas-
cular endothelial–cadherin, with intracellular signaling com-
ponents.10 However, the specific mechanisms through which 
reductions in the expression of the structurally diverse genes 
associated with CCM induce their formation and pathobiol-
ogy are not well explained. Studies using mouse and zebrafish 
models have been instrumental in functionally characterizing 
and, to an extent, faithfully recapitulating the molecular and 
ultrastructural underpinnings of CCM pathology.11–15

Results from these studies have led to the suggestion that 
pharmacological inhibition of 3-hydroxy-3-methyl-glutaryl-
coenzyme A reductase (HMGCR) by statins may be an effec-
tive approach to prevent CCM-induced vascular instability 
and cerebral hemorrhage.12,16 The basis for this proposition 
stems from in vivo and in vitro evidence suggesting that loss 
of function of CCM1, CCM2, or CCM3 genes are associated 
with RhoA hyperactivation and downstream signaling via Rho 
kinase and increased stress fiber assembly, which leads to dis-
rupted endothelial cell–cell junctions and loss of vascular stabil-
ity.17,18 More specifically, activated RhoA, through its effector, 
Rho kinase, mediates actin stress fiber formation by increas-
ing myosin light chain phosphorylation, as well as inhibiting 

myosin phosphatase, which is associated with vascular hyper-
permeability.19 Consistently, pharmacological curtailment of 
RhoA activity, using fasudil, a relatively selective RhoA/Rho 
kinase inhibitor,20 has been shown to enhance vascular stability 
effectively in vivo and in vitro and significantly reduce the prev-
alence of CCM lesions in a in Krit1+/− and CCM2+/− mice.17,21

Alongside, it has been reported, in ≥1 animal study, that 
in mice with a heterozygous mutation of CCM2, treatment 
with statins (simvastatin) effectively restores the endothelial 
barrier function by inhibiting Rho GTPase activity,12 pre-
sumably through abrogating the prenylation process. This 
experimental finding has led the authors to the conclusion that 
statin treatment could be an effective alternative to neurosur-
gical intervention to improve CCM outcome.12,16 However, 
there are several outstanding questions about the efficacy and 
specificity of statins as therapeutic agents to improve CCM 
outcome. First, unlike fasudil, which is a somewhat selective 
inhibitor of RhoA/Rho kinase,20 statins are competitive inhibi-
tors of HMGCR, the rate-limiting enzyme in the biosynthesis 
of isoprenoid pyrophosphates, a highly conserved metabolic 
pathway (Figure).22 These mevalonate derivatives in turn serve 
as substrates for post-translational modification (prenylation) 
of a variety of cell signaling proteins (>100) that harbor the 
C-terminal CaaX motif, the most well characterized of which 
include the small GTPase family of molecular switch pro-
teins, RhoA, Rac1, and Cdc42 (Figure).23,24 The CaaX proteins 
interact with prenyltransferases that modify the CaaX cysteine 
residue by forming a thioether linkage with either a farnesyl or 
a geranylgeranyl lipid moiety, which ensures membrane local-
ization.25 Hence, inhibition of HMGCR not only reduces the 
availability of prenyl-based metabolites but also curtails the 
activity of key cell signaling molecules that require prenyl-
ation for activation and downstream signaling.

Therefore, a point of contention about statin therapy is 
whether inhibition of RhoA hyperactivity is outweighed by 
any potential pathological outcomes associated with gen-
eral or indiscriminate depletion of all prenylation-dependent 
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cellular processes. Although statins are generally well toler-
ated in patients, with rare medically significant side effects, 
little is known about the possible complications of impaired 
HMGCR function on the endothelium. For example, prenylated 
and GTP-bound cdc42/Rac1 plays vital roles in the regulation 
of vacuole formation, lumenization of vessels, and mediation 
of endothelial barrier function through regulating vascular  
endothelial–cadherin dynamics.26–31 Consistently, studies in 
vivo in zebrafish have shown that genetic depletion of βPix, 
a  guanine nucleotide exchange factor involved in activat-
ing Cdc42/Rac1 (by increasing affinity for GTP), as well as 
p21-activated kinase, a kinase acting downstream of Cdc42/
Rac1 (Figure), disrupt vascular integrity and is associated with 
cerebral hemorrhages and defective vascular stabilization.32,33 
Waterborne exposure to statins (atorvastatin and cerivastatin) 
and morpholino-mediated depletion of embryonic HMGCR 
transcripts in zebrafish have been shown to induce intracerebral 
hemorrhage in both embryos and larvae due likely to impaired 
prenylation-dependent processes.34–36 Surprisingly, though, 
there exist no experimental or anecdotal studies to suggest 
statin-induced enhancement of vascular permeability in mice or 
other mammalian studies, which could suggest  species-specific 
physiological differences. There have also been no studies, to 
date, to suggest that statins disrupt vascular stability in murine 
models of aging, hypertensive and amyloid angiopathies. 
Nonetheless, in light of the theoretical/mechanistic consider-
ations derived from in vitro and in vivo studies (Figure), we 
acknowledge that there is a need for a more rigorous set of 
mammalian studies to investigate the putative molecular mech-
anisms or the risk benefit of statins in CCM pathology.
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