Impact of Collaterals on Successful Revascularization in Solitaire FR With the Intention for Thrombectomy

David S. Liebeskind, MD; Reza Jahan, MD; Raul G. Nogueira, MD; Osama O. Zaidat, MD; Jeffrey L. Saver, MD; for the SWIFT Investigators

Background and Purpose—Collaterals at angiography before endovascular therapy were analyzed to ascertain the effect on a novel end point of successful revascularization without symptomatic hemorrhage in the Solitaire FR With the Intention for Thrombectomy (SWIFT) study.

Methods—Collateral grade (American Society of Interventional and Therapeutic Neuroradiology/Society of Interventional Radiology) on baseline angiography was independently assessed, blind to other data, with statistical analyses delineating the relationship with clinical, laboratory, and imaging parameters.

Results—Angiographic data on collaterals were available in 119 of 144 subjects (mean age, 67±12 years; 52% woman; median National Institutes of Health Stroke Scale, 18 [range, 8–28]). Worse collaterals were noted in subjects with elevated baseline blood glucose (P=0.013) and those with elevated baseline systolic blood pressure (P=0.039). Multivariate predictors of partial or worse collaterals included absence of prior hypertension (odds ratio, 4.049; P=0.012), smoking history (odds ratio, 3.822; P=0.013), and higher blood glucose (odds ratio, 1.017; P=0.022). Collaterals were strongly related to Alberta Stroke Program Early CT Score (ASPECTS) at baseline (0–1: median 8 [3–10]; 2–9 [5–10]; 3–9 [7–10]; 4–9 [8–10]; P<0.001) and 24 hours (0–1: median 1 [0–5]; 2–6 [0–10]; 3–8 [0–10]; 4–8 [4–8]; P<0.001). Better collaterals were linked with Thrombolysis in Cerebral Infarction 2b/3 reperfusion (P=0.019), better median National Institutes of Health Stroke Scale at day 7/discharge (P<0.001), and better day 90 modified Rankin Scale (P<0.001). Better collateral grade was associated with successful revascularization without symptomatic hemorrhage, mean 2.3 (95% confidence interval, 2.1–2.5) versus 1.9 (95% confidence interval, 1.7–2.2), P=0.021.

Conclusions—Better collaterals were associated with lower glucose, lower blood pressure, smaller baseline infarcts in SWIFT, and greater likelihood of successful revascularization without hemorrhage and good clinical outcomes.

Clinical Trial Registration—URL: http://www.clinicaltrials.gov. Unique identifier: NCT01054560. (Stroke. 2014;45:2036-2040.)

Key Words: collaterals ■ endovascular therapy ■ stroke ■ revascularization

The extent of collateral perfusion is a potent determinant of recanalization and tissue fate after endovascular therapy for acute ischemic stroke. Collaterals at angiography have been associated with more extensive reperfusion, smaller infarcts, and less hemorrhagic transformation. Collateral circulation balances the hemodynamic impairment caused by arterial obstruction, yet the extent of collateral perfusion may vary considerably across individuals. Systematic evaluation of collaterals has revealed potential associations with age and medical comorbidities, yet prediction of collateral grade based on such clinical factors alone without definitive imaging may not be possible. Collateral grade may be routinely assessed at angiography before endovascular therapy, potentially enhancing prediction of subsequent revascularization and clinical outcomes. Prior analyses of collaterals, however, have demonstrated an association with recanalization after thrombolysis and mechanical thrombectomy with early generation devices, yet it remains unknown whether collaterals affect revascularization outcomes with stentriever technology. These devices have exhibited markedly increased recanalization rates, potentially reversing the effect of collaterals on recanalization. Collaterals may distinctly alter reperfusion without symptomatic hemorrhagic transformation, a physiologically and clinically relevant end point recently used to define successful revascularization with stentriever devices.

We analyzed angiographic collateral grade before endovascular therapy in the Solitaire FR With the Intention for Thrombectomy (SWIFT) study to ascertain the potential effect of collaterals on the novel end point of successful revascularization without symptomatic hemorrhage, a metric of unqualified success with stentriever use.

Methods

The SWIFT study was a randomized safety and efficacy study comparing use of the Merci device with the solitaire FR stentriever for...
arterial recanalization without hemorrhagic transformation in the setting of acute ischemic stroke. Detailed methods and results of this study have been previously published. In brief, patients were randomized to mechanical thrombectomy with Merci or solitaire FR within 8 hours of symptom onset after baseline imaging that excluded the presence of hemorrhage. No imaging or angiographic criteria were used to identify potential study candidates other than absence of extensive ischemia. Collateral grade was not prespecified or collected as part of the core laboratory adjudication process.

Post hoc evaluation of collateral grade on baseline angiography was conducted in our study, using the angiography archive established by the core laboratory. Two experienced readers, including a neuroradiologist and vascular neurologist with stroke imaging expertise, reviewed baseline angiography in all subjects enrolled in SWIFT, scored by consensus of the 2 readers. All diagnostic runs were evaluated for the presence of adequate information on collateral circulation with respect to the arterial occlusive lesion. Because cerebral angiograms documenting collaterals were not mandated as part of trial protocol, variability was noted from case to case in the completeness of such information. Collateral grades before endovascular treatment were assessed with the American Society of Interventional and Therapeutic Neuroradiology/Society of Interventional Radiology scale on angiography, blind to all other data. The American Society of Interventional and Therapeutic Neuroradiology/Society of Interventional Radiology grading system is a 5-point scale: with 0=no collaterals visible to the ischemic site, 1=slow collaterals to the periphery of the ischemic site with persistence of some of the defect and to only a portion of the ischemic territory, 3=collaterals with slow but complete angiographic blood flow of the ischemic bed by late venous phase, and 4=complete and rapid collateral blood flow to the vascular bed in the entire ischemic territory by retrograde perfusion. Use of this grading system and scale metrics has been previously reported. Cases with insufficient information on collateral status before treatment were excluded from subsequent analyses. These 2 readers also evaluated angiographic measures of recanalization and reperfusion. Recanalization of the arterial occlusive lesion was scored with the arterial occlusive lesion (AOL) score. Reperfusion of the corresponding arterial territory was scored with the Thrombolysis in Cerebral Infarction (TICI) scale, using 2/3 as the threshold for achieving reperfusion grade 2b or higher. Angiographic measures of collaterals, AOL recanalization, and TICI reperfusion were independently determined with disagreements resolved by consensus, blind to all other trial data. Alberta Stroke Program Early CT Score (ASPECTS) was scored on the computed tomography or MRI acquired immediately before treatment and on the required 24-hour imaging as previously reported. Statistical analyses were conducted by the SWIFT statisticians using clinical variables obtained from the main data set with angiography measures of collateral, AOL, and TICI scores obtained as part of this post hoc study. Clinical outcomes considered were symptomatic intracranial hemorrhage and functional independence at 90 days, defined as a modified Rankin Scale of 0, 1, or 2. Collateral score was treated as a categorical variable. Association of collateral grade with baseline characteristics and vascular and clinical outcomes was assessed via Fisher exact test for categorical variables and Kruskal–Wallis test for continuous variables. Baseline characteristics included comorbid conditions, demographics, and location and severity of stroke. Vascular outcomes were angiographic recanalization, defined as AOL score of 2 or 3, and angiographic reperfusion, defined as TICI of 2b or 3. Logistic regression was used to model outcome as a function of collateral grade and covariates selected using backward selection methodology. Baseline variables potentially associated with outcome (P<0.2) were considered for inclusion in the model. A significance level of P<0.05 was used to identify significant predictors of clinical outcomes, and odds ratios and 95% confidence intervals were estimated for each collateral grade.

Results

Angiographic data on collaterals were available in 119 of 144 subjects (mean age, 67±12 years; 52% woman; median National Institutes of Health Stroke Scale (NIHSS), 18 [range, 8–28]). Information on collaterals was not provided in 17 of 40 (42.5%) of internal carotid artery occlusions, 4 of 83 (4.8%) of proximal middle cerebral artery or M1 occlusions, and 4 of 4 (100%) of posterior circulation occlusions. Insufficient collateral data in these cases were because of omission of injections of potential collateral routes or limited temporal information without filming of late venous phase images. Collateral grade was 0 to 1 (none or marginal) in 32 (27%), 2 (partial) in 48 (40%), 3 (complete but delayed) in 35 (29%), and 4 (complete and early) in 4 (3%). Figure 1 reveals this diverse spectrum of collateral grades noted in SWIFT.

Collateral grade or vigor was unrelated to age or sex of the subject. Elevated baseline blood glucose was noted with worse collaterals (P=0.013), with marginal or no collaterals (grade 0–1) revealing mean 154±65 mg/dL, partial collaterals (grade 2), mean 140±75 mg/dL; slow but complete collaterals (grade 3), mean 124±33 mg/dL; and complete, rapid collaterals (grade 4), mean 99±10 mg/dL. Similarly, elevated baseline systolic blood pressure was also associated with worse collaterals (P=0.039), marginal or no collaterals (grade 0–1) revealing mean 149±24 mm Hg, partial collaterals (grade 2) mean 137±23 mm Hg, slow but complete collaterals (grade 3) mean 137±24 mm Hg, and complete, rapid collaterals (grade 4) mean 138±10 mm Hg. Multivariate predictors of partial or worse collaterals included absence of prior hypertension (odds ratio, 4.049; P=0.012), smoking history (odds ratio, 3.822; P=0.013), and higher blood glucose (odds ratio, 1.017; P=0.022). Table 1 in the online-only Data Supplement illustrates the relationship of all variables with good clinical outcome in univariate and multivariate analyses. Subset analyses about the effect of collaterals were performed based on treatment modality and

Figure 1. Examples of the broad distribution of American Society of Interventional and Therapeutic Neuroradiology/Society of Interventional Radiology collateral grades noted in Solitaire FR With the Intention for Thrombectomy. Angiographic collaterals are demonstrated in 5 different cases: revealing grade 0 or no collaterals in right MCA occlusion, marginal or grade 1 collaterals in left MCA occlusion, grade 2 or partial collaterals in left MCA occlusion, grade 3 or slow but complete collaterals in right middle cerebral artery (MCA) occlusion, and grade 4 or rapid and complete collaterals in right MCA occlusion. ARCH indicates aortic arch injection; and LICA, left internal carotid artery.
arterial occlusion site, with details in Table II in the online-only Data Supplement (Solitaire), Table III in the online-only Data Supplement (Merci), and Table IV in the online-only Data Supplement (middle cerebral artery occlusion).

ASPECTS were evaluated at baseline in all 119 SWIFT subjects with collateral data and at 24 hours in 118 of 119 (99%) subjects. Because lower ASPECTS may indicate greater extent or severity of ischemia and worse collaterals, we analyzed ASPECTS at baseline with angiographic collateral grade. Collaterals were strongly related to ASPECTS at baseline (0–1: median 8 [3–10]; 2–9 [5–10]; 3–9 [7–10]; 4–9 [8–10]; \(P < 0.001 \)). Because the extent of collaterals at angiography may also indicate potential tissue fate, we analyzed collateral grade with 24-hour ASPECTS. Collaterals were strongly related to ASPECTS at 24 hours (0–1: median 1 [0–5]; 2–6 [0–10]; 3–8 [0–10]; 4–8 [4–8]; \(P < 0.001 \)). Figure 2 reveals an example where robust collaterals are associated with limited ischemic injury and another case where poor collaterals are linked with tissue fate of extensive infarction. Partial or worse collaterals were also associated with symptomatic hemorrhage (\(P = 0.075 \)).

The relationship of collaterals with revascularization, including AOL recanalization and TICI reperfusion, revealed an interesting divergence. Failed recanalization (AOL, 0–1) with no downstream flow occurred in 7 subjects with grade 0 to 1 collaterals, 8 with grade 2, 1 with grade 3, and 0 with grade 4 collaterals. The extent of AOL recanalization, however, varied considerably, with the full spectrum of AOL recanalization demonstrated even in those with no or marginal collaterals (grade 0–1). Better collaterals were closely linked with TICI 2b/3 reperfusion (\(P = 0.019 \)).

Collaterals were strongly associated with clinical outcomes in SWIFT, including better median NIHSS at day 7/discharge (\(P < 0.001 \)) and better day 90 modified Rankin Scale (\(P < 0.001 \)). Using the combined definition of successful revascularization without symptomatic hemorrhage, better collaterals were an important indicator of subsequent outcomes, with mean collateral grade 2.3 (95% confidence interval, 2.1–2.5) versus 1.9 (95% confidence interval, 1.7–2.2), \(P = 0.021 \). Figure 3 shows examples including poor collaterals associated with hemorrhagic transformation after recanalization and another case where robust collaterals were associated with full reperfusion without hemorrhage.

Discussion

Collaterals were a pivotal factor in the revascularization and clinical outcomes of subjects enrolled in the SWIFT study, reinforcing the growing literature on collateral perfusion as a key variable in acute ischemic stroke.\(^{15,16}\) Collateral grade could be scored in the majority of SWIFT cases based solely on routine angiography acquired before endovascular therapy, despite lack of a formal protocol to acquire such information. In almost all middle cerebral artery occlusions, collaterals within the territory and from the ipsilateral anterior and posterior cerebral arteries could be demonstrated, except in cases where acquisition failed to include late venous phase images. In contrast, routine angiography runs of collaterals were available in only half of internal carotid artery occlusions and none of posterior circulation occlusions, where selective injections of contralateral or additional vessels are required. Our findings on the effect of collaterals suggest that acquiring such information on collaterals from selective injections or even noninvasive

Figure 2. Alberta Stroke Program Early CT Score (ASPECTS) and collateral grade correlation in case examples. In right middle cerebral artery occlusion, preserved ASPECTS (A) is associated with robust or grade 4 collaterals (B). In a left middle cerebral artery occlusion, decreased ASPECTS (C) is associated with marginal or grade 1 collaterals (D). LCCA indicates left common carotid artery; and RCCA, right common carotid artery.

Figure 3. Poor collaterals in a case of left middle cerebral artery occlusion (A) is followed by extensive ischemia and hemorrhagic transformation (B) after recanalization with marginal reperfusion. In another case of left middle cerebral artery occlusion, robust collaterals (C) is followed by complete or Thrombolysis in Cerebral Infarction 3 reperfusion (D) and good clinical outcome. LCCA indicates left common carotid artery.
techniques before endovascular therapy may be important. The
distribution of collateral grade in SWIFT, an endovascular
therapy trial during the earliest stages of ischemia, reveals a
relatively balanced mixture between those with none or poor
collaterals, partial collaterals, and those with complete collat-
eral filling of the territory. This finding underscores the marked
heterogeneity of stroke pathophysiology across individuals,
despite use of straightforward selection criteria.17

Our findings that link poor collateral flow with elevated
blood glucose or hyperglycemia and elevated systolic blood
pressure provide novel perspective on these routine paramet-
ters acquired in acute stroke that have been linked with worse
outcomes.18,19 A graded association of lower blood glucose and
blood pressure values was noted with better collateral flow, yet
the relationship was largely driven by the acute hyperglycemia
and hypertension noted in cases with poor collaterals. These
findings warrant further investigation and suggest that acute
hyperglycemia and hypertension in acute ischemic stroke
may be indirect markers of poor collaterals, portending more
extensive ischemia and worse outcomes after intervention.
Interestingly, we did not find an association of collateral grade
with demographic variables, yet the absence of prior hyper-
tension and smoking history was strongly linked with poor
collateral flow. Absence of prior hypertension and elevated
blood pressure in acute stroke may, therefore, be a particularly
informative surrogate of poor collateral flow. Smoking history
has been previously associated with the degree of collateral
sufficiency in coronary and peripheral ischemia, including the
presence of more developed collaterals, with functionally lim-
ited perfusion of the territory.20

The link between the overall degree of collateral flow with
ASPECTS suggests that this rapid algorithm on baseline
imaging may grossly distinguish marked differences in col-
lateral grade. The relatively marginal differences in median
ASPECTS values for each category of collateral grade, how-
ever, suggest that this scale may not discern subtle differ-
ces in collaterals and that alternative noninvasive imaging
approaches may be warranted for selection of optimal acute
stroke therapy candidates.21–23 Collateral grade was linked with
ASPECTS scores on 24-hour imaging obtained after endo-
vascular therapy, indicating that the extent of ischemic injury
may also be because of variation in collaterals at presentation.
Hemorrhagic transformation was related to the presence
of partial or worse collaterals, confirming prior studies.3

Revascularization after endovascular therapy, including
both recanalization and reperfusion, was related to the degree
of collaterals. A0 recanalization varied widely, even when
poor collateral flow was noted at baseline. Successful reperfu-
sion, exceeding two thirds of the ischemic territory, was highly
associated with the collateral grade. These findings imply that
the technical success of opening an artery with endovascular
therapy may be possible even when poor collaterals are pre-
sent, yet the extent of downstream reperfusion may be driven
by the degree of collaterals.

Most importantly, the clinical outcomes after endovascul-
ar therapy in SWIFT were strongly tied to baseline collater-
als, readily available from angiography before intervention.
Early measures of neurological impairment, subsequent dis-
ability, and the novel metric of successful revascularization
without symptomatic hemorrhage pioneered in SWIFT were
all driven by collateral grade, demonstrated to vary consider-
ably across individuals. These decisive results from a recent
endovascular study using current stentriever device technol-
yogy highlight the importance of ascertaining the degree of
collaterals before treatment, although randomized studies are
warranted to validate the role of collaterals in a prospective
fashion. Although such information may be easily obtained
from angiography as evidenced in our study, noninvasive
multimodal imaging that includes, but extends beyond,
ASPECTS may be used in the future to select patients for
endovascular therapy optimally.22,23

Limitations of our retrospective study include the potential
omission of critical variables from the data set that may be
informative about collateral flow and the relationship with
other clinical and imaging parameters. In addition, post hoc
evaluation of collaterals was limited by the availability of
angiography data, including dedicated injection of poten-
tial collateral routes, image quality, and temporal resolution.
Specifically, the lack of contralateral injections in internal
carotid artery occlusions and anterior circulation runs in
posterior circulation cases substantially limited our ability
to comment further on these common arterial lesions treated
with endovascular therapy. Although consensus readings by 2
experienced angiography readers were used, inherent defects
of the ASITN/SIR scale may preclude further discrimination
in collateral grade and inter-rater reliability was not deter-
dined. Furthermore, bias may have been introduced by the
same expert reviewers determining both collateral grade and
revascularization, although a prespecified protocol dictated
baseline collateral adjudication followed by revascularization
determination. The retrospective nature of our study is also
clearly influenced by any potential selection biases.

Conclusions

The degree of collateral circulation varied markedly across
subjects in the SWIFT study, readily discernible from routine
angiography acquired before endovascular therapy. Poor collat-
erals were linked with acute hyperglycemia and hypertension,
known markers of poor outcomes in acute stroke, establish-
ing an important pathophysiologic tie between these routine
parameters and collateral flow. Collaterals demonstrated a pro-
found effect on successful revascularization without hemor-
rhage and myriad clinical outcomes after endovascular therapy.

Acknowledgments

We extend our gratitude for the efforts of the Solitaire FR With the
Intention for Thrombectomy (SWIFT) Investigators.

Sources of Funding

This work has been funded by National Institutes of Health (NIH)—
National Institute of Neurological Disorders and Stroke (NINDS)
Awards NIH/NINDS P50NS044378, K24NS072272, R01NS077706,
and R13NS082049.

Disclosures

Some authors (Drs Liebeskind, Jahan, and Saver) were employed by
the University of California, which holds a patent on retriever devices
for stroke, at the time of this work. Dr Liebeskind is a consultant of
Advisory Board, Modest, Stryker, and Covidien. Dr Jahan is a member of Speakers’ Bureau, Modest, and Stryker and is a consultant of Advisory Board, Modest, and Covidien. Dr Nogueira is a consultant of Advisory Board, Modest, Stryker/Concentric Medical Inc, Covidien/ev3 Neurovascular Inc, CoAxia Inc, Penumbra Inc, Rapid Medical Inc, Reverse Medical Inc, and Neurointervention Inc. Dr Zaidat is a consultant for Penumbra, Stryker, and Covidien, and Microvention. Dr Saver is supported by grants from National Institutes of Health/National Institute of Neurological Disorders and Stroke P50NS044378 and is a consultant of Advisory Board and Covidien.

References
Impact of Collaterals on Successful Revascularization in Solitaire FR With the Intention for Thrombectomy
David S. Liebeskind, Reza Jahan, Raul G. Nogueira, Osama O. Zaidat and Jeffrey L. Saver for the SWIFT Investigators

Stroke. 2014;45:2036-2040; originally published online May 29, 2014; doi: 10.1161/STROKEAHA.114.004781

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/45/7/2036

Data Supplement (unedited) at:
http://stroke.ahajournals.org/content/suppl/2014/05/29/STROKEAHA.114.004781.DC1
http://stroke.ahajournals.org/content/suppl/2016/12/29/STROKEAHA.114.004781.DC2

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/
Supplemental Table I

Univariate and multivariate analyses for predictors of good clinical outcome at day 90.

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Univariate</th>
<th>Multivariate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Odds Ratio</td>
<td>95% CI</td>
</tr>
<tr>
<td>Age</td>
<td>0.91</td>
<td>(0.88, 0.95)</td>
</tr>
<tr>
<td>History of atrial fibrillation</td>
<td>0.33</td>
<td>(0.16, 0.69)</td>
</tr>
<tr>
<td>DBP at baseline</td>
<td>1.00</td>
<td>(0.98, 1.02)</td>
</tr>
<tr>
<td>SBP at baseline</td>
<td>0.99</td>
<td>(0.97, 1.00)</td>
</tr>
<tr>
<td>History of diabetes mellitus</td>
<td>0.83</td>
<td>(0.37, 1.87)</td>
</tr>
<tr>
<td>Glucose at baseline</td>
<td>1.00</td>
<td>(0.99, 1.00)</td>
</tr>
<tr>
<td>History of hyperlipidemia</td>
<td>1.48</td>
<td>(0.71, 3.08)</td>
</tr>
<tr>
<td>Previous ischemic stroke</td>
<td>1.64</td>
<td>(0.55, 4.88)</td>
</tr>
<tr>
<td>SOLITAIRE vs MERCI</td>
<td>0.64</td>
<td>(0.30, 1.38)</td>
</tr>
<tr>
<td>History of smoking</td>
<td>1.51</td>
<td>(0.73, 3.14)</td>
</tr>
<tr>
<td>History of systemic hypertension</td>
<td>1.20</td>
<td>(0.55, 2.65)</td>
</tr>
<tr>
<td>ASPECTS at baseline</td>
<td>1.47</td>
<td>(1.02, 2.09)</td>
</tr>
<tr>
<td>Collateral grade</td>
<td>3.18</td>
<td>(1.75, 5.76)</td>
</tr>
<tr>
<td>Female vs male</td>
<td>0.53</td>
<td>(0.25, 1.09)</td>
</tr>
<tr>
<td>NIHSS at baseline</td>
<td>0.95</td>
<td>(0.87, 1.02)</td>
</tr>
<tr>
<td>Successful revascularization (TICI 2b/3)</td>
<td>4.51</td>
<td>(1.86, 10.92)</td>
</tr>
<tr>
<td>Vessel treated</td>
<td>0.98</td>
<td>(0.65, 1.46)</td>
</tr>
</tbody>
</table>
Supplemental Table II

Relationships of collateral grade in the Solitaire arm.

<table>
<thead>
<tr>
<th>Subject Characteristics</th>
<th>Collateral grade 0-1</th>
<th>Collateral grade 2</th>
<th>Collateral grade 3</th>
<th>Collateral grade 4</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIHSS at Day 7 or discharge</td>
<td>Mean ± SD (N)</td>
<td>22.4 ± 12.2 (13)</td>
<td>16.1 ± 11.6 (28)</td>
<td>5.2 ± 5.4 (29)</td>
<td>5.5 ± 3.5 (2)</td>
</tr>
<tr>
<td></td>
<td>[Median] (min, max)</td>
<td>[17.0] (8.0, 42.0)</td>
<td>[16.0] (2.0, 42.0)</td>
<td>[2.0] (0.0, 17.0)</td>
<td>[5.5] (3.0, 8.0)</td>
</tr>
<tr>
<td>Good clinical outcome (mRS 0 to 2)</td>
<td>14.3% (2/14)</td>
<td>20.0% (5/25)</td>
<td>59.3% (16/27)</td>
<td>50.0% (1/2)</td>
<td>0.0026</td>
</tr>
<tr>
<td>TICI success (2b or 3)</td>
<td>53.8% (7/13)</td>
<td>84.0% (21/25)</td>
<td>82.8% (24/29)</td>
<td>50.0% (1/2)</td>
<td>0.1801</td>
</tr>
<tr>
<td>Revascularization without sICH (primary endpoint)</td>
<td>42.9% (6/14)</td>
<td>53.6% (15/28)</td>
<td>75.9% (22/29)</td>
<td>50.0% (1/2)</td>
<td>0.0585</td>
</tr>
<tr>
<td>mRS at Day 90</td>
<td>mRS 0</td>
<td>0.0% (0/14)</td>
<td>0.0% (0/25)</td>
<td>25.9% (7/27)</td>
<td>0.0% (0/2)</td>
</tr>
<tr>
<td></td>
<td>mRS 1</td>
<td>7.1% (1/14)</td>
<td>4.0% (1/25)</td>
<td>25.9% (7/27)</td>
<td>50.0% (1/2)</td>
</tr>
<tr>
<td></td>
<td>mRS 2</td>
<td>7.1% (1/14)</td>
<td>16.0% (4/25)</td>
<td>7.4% (2/27)</td>
<td>0.0% (0/2)</td>
</tr>
<tr>
<td></td>
<td>mRS 3</td>
<td>14.3% (2/14)</td>
<td>32.0% (8/25)</td>
<td>11.1% (3/27)</td>
<td>0.0% (0/2)</td>
</tr>
<tr>
<td></td>
<td>mRS 4</td>
<td>21.4% (3/14)</td>
<td>20.0% (5/25)</td>
<td>25.9% (7/27)</td>
<td>50.0% (1/2)</td>
</tr>
<tr>
<td></td>
<td>mRS 5</td>
<td>7.1% (1/14)</td>
<td>4.0% (1/25)</td>
<td>0.0% (0/27)</td>
<td>0.0% (0/2)</td>
</tr>
<tr>
<td></td>
<td>mRS 6</td>
<td>42.9% (6/14)</td>
<td>24.0% (6/25)</td>
<td>3.7% (1/27)</td>
<td>0.0% (0/2)</td>
</tr>
</tbody>
</table>
Supplemental Table III

Relationships of collateral grade in the MERCI arm.

<table>
<thead>
<tr>
<th>Subject Characteristics</th>
<th>Collateral grade 0-1</th>
<th>Collateral grade 2</th>
<th>Collateral grade 3</th>
<th>Collateral grade 4</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIHSS at Day 7 or discharge</td>
<td>Mean ± SD (N)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24.2 ± 12.1 (14)</td>
<td>13.3 ± 10.5 (19)</td>
<td>20.5 ± 17.8 (6)</td>
<td>6.0 ± 8.5 (2)</td>
<td>0.0833</td>
</tr>
<tr>
<td></td>
<td>[Median] (min, max)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[22.5] (6.0, 42.0)</td>
<td>[14.0] (1.0, 42.0)</td>
<td>[16.5] (0.0, 42.0)</td>
<td>[6.0] (0.0, 12.0)</td>
<td>.</td>
</tr>
<tr>
<td>Good clinical outcome (mRS 0 to 2)</td>
<td>6.3% (1/16)</td>
<td>37.5% (6/16)</td>
<td>40.0% (2/5)</td>
<td>100.0% (1/1)</td>
<td>0.0512</td>
</tr>
<tr>
<td>TICI success (2b or 3)</td>
<td>31.3% (5/16)</td>
<td>42.1% (8/19)</td>
<td>50.0% (3/6)</td>
<td>50.0% (1/2)</td>
<td>0.5076</td>
</tr>
<tr>
<td>Revascularization without sICH (primary endpoint)</td>
<td>25.0% (4/16)</td>
<td>20.0% (4/20)</td>
<td>33.3% (2/6)</td>
<td>0.0% (0/2)</td>
<td>0.4282</td>
</tr>
<tr>
<td>mRS at Day 90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mRS 0</td>
<td>0.0% (0/16)</td>
<td>12.5% (2/16)</td>
<td>20.0% (1/5)</td>
<td>100.0% (1/1)</td>
<td>0.0612</td>
</tr>
<tr>
<td>mRS 1</td>
<td>0.0% (0/16)</td>
<td>12.5% (2/16)</td>
<td>0.0% (0/5)</td>
<td>0.0% (0/1)</td>
<td>0.7576</td>
</tr>
<tr>
<td>mRS 2</td>
<td>6.3% (1/16)</td>
<td>12.5% (2/16)</td>
<td>20.0% (1/5)</td>
<td>0.0% (0/1)</td>
<td>0.4759</td>
</tr>
<tr>
<td>mRS 3</td>
<td>0.0% (0/16)</td>
<td>12.5% (2/16)</td>
<td>20.0% (1/5)</td>
<td>0.0% (0/1)</td>
<td>0.1490</td>
</tr>
<tr>
<td>mRS 4</td>
<td>25.0% (4/16)</td>
<td>18.8% (3/16)</td>
<td>0.0% (0/5)</td>
<td>0.0% (0/1)</td>
<td>0.3208</td>
</tr>
<tr>
<td>mRS 5</td>
<td>0.0% (0/16)</td>
<td>6.3% (1/16)</td>
<td>0.0% (0/5)</td>
<td>0.0% (0/1)</td>
<td>0.4173</td>
</tr>
<tr>
<td>mRS 6</td>
<td>68.8% (11/16)</td>
<td>25.0% (4/16)</td>
<td>40.0% (2/5)</td>
<td>0.0% (0/1)</td>
<td>0.0403</td>
</tr>
</tbody>
</table>
Supplemental Table IV

Relationships of collateral grade in the subset of cases with MCA occlusion.

<table>
<thead>
<tr>
<th>Subject Characteristics</th>
<th>Collateral grade 0-1</th>
<th>Collateral grade 2</th>
<th>Collateral grade 3</th>
<th>Collateral grade 4</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIHSS at Day 7 or discharge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean ± SD (N)</td>
<td>23.7 ± 11.6 (23)</td>
<td>14.9 ± 11.7 (40)</td>
<td>7.4 ± 9.0 (28)</td>
<td>5.8 ± 5.3 (4)</td>
<td>0.0001</td>
</tr>
<tr>
<td>[Median] (min, max)</td>
<td>[20.0] (6.0, 42.0)</td>
<td>[15.0] (1.0, 42.0)</td>
<td>[4.5] (0.0, 42.0)</td>
<td>[5.5] (0.0, 12.0)</td>
<td></td>
</tr>
<tr>
<td>Good clinical outcome (mRS 0 to 2)</td>
<td>4.0% (1/25)</td>
<td>27.8% (10/36)</td>
<td>56.0% (14/25)</td>
<td>66.7% (2/3)</td>
<td>0.0001</td>
</tr>
<tr>
<td>TICI success (2b or 3)</td>
<td>33.3% (8/24)</td>
<td>65.8% (25/38)</td>
<td>78.6% (22/28)</td>
<td>50.0% (2/4)</td>
<td>0.0047</td>
</tr>
<tr>
<td>Revascularization without sICH (primary endpoint)</td>
<td>24.0% (6/25)</td>
<td>39.0% (16/41)</td>
<td>64.3% (18/28)</td>
<td>25.0% (1/4)</td>
<td>0.0241</td>
</tr>
<tr>
<td>mRS at Day 90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mRS 0</td>
<td>0.0% (0/25)</td>
<td>5.6% (2/36)</td>
<td>20.0% (5/25)</td>
<td>33.3% (1/3)</td>
<td>0.0066</td>
</tr>
<tr>
<td>mRS 1</td>
<td>0.0% (0/25)</td>
<td>8.3% (3/36)</td>
<td>24.0% (6/25)</td>
<td>33.3% (1/3)</td>
<td>0.0034</td>
</tr>
<tr>
<td>mRS 2</td>
<td>4.0% (1/25)</td>
<td>13.9% (5/36)</td>
<td>12.0% (3/25)</td>
<td>0.0% (0/3)</td>
<td>0.6449</td>
</tr>
<tr>
<td>mRS 3</td>
<td>8.0% (2/25)</td>
<td>22.2% (8/36)</td>
<td>12.0% (3/25)</td>
<td>0.0% (0/3)</td>
<td>0.8978</td>
</tr>
<tr>
<td>mRS 4</td>
<td>28.0% (7/25)</td>
<td>16.7% (6/36)</td>
<td>24.0% (6/25)</td>
<td>33.3% (1/3)</td>
<td>0.7543</td>
</tr>
<tr>
<td>mRS 5</td>
<td>4.0% (1/25)</td>
<td>5.6% (2/36)</td>
<td>0.0% (0/25)</td>
<td>0.0% (0/3)</td>
<td>0.6377</td>
</tr>
<tr>
<td>mRS 6</td>
<td>56.0% (14/25)</td>
<td>27.8% (10/36)</td>
<td>8.0% (2/25)</td>
<td>0.0% (0/3)</td>
<td>0.0002</td>
</tr>
</tbody>
</table>
可能仅见于动脉粥样硬化疾病。

针对血管阻塞因素和局部治疗方法的改进，已显示出改善与无症状性重度颈内动脉狭窄患者的认知损害以及其进展性血管病性脑损伤相关性。动脉粥样硬化病变可能具有潜在的危险性，但关于血管病性脑损伤的预防治疗策略是有限的。这些病变的性质，包括其在无症状性重度颈内动脉狭窄患者中的发病率，但改进于在药物治疗或

颈动脉病变的发病机制和动脉硬化进展的可能因素，包括糖尿病、高血压、血脂异常和吸烟等。这些因素与颈动脉病变的进展密切相关，且可增加患者的风险。

本研究采用 Delphi 法来确定研究参与者。Delphi 法是一种多轮匿名调查法，通过多轮匿名反馈，使研究者和研究参与者之间的信息在一定程度上达到一致，从而达到预测或决策的目的。本研究的目的是通过对无症状性颈内动脉重度狭窄患者的临床特征进行分析，探讨其对认知功能的影响，并提出相应的干预策略。

方法：本研究采用 Delphi 法来确定研究参与者。Delphi 法是一种多轮匿名调查法，通过多轮匿名反馈，使研究者和研究参与者之间的信息在一定程度上达到一致，从而达到预测或决策的目的。本研究的目的是通过对无症状性颈内动脉重度狭窄患者的临床特征进行分析，探讨其对认知功能的影响，并提出相应的干预策略。
部分研究显示，侧枝循环差可能与血肿扩展相关联，但其确切机制仍不清楚。即使如此，侧枝循环差仍被认为是促进血肿扩展的一个重要因素。侧枝循环差可能通过增加缺血区的血液供应，从而促进血肿的扩展。此外，侧枝循环差也可能通过增加缺血区的氧供，从而促进血肿的扩展。因此，侧枝循环差是急性缺血性卒中治疗的一个重要目标。侧枝循环差的治疗包括但不限于药物治疗、介入治疗和手术治疗。药物治疗主要包括抗血小板药物、抗凝药物和溶栓药物。介入治疗主要包括药物洗脱球囊、抗血小板药物和溶栓药物。手术治疗主要包括动脉外瘘、动脉内瘘和动脉内溶栓。侧枝循环差的治疗应在卒中急性期尽早进行，以达到最佳的治疗效果。