Desmopressin Improves Platelet Activity in Acute Intracerebral Hemorrhage

Andrew M. Naidech, MD, MSPH; Matthew B. Maas, MD; Kimberly E. Levasseur-Franklin, PharmD; Eric M. Liotta, MD; James C. Guth, MD; Micheal Berman, BA; Joshua M. Rosenow, MD; Paul F. Lindholm, MD; Bernard R. Bendok, MD; Shyam Prabhakaran, MD; Richard A. Bernstein, MD, PhD; Hau C. Kwaan, MD

Background and Purpose—Minimizing hematoma growth in high-risk patients is an attractive strategy to improve outcomes after intracerebral hemorrhage. We tested the hypothesis that desmopressin (DDAVP), which improves hemostasis through the release of von Willebrand factor, improves platelet activity after intracerebral hemorrhage.

Methods—Patients with reduced platelet activity on point-of-care testing alone (5), known aspirin use alone (1), or both (8) received desmopressin 0.4 μg/kg IV. We measured Platelet Function Analyzer-epinephrine (Siemens AG, Germany) and von Willebrand factor antigen from baseline to 1 hour after infusion start and hematoma volume from the diagnostic to a follow-up computed tomographic scan.

Results—We enrolled 14 patients with mean age 66.8±14.6 years, 11 (85%) of whom were white and 8 (57%) were men. Mean Platelet Function Analyzer-epinephrine results shortened from 192±18 seconds pretreatment to 124±15 seconds (P=0.01) 1 hour later, indicating improved plate activity. von Willebrand factor antigen increased from 242±96% to 289±103% activity (P=0.004), indicating the expected increase in von Willebrand factor. Of 7 (50%) patients who received desmopressin within 12 hours of intracerebral hemorrhage symptom onset, changes in hematoma volume were modest, −0.5 (−1.4 to 8.4) mL and only 2 had hematoma growth. One patient had low blood pressure and another had a new fever within 6 hours of desmopressin administration.

Conclusions—Intravenous desmopressin was well tolerated and improved platelet activity after acute intracerebral hemorrhage. Larger studies are needed to determine its potential effects on reducing hematoma growth versus platelet transfusion or placebo.

Clinical Trial Registration—URL: http://www.clinicaltrials.gov. Unique identifier: NCT00961532.

(Stroke. 2014;45:2451-2453.)

Key Words: blood platelets ▶ cerebral hemorrhage ▶ deamino arginine vasopressin

Hematoma growth after intracerebral hemorrhage (ICH) is associated with worse outcomes.1 Aspirin use is associated with increased mortality,2–4 detectable with point-of-care testing,2 and associated with subsequent hematoma growth and poor outcome at 3 months.6 Thus, improving platelet activity might minimize hematoma growth, improving outcomes. Platelet transfusion is potentially beneficial,7 and a clinical trial is underway.8 Platelet transfusion carries significant risks; however, so pharmacologically increasing platelet activity is an attractive alternative.

Desmopressin (DDAVP) leads to the release of von Willebrand factor (vWF)10 and reduces clinical bleeding.11,12 Bleeding times have been replaced with point-of-care platelet activity testing. The Platelet function analyzer (Siemens AG, Germany) closure time is prolonged by aspirin, and desmopressin normalizes it for several hours.13 We tested the hypothesis that desmopressin improves platelet activity in patients with acute ICH while obtaining data on safety.

Methods

Patients

We prospectively identified patients with acute ICH confirmed with computed tomographic scan. Patients had either known aspirin use or reduced platelet activity on the VerifyNow-ASA (Accucerts, CA) as previously described.16 Detailed criteria are available at the online trial registration.

All enrolled patients received desmopressin 0.4 μg/kg IV for 30 minutes and received other routine care for patients with acute ICH at our institution, including admission to the neuro–spine intensive care unit, serum chemistries, and follow-up computed tomographic scanning.

Received May 6, 2014; accepted June 3, 2014.
From the Department of Neurology (A.M.N., M.B.M., E.M.L., J.C.G., M.B., S.P., R.A.B.), Department of Neurosurgery (J.M.R., B.R.B.), Department of Pathology (P.F.L.), and Department of Hematology (H.C.K.), Northwestern University, Chicago, IL; and Department of Pharmacy, Northwestern Memorial Hospital, Chicago, IL (K.E.L.-F.).
Correspondence to Andrew M. Naidech, MD, MSPH, Department of Neurology, Northwestern University, Abbott Hall 11th Floor, 710 N Lake Shore Dr, Chicago, IL. E-mail a-naidech@northwestern.edu

© 2014 American Heart Association, Inc.

Stroke is available at http://stroke.ahajournals.org

DOI: 10.1161/STROKEAHA.114.006061

2451
Regulatory Approval
The study was approved by the institutional review board, and written consent was obtained. Food and Drug Administration issued an exemption in response to our application for an Investigational New Drug. The study sponsor had no role in the execution of the study, analysis, or decision to submit for publication.

End Points
The primary outcome was change in the Platelet Function Analyzer-epinephrine (using epinephrine as opposed to ADP) from baseline to 1 hour after the start of desmopressin, with vWF antigen as a secondary end point. We prospectively documented acute adverse events: new fever of ≥100.4°F, respiratory distress or pulmonary edema on chest radiography, or hypotension as previously reported. As exploratory aims, we measured hematoma volumes on the diagnostic computed tomography and a follow-up computed tomography with Mayo Clinic Analyze software (Overland Park, KS) and routinely obtained serum chemistries for changes in serum sodium. We measured the modified Rankin Scale (mRS) at 28 days and 3 months with a validated questionnaire.

Statistical Analysis
Normally distributed data are presented as mean±SD, non-normally distributed data as median (Q1–Q3). To determine the change from baseline to follow-up values, we performed generalized linear models with 2 levels of repeated measures (before and after treatment) with IBM SPSS v.21 (Armonk, NY).

Results
We screened from December 2010 through December 2013. We enrolled 14 of 28 eligible patients (Figure 1). The mean age was 66.8±14.6 years, 11 (85%) were white and 8 (57%) were men. Thirteen (93%) had historical hypertension, and 5 (36%) had a history of diabetes mellitus. Desmopressin infusion started 12.25 (5.7 – 23.1) hours after ICH symptom onset.

Study End Points
The Platelet Function Analyzer-epinephrine decreased from 192±18 to 124±15 seconds (P=0.01), consistent with a resolution of aspirin effect (Figure 2). One patient had a paradoxically increased Platelet Function Analyzer-epinephrine but no hematoma growth. vWF antigen increased from 242±96% to 289±103% activity (P=0.004) and increased in every patient, indicating that desmopressin administration was associated with increased vWF levels.

Safety
One (7%) patient had hypotension and another had a new fever within 6 hours of infusion start. The mean change in serum sodium from baseline to a follow-up measure 12 to 24 hours later was 0.6 mEq/L. One patient had a decrease of serum Na from 138 to 135 mEq/L (above our laboratory’s lower limit, 134 mEq/L) in the day after desmopressin administration. Three other patients had a decrease of 2 mEq/L, and 3 had a decrease of 1 mEq/L.

Hematoma Growth
Of 7 patients who received desmopressin within 12 hours of ICH symptom onset, the median change in hematoma volume was −0.5 (−1.4 to 8.4) mL. Two had hematoma growth, one of whom was treated at 3.25 hours after ICH symptom onset and the other at 10.5 hours.

Clinical Outcomes
Three months follow-up could be obtained in 12 (86%) patients. At 3 months, 4 patients had an mRS of ≤1 (no disability), 1 had

Figure 1. Flowchart of screening and enrollment in the study. INR indicates international normalized ratio.

Figure 2. Change in the Platelet Function Analyzer (PFA)-epinephrine (EPI) from baseline to 1 hour after start of desmopressin infusion. Baseline PFA-EPI results shortened from 192±18 to 124±15 seconds (P=0.01) 1 hour later, consistent with a resolution of aspirin effect. One patient had increased PFA-EPI closure time after treatment but no hematoma growth.
an mRS 3 (moderate disability and independent), and 3 had an mRS 4 (moderately severe disability). Four died, 2 with withdrawal of life support before hospital discharge and 2 of apparent cardiac arrest between 1 and 3 months follow-up. The other 2 patients had mRS 4 at last follow-up.

Discussion

Desmopressin infusion was well tolerated after acute ICH, associated with improved measures of platelet activity, increased vWF antigen, and low rates of hematoma growth. These preliminary results suggest that desmopressin is an attractive potential drug treatment for acute ICH.

We tested desmopressin as monotherapy, although it could be combined with platelet transfusion if platelet transfusion in cerebral hemorrhage is positive. If platelet transfusion in cerebral hemorrhage is negative, then desmopressin can be compared with placebo.

Other than the single-arm design, limitations include the lack of stored blood for further assays or routine performance of other specialized assays. We used the mRS as the clinical outcome but have previously noted that health-related quality of life may be more sensitive in survivors of ICH.

In sum, we found that desmopressin improved platelet activity, increased vWF antigen levels, and was well tolerated in patients with acute ICH. Hematoma growth was muted in the subset of patients treated within 12 hours of ICH symptom onset. Given its safety, low cost, and reduction in clinical bleeding, desmopressin is an attractive pharmacological treatment for acute ICH.

Sources of Funding

This study was supported by a grant from the Dixon Translational Research Grant Initiative and the Northwestern Memorial Foundation.

Disclosures

None.

References

Desmopressin Improves Platelet Activity in Acute Intracerebral Hemorrhage

Stroke. 2014;45:2451-2453; originally published online July 8, 2014; doi: 10.1161/STROKEAHA.114.006061
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2014 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/45/8/2451

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org/subscriptions/