Implications of INTERACT2 and Other Clinical Trials
Blood Pressure Management in Acute Intracerebral Hemorrhage
Craig S. Anderson, MD, PhD; Adnan I. Qureshi, MD

The high mortality and morbidity subsequent to acute nontraumatic intracerebral hemorrhage (ICH) has long been recognized, but only recently has the magnitude of its contribution to premature death, disability, and associated economic burden on a global scale been appreciated. Although ICH is less common than ischemic stroke, it causes more deaths than its counterpart worldwide, and in tending to affect large numbers of middle-aged people in developing countries, ICH contributes greatly to lost economic productivity and indirect household costs of illness in many populations. Despite this heavy burden, progress has been slow in finding a safe and widely available acute treatment for ICH, and there is still limited evidence to support various management approaches routinely applied in clinical practice. This includes the efficacy of various agents (eg, mannitol, reversal of anticoagulation), the optimal timing, and technique of surgery to decompress the mass effect of the hematoma for net benefit over procedural risks, and the organization of assessment, monitoring, care, and rehabilitation for patients with acute ICH. The lack of effective treatments in part explains why there has been no clear improvement in survival in patients with ICH in recent decades and the wide differences in outcomes that are related to variations in care. It also reflects the challenges of undertaking clinical research in ICH and participation from international networks to recruit the large numbers of patients required to identify modest but still clinically important treatment effects. A salient recent lesson is that the translation of any potential effects of treatments on an important biomarker, such as hematoma growth in ICH, into improved clinical outcomes, is not as straightforward as hoped. Smaller causal associations and net benefits over harms are more realistic goals in moving forward research in the management of ICH.

INTERACT2 Main Results
A major breakthrough in the treatment of acute ICH has come from the main phase, Intensive Blood Pressure Reduction in Acute Cerebral Hemorrhage Trial (INTERACT2); the key results being announced in May 2013. INTERACT2 has enhanced our understanding of the management of elevated systolic blood pressure (BP) or acute hypertensive response in acute ICH, a therapeutic area that has been shrouded by longstanding neurological dogma over the hazards of rapid BP lowering, in particular of inducing cerebral ischemia. Yet, despite having a large sample size (2839 patients), international collaboration (144 hospitals in 21 countries) and considerable effort on the part of investigators in China (who contributed over two thirds of the patients), the treatment effect on the primary outcome just failed to reach conventional statistical significance on the commonly used threshold of $P<0.05$. Among the 2794 participants for whom the primary outcome of death and major disability could be determined according to the modified Rankin scale (mRS), 719 (52.0%) of 1382 participants receiving intensive treatment (to a target systolic level of ≤140 mmHg within 1 hour) as compared with 785 (55.6%) of 1412 receiving guideline-recommended (target systolic level <180 mmHg) BP lowering treatment within 6 hours of the onset of ICH had a primary outcome (odds ratio 0.87; 95% confidence interval [CI], 0.75–1.01; $P=0.06$). This treatment effect (3.6% absolute) on the primary outcome for patients in the intensive BP lowering group versus those in the guideline group was smaller than had been estimated in designing the study (ie, 7% absolute) based on various assumptions over event rates. Support of a treatment effect was provided by (a) the higher rates of functional recovery at 90 days on an ordinal analysis of the range of scores on the mRS (odds ratio for greater disability 0.87; 95% confidence interval 0.77–1.00; $P=0.04$) among participants randomized to the intensive group and (b) survivors reporting significantly better physical and mental health–related quality of life on a separate outcome measure, the EQ-5D scale, as compared with those allocated to the guideline group. Finally, and not least importantly, intensive BP lowering treatment was shown to be safe, with no difference in mortality (12.0%) or other serious adverse events, including early neurological deterioration and severe hypotension between randomized groups.
Changes to Guidelines
INTERACT2 is expected to result in revisions of guidelines for the management of ICH. The first such move has come from the European Stroke Organisation who have recently published a weak recommendation for early intensive BP lowering, despite classifying the quality of the evidence as moderate. Revisions of the American Heart Association/American Stroke Association guidelines of 2010 are expected soon and are anticipated to provide a stronger recommendation for more aggressive BP control in ICH, although acknowledging that a requirement for Level A Evidence on efficacy is for data to be derived from multiple clinical trials. In regards to a lower target SBP of <140 mmHg, this would now seem firm in being safe (Class I; Level of Evidence I) on the basis of the substantial data derived from multiple sources: INTERACT2, as well as the pilot phase INTERACT1, and the smaller IntraCerebral Hemorrhage Acutely Decreasing Arterial Pressure trial, which followed a similar treatment protocol to the INTERACT studies in studying cerebral perfusion; and observational studies of different intensities of BP lowering, in particular the first Antihypertensive Treatment of Acute Cerebral Hemorrhage (ATACH) study in the United States and the Stroke Acute Management With Urgent Risk-Factor Assessment and Improvement-Intracerebral Hemorrhage Study from Japan.

Barriers to Implementing INTERACT2 Results Into Clinical Practice
Despite this advance, there are still gaps in many of the aspects of the treatment that requires further research, specifically in relation to the timing, intensity, duration, and approach to BP lowering. Moreover, there are issues related to the translation of this new knowledge into clinical practice and decision-making in health care because of a myriad of complex barriers in systems, organization, knowledge, attitudes, and behavior. Those most relevant to INTERACT2 include (a) doubt about the generalizability of existing efficacy data derived across variations in clinical practice and health systems; (b) persistent concerns over the safety or of increased workload of the treatment; (c) inertia associated with embedded attitudes and habits of clinician allied with the need to commit resources to the process of initiating new treatment protocols and policies; (d) logistical difficulties in implementing new therapies that require system changes and staff training, such as in the use of infusion pumps and arterial lines, and the monitoring of patients in nonintensive wards (which occurred in approximately two thirds of INTERACT2 patients); and (e) different opinions on magnitude of benefit for a new intervention required for practice change.

To some extent, implementation of the INTERACT2 results will be hampered by the main results being less robust than many people anticipated, as reflected in recent editorials, letters, and position statements. In particular, the nonsignificant result on the primary outcome analyzed according to the prespecified conventional binary analysis of the mRS has been interpreted by some as requiring additional confirmatory data, despite the more efficient ordinal shift analysis of mRS demonstrating a significant difference in favourable outcomes between intensive and conservative approaches to BP lowering, with consistency of the therapeutic benefit across all grades of severity of disease. However, important questions remain as to whether the magnitude of benefit can be greater with earlier and more rapid BP lowering or in limiting the treatment to particular patient subgroups, such as those with high initial BP or mild-to-moderate severity defined either by clinical grade or hematoma volume. Of course, such restrictions in the use of intensive BP lowering may seriously alter the risk-benefit profile of the strategy and adds complexity to assessment and triaging of patients.

Another issue is that there was no clear time-relation of BP control on outcome for patients randomized early (<4 hours) versus late (≥24 hours) after the onset of ICH in INTERACT2. Taken together with the nonsignificant effect on hematoma growth at 24 hours among participants of the computed tomography substudy, there is the suggestion that BP lowering has no biological effect. However, the modest reduction in hematoma growth seen in INTERACT2 provides independent confirmation of the treatment effect that was seen in the pilot phase INTERACT1 and is statistically significant when the results of these two trials are combined (Figure 1) as well as being shown in a recent meta-analysis of all the completed trials. These data indicate that early intensive BP lowering does have a relatively small (=2 mL reduction) overall effect on hematoma growth in comparison to use of a hemostatic agent such as recombinant tissue Factor VIIa, which administered within 4 hours of the onset of ICH was shown to produce a net 4 mL reduction in hematoma growth in a major clinical trial. BP lowering could have a larger effect with early initiation of treatment. INTERACT2 lacked the power to reliably assess the treatment within the first few hours of ICH onset, which is the time frame when most of the hemorrhage occurs and, therefore, when the effect on attenuating hematoma growth is likely to be greatest. Despite ongoing reinforcement over adherence to the treatment protocol, only 30% of participants in the intensive group achieved the target BP level of <140 mmHg within 1 hour; target systolic BP was reached in most participants over 2 to 4 hours after treatment initiation, some several hours after the onset of ICH and outside the time window of greatest occurrence of hematoma growth (Figure 2).

Additional data from secondary analyses of INTERACT2 identify trends of therapeutic benefit in relation to the time, intensity, and degree of BP control on clinical outcomes and hematoma growth. Crucial information regarding the efficacy (and safety) of early rapid BP lowering will arise from the ongoing ATACH II clinical trial, which uses an intravenous nicardipine-based treatment protocol where the expected BP parameters have been achieved to date. In contrast to the cautious use of intermittent bolus injections of most intravenous hypertensive agents to avoid overshoot hypotension at the time of peak effect (=20–30 mins), infusions of short-acting agents, such as nicardipine and clevidipine, offer greater ability to titrate dose against response. Intravenous infusion of antihypertensive medications can avoid BP variability, in particular peaks in BP, which have been shown to be a strong predictor of poor outcome independent of mean achieved systolic BP.
Finally, the exclusion of patients with severe ICH or who required early surgery, the predominance of patients recruited from China, and the heterogeneity of agents used to lower BP may raise issues over the generalizability of the results and the ideal hypotensive agent to use in their specific patients. However, there is no evidence that the spectrum of hypertension-related ICH and acute hypertensive response is different among various populations. The INTERACT2 tested a management strategy rather than a specific agent for therapeutic benefit in patients presenting with ICH. The safety of treatment, high rates of hematoma expansion in first few hours after symptom onset, and relative uncertainty regarding prognosis early after ICH all underlie the broad applicability of such an approach.

Evaluations of Healthcare Reorganization for Early Intensive BP Lowering

Pre-hospital initiation by paramedical (ambulance) staff represents the ideal approach to achieving early BP reduction, as has been most effectively demonstrated in the Field Administration of Stroke Therapy—Magnesium (FAST-Mag) trial. However, before such a policy can be introduced into an area of practice where clinical expertise is limited and there is a focus on triage and rapid transport of patients to the nearest facility, more data are required on feasibility, agent, safety, and efficacy of BP lowering in patients with a diagnosis of acute stroke in the field, with ICH undifferentiated from ischemic stroke and stroke mimics. One simple approach to prehospital BP treatment is to use transdermal application of glycerol trinitrate patches.

Optimization of BP lowering in hospital is through well-organized care, involving multiple disciplines and the emergency department with the use of streamlined protocols and quality improvement strategies. Such organized paradigms have been effectively demonstrated to facilitate the use of interventions for coronary events and ischemic stroke, for example, of a significant time reduction in the use of rtPA was achieved within just a few months of implementing the Helsinki quality improvement package at Royal Melbourne Hospital in Australia. The greatest delay to achieving BP control in INTERACT2 was in the time from diagnosis (ie, brain computed tomography scan) to randomization, with no overall improvement in this goal for the intensive group over the course of the study. Investigators expressed delays related

<table>
<thead>
<tr>
<th>Absolute growth</th>
<th>Favors intensive</th>
<th>Favors guideline</th>
<th>Difference (95% CI)</th>
<th>P homog</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTERACT1</td>
<td>0.9ml</td>
<td>2.7ml</td>
<td>1.7ml (-0.5 to 4.0)</td>
<td>0.99</td>
</tr>
<tr>
<td>INTERACT2</td>
<td>3.1ml</td>
<td>4.8ml</td>
<td>1.8ml (-0.3 to 3.8)</td>
<td></td>
</tr>
<tr>
<td>OVERALL</td>
<td>2.5ml</td>
<td>4.3ml</td>
<td>1.8ml (0.1 to 3.4)</td>
<td></td>
</tr>
<tr>
<td>Adjusted</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTERACT1</td>
<td>1.5ml</td>
<td>3.3ml</td>
<td>1.8ml (-0.4 to 4.0)</td>
<td>0.96</td>
</tr>
<tr>
<td>INTERACT2</td>
<td>2.9ml</td>
<td>4.6ml</td>
<td>1.8ml (-0.3 to 3.8)</td>
<td></td>
</tr>
<tr>
<td>OVERALL</td>
<td>1.9ml</td>
<td>3.7ml</td>
<td>1.8ml (0.2 to 3.4)</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1. Treatment effects on absolute hematoma growth (mL) from baseline to 24 hours, by study. Solid boxes represent odds ratio (OR) and horizontal lines represent 95% confidence interval (CI) for individual trials; diamond represents 95% CI for the pooled result. Intensive group had blood pressure (BP) lowering to a systolic target <140 mm Hg within 1 hour; guideline group had BP lowering treatment if the systolic level was >180 mm Hg without a specific target. Results were adjusted for baseline volume and location of hematoma, time from onset to computed tomography, and trial. ICH indicates intracerebral hemorrhage.

Figure 2. Systolic blood pressure levels at and over 24 hours postrandomization in INTERACT2 (Intensive Blood Pressure Reduction in Acute Cerebral Hemorrhage Trial). The lines incorporate blood pressure (BP) values with 95% confidence intervals represented by the vertical bars for the intensive group compared with the guideline group for 15 minute intervals over 1 hour and 6 hourly intervals to 24 hours postrandomization. All between-group BP levels are significant (P < 0.0001) from 15 minutes. Average time from the onset of intracerebral hemorrhage (ICH) was 3.8 hours. CI indicates confidence interval.
to ongoing concerns over safety, difficulties achieving the BP target with available agents, and in the times taken for consent/randomization and to prescribe, dispense, and administer medication. All of these impediments are potentially overcome by a system-based approach to quality improvement.

The inclusion of various BP lowering parameters as part of multifaceted quality performance indices has the potential to accelerate the implementation of guideline recommendations and improve the process of care in ICH.3,4 This could be further enhanced by certification or reimbursement incentives for hospitals, as has been apparent in the use of thrombolysis for acute ischemic stroke.5 For example, treatment success could be defined as the number of hypertensive (eg, 2 consecutive systolic BP ≥180 mm Hg and first systolic BP <180 mm Hg) ICH patients being treated or the ability to reach a target (ie, systolic BP <140 mm Hg) within 1 hour of initiating intravenous antihypertensive medication. A validation study of such quality of care metrics showed that the number of parameters being met correlated with better survival after ICH.3

Summary

INTERACT2 provides important new evidence of efficacy and safety of early intensive BP lowering in ICH. These data will be further supplemented with results of the ATACH II study and in a meta-analysis of all such trials being undertaken as part of a new wave of analyses under the auspices of the Blood pressure in Acute Stroke Collaboration.60 We argue that a key next step is to assess the effectiveness of this intervention in routine clinical practice in which the context-specific systems for delivering care are incorporated into the intervention design and in turn are also tested. To effectively reduce the challenges in implementation of complex interventions that require system changes in clinical practice, data must be acquired on cost-effectiveness and the identification of barriers to such implementation to enhance the application of early targeted BP lowering as a standard of care in ICH.

Sources of Funding

The Intensive Blood Pressure Reduction in Acute Cerebral Hemorrhage Trial study was funded by the National Health and Medical Research Council of Australia. The Antihypertensive Treatment of Acute Cerebral Hemorrhage II study is funded by the National Institute of Health and the National Institute of Neurological Disorders and Stroke (U01NS062091 and R01NS061861), with medication provided by Chiesi, USA.

Disclosures

Dr Anderson holds a Senior Principal Research Fellowship of the National Health and Medical Research Council of Australia and has received advisory board fees from Pfizer and The Medicines Company and speaker fees and travel paid by Takeda China and Covidien. Dr Qureshi is on the speaker’s bureau of Covidien, Mansfield, MA.

References

Key Words: blood pressure • clinical trial • evidence-based medicine • hypertension • intracerebral hemorrhage
Implications of INTERACT2 and Other Clinical Trials: Blood Pressure Management in Acute Intracerebral Hemorrhage
Craig S. Anderson and Adnan I. Qureshi

Stroke. 2015;46:291-295; originally published online November 13, 2014;
doi: 10.1161/STROKEAHA.114.006321

Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2014 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/46/1/291

Data Supplement (unedited) at:
http://stroke.ahajournals.org/content/suppl/2016/04/10/STROKEAHA.114.006321.DC2
http://stroke.ahajournals.org/content/suppl/2016/04/07/STROKEAHA.114.006321.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/
급성뇌외상성뇌내출혈 이후의 높은 사망률과 이환율은 오래 전부터 인식되어 왔으나, 뇌내출혈의 조기사망, 장애 정도 및 이와 관련된 세계의 경제적 부담 정도에 대해서는 최근에 와서야 인식이 되기 시작했다.1,2 뇌내출혈은 허혈뇌졸중에 비하여 흔하지 않지만, 전세계적으로는 허혈뇌졸중에 비해 사망률이 높고,1 개발도상국에서는 상당수의 중년 인구에 영향을 주기 때문에, 뇌내출혈은 많은 국가에서 경제적인 생산성의 상당히 감소시키고 동시에 질병으로 인한 간접적인 가계의 부담 또한 상당히 가중시키는 질환이다.1,3 이러한 무거운 부담에도 불구하고 뇌내출혈에 대한 안전하고 널리 이용 가능한 급성기 치료를 찾기 위한 진전은 느리게 진행되었고, 실제 임상에 일반적으로 적용할 수 있는 다양한 치료적 접근을 맞춰당할 수 있는 증기는 아직도 부족하다. 이 고찰은 급성뇌내출혈을 가진 환자들에서 다양한 치료제의 효용성을, mannitol, 항응고치료의 반응 등에 대해 고찰하였고, 혈종의 크기와 관련된 수술의 시기와 시술 방법에 대한 독특도, 치료의 실패에 대한 시도나 실패에 대한 내용을 포함하였다.4,5 효과적인 치료가 없었다는 사실은 최근 수십 년간의 뇌내출혈 환자의 생존에 영향을 주었다. 이는 뇌내출혈은 사람들은 적절한 치료를 받지 못하는 환자들에 영향을 미친다.4,5,6,7 뇌내출혈은 사망률 및 주요 장애에 대한 일차 종점은 수정Rankin척도로 결정되었다. 뇌내출혈 발생 6시간 이내에 적극적인 혈압강하치료(수축기 혈압을 140 mmHg 미만으로 도달)를 받은 1382명 중에서 719명(52.0%)이 일차 종점에 도달하였고, 기존의 치료지침에 근거한 치료를 받은 1412명 중에서는 785명(55.6%)이 일차 종점에 도달하였다(OR 0.87, 95% CI, 0.75-1.01; P = 0.06). 지침을 고수한 그룹과 비교하여 적극적인 혈압강하 치료를 받은 환자들에서는 유익한 것으로 분석되었고, (a) 90일째 기능적인 지능의 전반적 측정에서 mRS의 범위를 이용한 순서 분석에서는 적극적인 치료에 대한 유익한 효과(장애의 감소, OR 0.87; 95% CI, 0.77-1.00; P = 0.04), (b) 별도의 실험적 관찰에서의 결과에 따르면, INTERACT2의 주요 결과

급성뇌내출혈 치료에 있어 중요한 진전은 Intensive Blood Pressure Reduction in Acute Cerebral Hemorrhage Trial (INTERACT2)에서 얻어졌다.8 INTERACT2는 급성뇌내출혈에서 상승된 수축기 혈압과 급성고혈압성 반응에 대한 관리를 이해하는데 도움이 되었고, 급작산 혈압강하가 대뇌혈관을 부담으로 유도하여 유해할 수 있다는 오랫동안 지속되어 있던 신경과학적 정설에 의해 뒤덮여 있던 치료의 영역을 이해하는데 많은 도움을 주었다. 그러나 많은 표본 수(2839명), 국내적인 협력(21개 국가의 144개 병원)과 중국 연구자들의 상당한 노력을 통한 결과, 보고한 결과는 중앙의 2/3 이상이 중국에서 동록되어도 불구하고, 일부 결과에 대한 치료의 효과는 흔히 사용되는 유의수준 0.05 미만이라는 전통적인 통계적 유의성에는 도달하지 못하였다. 2794명의 환자에서 사망이나 정상 장애에 대한 일차 종점은 수정Rankin척도와 mRS로 결정되었다. 뇌내출혈 발생 6시간 이내에 적극적인 혈압강하치료(수축기 혈압을 140 mmHg 미만으로 도달)를 받은 1382명 중에서 719명(52.0%)이 일차 종점에 도달하였고, 기존의 치료지침에 근거한 치료(수축기 혈압을 180 mmHg 미만으로 도달)를 받은 1412명 중에서는 785명(55.6%)이 일차 종점에 도달하였다(OR 0.87, 95% CI, 0.75-1.01; P = 0.06). 지침을 고수한 그룹과 비교하여 적극적인 혈압강하 치료를 받은 환자들에게 일차 종점에 대한 치료 효과가(점자, 3.6%)를 신경과학적 연구를 계획할 때 발생시에 대한 다양한 가정에 기초한 예상 값(7%)에 비해 적은 것으로 나타났다. 적극적인 혈압강하치료의 효과를 지지하는 것으로는, (a) 90일째 기능적인 회복이 mRS의 범위를 이용한 순서 분석에서는 적극적인 치료에 알맞은 환자들에게는 유익한 것으로 분석되었고, (b) 별도의 실험적 관찰에서의 결과에 따르면, INTERACT2의 주요 결과

From the Neurological and Mental Health Division, The George Institute for Global Health, University of Sydney and Royal Prince Alfred Hospital, Camperdown, NSW, Australia (C.S.A.) and Zeenat Qureshi Stroke Institute, St Cloud Hospital Stroke Center, St Cloud, MN (A.I.Q.).

Correspondence to Craig S. Anderson, MD, PhD, The George Institute for Global Health and University of Sydney and Royal Prince Alfred Hospital, PO Box M201, Missenden Rd, Camperdown, NSW 2050, Australia. E-mail canderson@georgeinstitute.org.au

© 2014 American Heart Association, Inc.
결과평가 방법인 EQ-5D 척도에서 진료지침군으로 배정된 군에 비해 적극적 치료를 받은 환자들이 유의하게 더 나은 신체적 및 정신적 건강관련 삶의 질 점수를 보고한 것이라 할 수 있다. 마지막으로 중요하게도 무작위할당된 두 그룹을 비교한 결과 적극적인 혈압강하는 사망률(12%)과 조기 신경학적 악화 및 심한 저혈압을 포함한 중대한 이상 사건에서는 차이를 보이지 않아 안전한 것으로 조사되었다.

치료지침의 변화
INTERACT2의 결과는 뇌내출혈의 치료에 대한 지침에 변화를 가져다 줄 수 있을 것으로 기대하고 있다. 이러한 최초의 변화는 유럽 뇌졸중학회에서 시작되었는데, 근거의 수준이 높지는 않은 것으로 분류하였지만 초기의 적극적인 혈압 조절에 대한 약한 수준의 권고를 제시하였다. 2010년에 발간된 미국 심장학회와 뇌졸중학회의 지침에 대한 수정이 조만간 이루어질 예정이다. 이 지침에서는 효과에 Level A 수준 근거를 위해서는 다수의 임상시험으로부터 도출된 자료가 있어야 하지만 뇌내출혈 환자에서 적극적인 혈압 조절에 대한 좀 더 강한 권고를 제시한 것으 로 기대하고 있다. INTERACT2, INTERACT1의 예비연구, 13 대뇌 관류를 연구하기 위해 INTERACT2의 치료 프로토콜을 따랐던 the IntraCerebral Hemorrhage Acutely Decreasing Arterial Pressure 연구와 처음으로 혈압조절의 강도에 대한 관찰 연구로 미국에서 진행된 Antihypertensive Treatment of Acute Cerebral Hemorrhage (ATACH) 연구와 일본에서 진행된 the Stroke Acute Management With Urgent Risk-Factor Assessment and Improvement-Intracerebral Hemorrhage Study와 같은 다양한 종류의 연구들을 통해 평가해 볼 때 수축기 혈압을 140 미만으로 정하는 것은 확실한 안전한 것으로 평가된다.(Class I: 근거수준 1)

INTERACT2의 결과를 실제 임상에 적용할 때의 장벽
이러한 발전에도 불구하고 뇌내출혈 환자에서 혈압강하의 시 점, 강도, 기간 및 접근과 관련하여 차후의 연구에서 요구되는 치료와 관련된 다양한 관점에서의 격차는 아직도 존재한다. 더욱이 이러한 새로운 지식을 보건관점에서 적용할 때는 많은 문제들도 있는데, 예를 들어 초기 혈압이 높거나 임상적으로 혹은 혈압의 크기에 따라 경증과 중증으로 정 의된 환자들만에 대한 연구가 있어야 할 것으로 생각된다. 미국의 다양한 혈압강하의 실험을 제한하는 것은 전략에 대한 위험 대비 효과의 정도를 심각하게 변화시킬 수 있고 환자들 을 평가하고 분류하는데 복잡성을 더할 수 있다.

또 다른 문제로는 INTERACT2의 뇌내출혈의 발생 이후 4시간 미만과 4시간 이상으로 무작위할당된 환자들의 혈압조절의 시간과 임상적 결과의 관련성은 없었다는 것을 들 수 있다. 26전산화단층촬영을 사용한 소그룹 분석에서 2시간까지의 혈종의 크기는 두 그룹간에 유의하지 않았다는 것을 같이 감안한다면 혈압강하의 생물학적인 효과가 없다고 제시할 수 있다. 그러나 더 초기에, 더 신속하게 혈압을 낮출 경우 더 많은 이득이 있겠지만, 혹은 특정 환자들, 예를 들어 초기 혈압이 높거나 임상적으로 혹은 혈압의 크기에 따라 경증과 중증으로 정의된 환자들만에 대한 연구가 있어야 할 것으로 보인다. 물론 이러한 엄격한 혈압강하의 실험을 제한하는 것은 전략에 대한 위험 대비 효과의 정도를 심각하게 변화시킬 수 있고 환자들을 평가하고 분류하는데 복잡성을 더할 수 있다.

또 다른 문제로는 INTERACT2의 뇌내출혈의 발생 이후 4시간 미만과 4시간 이상으로 무작위할당된 환자들의 혈압조절의 시간과 임상적 결과의 관련성은 없었다는 것을 들 수 있다. 26전산화단층촬영을 사용한 소그룹 분석에서 2시간까지의 혈종의 크기는 두 그룹간에 유의하지 않았다는 것을 같이 감안한다면 혈압강하의 생물학적인 효과가 없다고 제시할 수 있다. 그러나 더 초기에, 더 신속하게 혈압을 낮출 경우 더 많은 이득이 있겠지만, 혹은 특정 환자들, 예를 들어 초기 혈압이 높거나 임상적으로 혹은 혈압의 크기에 따라 경증과 중증으로 정의된 환자들만에 대한 연구가 있어야 할 것으로 보인다. 물론 이러한 엄격한 혈압강하의 실험을 제한하는 것은 전략에 대한 위험 대비 효과의 정도를 심각하게 변화시킬 수 있고 환자들 을 평가하고 분류하는데 복잡성을 더할 수 있다.

INTERACT2의 결과를 실제 임상에 적용할 때의 장벽
이러한 발전에도 불구하고 뇌내출혈 환자에서 혈압강하의 시 점, 강도, 기간 및 접근과 관련하여 차후의 연구에서 요구되는 치료와 관련된 다양한 관점에서의 격차는 아직도 존재한다. 더욱이 이러한 새로운 지식을 보건관점에서 적용할 때는 많은 문제들도 있는데, 예를 들어 초기 혈압이 높거나 임상적으로 혹은 혈압의 크기에 따라 경증과 중증으로 정의된 환자들만에 대한 연구가 있어야 할 것으로 생각된다. 미국의 다양한 혈압강하의 실험을 제한하는 것은 전략에 대한 위험 대비 효과의 정도를 심각하게 변화시킬 수 있고 환자들을 평가하고 분류하는데 복잡성을 더할 수 있다.

INTERACT2의 결과를 실제 임상에 적용할 때의 장벽
이러한 발전에도 불구하고 뇌내출혈 환자에서 혈압강하의 시점, 강도, 기간 및 접근과 관련하여 차후의 연구에서 요구되는 치료와 관련된 다양한 관점에서의 격차는 아직도 존재한다. 더욱이 이러한 새로운 지식을 보건관점에서의 적용에 대한 적극적인 혈압 조절에 대한 약한 수준의 권고를 제시한다. 12010년에 발간된 미국 심장학회와 뇌졸중학회의 지침에 대한 수정이 조만간 이루어질 예정이다. 이 지침에서는 효과에 Level A 수준 근거를 위해서는 다수의 임상시험으로부터 도출된 자료가 있어야 하지만 뇌내출혈 환자에서 적극적인 혈압 조절에 대한 좀 더 강한 권고를 제시한 것으로 기대하고 있다. INTERACT2, INTERACT1의 예비연구, 13 대뇌 관류를 연구하기 위해 INTERACT2의 치료 프로토콜을 따랐던 the IntraCerebral Hemorrhage Acutely Decreasing Arterial Pressure 연구와 처음으로 혈압조절의 강도에 대한 관찰 연구로 미국에서 진행된 Antihypertensive Treatment of Acute Cerebral Hemorrhage (ATACH) 연구와 일본에서 진행된 the Stroke Acute Management With Urgent Risk-Factor Assessment and Improvement-Intracerebral Hemorrhage Study와 같은 다양한 종류의 연구들을 통해 평가해 볼 때 수축기 혈압을 140 미만으로 정하는 것은 확실히 안전한 것으로 평가된다.(Class I: 근거수준 1)

INTERACT2의 결과를 실제 임상에 적용할 때의 장벽
이러한 발전에도 불구하고 뇌내출혈 환자에서 혈압강하의 시점, 강도, 기간 및 접근과 관련하여 차후의 연구에서 요구되는 치료와 관련된 다양한 관점에서의 격차는 아직도 존재한다. 더욱이 이러한 새로운 지식을 보건관점에서의 적용에 대한 적극적인 혈압 조절에 대한 약한 수준의 권고를 제시한다. 12010년에 발간된 미국 심장학회와 뇌졸중학회의 지침에 대한 수정이 조만간 이루어질 예정이다. 이 지침에서는 효과에 Level A 수준 근거를 위해서는 다수의 임상시험으로부터 도출된 자료가 있어야 하지만 뇌내출혈 환자에서 적극적인 혈압 조절에 대한 좀 더 강한 권고를 제시한 것으로 기대하고 있다. INTERACT2, INTERACT1의 예비연구, 13 대뇌 관류를 연구하기 위해 INTERACT2의 치료 프로토콜을 따랐던 the IntraCerebral Hemorrhage Acutely Decreasing Arterial Pressure 연구와 처음으로 혈압조절의 강도에 대한 관찰 연구로 미국에서 진행된 Antihypertensive Treatment of Acute Cerebral Hemorrhage (ATACH) 연구와 일본에서 진행된 the Stroke Acute Management With Urgent Risk-Factor Assessment and Improvement-Intracerebral Hemorrhage Study와 같은 다양한 종류의 연구들을 통해 평가해 볼 때 수축기 혈압을 140 미만으로 정하는 것은 확실히 안전한 것으로 평가된다.(Class I: 근거수준 1)
만이 한 시간 이내에 140 mmHg 미만의 혈압 목표에 도달하였 다. 대부분의 환자들은 치료 시작 이후 2-4시간 사이에 목표로 한 수축기 혈압에 도달하였는데 이 시기는 뇌내출혈 발생 시점에 서 몇 시간 정도 경과한 시간으로 혈종의 증가가 가장 많이 발생 하는 시기보다 늦은 시각이었다(Figure 2). INTERACT2의 이차 분석에 의한 추가적인 데이터는 치료 시간, 강도 및 혈압 조절 정 도와 임상 결과 및 혈증 증가에 대한 치료 이득의 영향을 보여주 었다. 22

조기의 신속한 혈압강하의 효과(및 안정성)에 대한 중요한 정 보들은 현재 진행 중인 ATACCH II 임상시험으로부터 얻게 될 것 인데, 이 임상에서는 nicardipine을 기본으로 한 정맥내 치료 프로토콜을 사용하였고 예상되는 혈압 수치23을 얻을 수 있음을 로 전망하고 있다. 최대 효과 시점(20-30분)에 발생할 수 있는 과대 저혈압(overshoot hypotension)을 예방하기 위해 조심해서 간헐적인 일시주사를 사용해야 하는 대부분의 정맥내 혈압강하 제제는 반대로 nicardipine과 clevidipine26가 같은 속효성 제제는 반응에 대비한 용량을 적절 하는데 있어 장점을 제공할 수 있다. 항고혈압 약제의 정맥 내 주입은 혈압의 변동성,31 또는 부분적으로는 혈압의 최고치를 줄일 수 있는데, 평균 수축기 혈압과는 독립적으로 혈압의 최고치는 블랙야의 일차의 영향을 분 야와 알려져 있다. 32

마지막으로 심각한 상태의 뇌내출혈과 조기 수술이 필요한 환 자들은 제외되었던 것, 중국으로부터 모집한 환자들에 많았던 점 그리고 혈압강하를 위해 사용되었던 약제들의 이질성은 결과의 일반화에 있어 문제를 제기할 수 있고, 환자들을 치료하는데 어 용되기 위한 이상적인 혈압강하제가 무엇인지에 대한 문제를 제 기할 수 있다. 그러나 고혈압과 관련된 뇌내출혈과 급성고혈압 성 반응의 정도가 인종에 따라 다양한 것인지에 대한 증거는 없 다. INTERACT2는 뇌내출혈을 보인 환자들에서 치료효과를 보이는 특정 약제보다는 처치에 대한 전략을 강조하였다. 치료의 안전성, 증상 발생 및 시간 이내 초기의 높은 혈종의 크기 증가, 뇌내출혈 이후 초기의 예후와 관련된 상대적인 불확실성은 이러한 접근의 간별적 전략의 적용의 근간을 이룬다. 33

조기의 엄격한 혈압강하에 대한 의료의 재편성에 대한 평가

Field Administration of Stroke Therapy–Magnesium (FAST–Mag) 연구34에서는 가장 효과적으로 보여준 바와 같이 비 의료인에 의해 환자 도착 이전에 혈압 조절을 시작하는 것은 조기의 혈압강하를 얻기 위한 이상적인 접근법으로 제시될 수 있다. 그러나 이러한 정책이 임상적인 전문성을 가진 의 사들이 제한된다. 그리고 또한 환자들이 가장 가까운 병원으로 분류되고 신속하게 이동하는데 초조에 맞춰지는 실제 임상에 도입되기 이전에 급성뇌출혈으로 진단된 환자들, 혈압강하 증상을 보인 환자들과 뇌내출혈 환자 및 뇌졸중 유사 증상을 보이는 환자 들에게 혈압강하를 하는 것이 실천 가능한지, 어떠한 약제를 사 용해야 하는지, 안전성과 효과가 있는가에 대한 추가적인 데이터 가 요구된다. 환자 도착 이전에 혈압의 조절을 위한 전망은 쉬운 접근법은 피부를 통한 glycerol trinitrate 패치를 사용하는 것이 다. 35

병원 내에서 혈압강하를 최적화하기 위해서는 유기적인 흐름 의 프로토콜을 사용하고 할 수 있는 전략을 가진 다 학계적 그리고 응급의학과 관련된 잘 조직된 치료체계가 필요하다. 이러한 조직된 패키지는 관리학적 사고 이나 혈압 뇌졸중에서 시술을 시행하는 데 있어 효과적이었음이 증명이 되 었다. 일례로 호주의 Royal Melbourne 병원에서 Helsinki quality improvement package를 단지 몇 개월만 적용한 이후에 평가에 의한 추가적인 혈압 변이 얻을 수 있었다. 37,38

![Figure 1. Treatment effects on absolute hematoma growth (mL) from baseline to 24 hours, by study. Solid boxes represent odds ratio (OR) and horizontal lines represent 95% confidence interval (CI) for individual trials; diamond represents 95% CI for the pooled result. Intensive group had blood pressure (BP) lowering to a systolic target <140 mmHg within 1 hour; guideline group had BP lowering treatment if the systolic level was >180 mmHg without a specific target. Results were adjusted for baseline volume and location of hematoma, time from onset to computed tomography, and trial. ICH indicates intracerebral hemorrhage.](image-url)
요약

INTERACT2는 뇌내출혈에서 초기의 적극적 혈압강하에 대한 효과 및 안전성에 대한 중요하고 새로운 증거들을 제공하였다. 이 결과는 ATACH II 연구와 Blood pressure in Acute Stroke Collaboration의 승인 하에 새로운 분석 방법의 일환으로 모든 연구 결과들을 종합하여 메타분석의 해석에 의해 추가적으로 보충될 것이 다. 다음으로 가장 중요한 단계는 이러한 시도가 치료를 전달하 기 위한 문맥 특이 체계가 조정계획으로 통합되어 있는 통상적인 임상환경에서도 유용한지를 평가하고, 둘을 이어 이것을 증증하 는 것이라고 사료된다. 실제 임상에서의 체계 변화를 요구하는 복잡한 조정을 적용하는데 있어서의 어려움을 효과적으로 줄이 기 위해서는 비용효과와 본질적 및 뇌내출혈 환자의 표준치료 를로서 조기에 혈압강하에 도달하는 것을 향상시키기 위해 발생 할 수 있는 장벽에 대한 데이터들을 알아야 한다.

Sources of Funding

The Intensive Blood Pressure Reduction in Acute Cerebral Hemorrhage Trial study was funded by the National Health and Medical Research Council of Australia. The Antihypertensive Treatment of Acute Cerebral Hemorrhage II study is funded by the National Institute of Health and the National Institute of Neurological Disorders and Stroke (U01NS062091 and R01NS061861), with medication provided by Chiesi, USA.

Disclosures

Dr Anderson holds a Senior Principal Research Fellowship of the National Health and Medical Research Council of Australia and has received advisory board fees from Pfizer and The Medicines Company and speaker fees and travel paid by Takeda China and Covidiem. Dr Qureshi is on the speaker’s bureau of Covidiem, Mansfield, MA.

References

Key Words: blood pressure ■ clinical trial ■ evidence-based medicine ■ hypertension ■ intracerebral hemorrhage
Значение INTERACT2 и других клинических испытаний. Контроль артериального давления при остром внутримозговом кровоизлиянии

Испытание INTERACT2 предоставило важные новые доказательства эффективности и безопасности раннего интенсивного снижения АД при внутримозговом кровоизлиянии (ВМК). Эти данные будут в дальнейшем дополнены результатами исследования ATACH II и мета-анализа всех подобных испытаний, проводимых в рамках нового ряда анализов под эгидой АД на острый период инсульта [40]. Мы утверждаем, что следующим ключевым шагом является оценка эффективности этого вмешательства в рутинной клинической практике, при которой специфические системы оказания помощи включены в дизайн вмешательства и в свою очередь также проходят проверку. Для эффективного уменьшения проблем в реализации сложных вмешательств, которые требуют системных изменений в клинической практике, необходимо получить данные об экономической эффективности и выявить препятствия на пути внедрения этих методов для повышения эффективности применения раннего целевого снижения АД в качестве стандарта по оказанию помощи при ВМК.

Ключевые слова: артериальное давление (blood pressure), клиническое исследование (clinical trial), доказательная медицина (evidence-based medicine), гипертензия (hypertension), внутримозговое кровоизлияние (intracerebral hemorrhage)

Хорошо известно, что для острого нейравматического внутримозгового кровоизлияния (ВМК) характерны высокая смертность и заболеваемость, но только совсем недавно оценили его влияние на преждевременную смертность, инвалидизацию и связанную с ними экономические затраты в глобальном масштабе [1, 2]. Несмотря на более редкую встречаемость по сравнению с ишемическим инсультом, во всем мире ВМК чаще является причиной летального исхода [1]. В связи с наметившейся тенденцией к увеличению заболеваемости среди лиц среднего возраста в развивающихся странах ВМК в значительной степени способствует снижению экономической производительности и увеличению косвенных затрат на лечение во многих популяциях [1, 3]. Несмотря на данную тенденцию, прогресс в поиске безопасного и широко доступного метода лечения ВМК отсутствует, и по-прежнему ограничено число доказательств в поддержку традиционно применяемых в клинической практике различных подходов к лечению. К ним относятся эффективность различных препаратов (например, маннитол, обратимая антикоагуляция), оптимальные сроки и методы оперативных вмешательств для декомпрессии масс-эффекта гематомы с явными преимуществами над операционными рисками и организацией обследования, мониторинга, лечения и реабилитации пациентов с острым ВМК [4, 5]. Отсутствие эффективных методов лечения частично объясняет отсутствие четкого повышения выживаемости у пациентов с ВМК на протяжении последних десятилетий [6, 7] и более различия в исходах, связанные с вариантами в применяемых методах лечения [4]. Это также объясняет проблемы проведения клинических исследований при ВМК и участии международных центров для отбора большого количества пациентов, необходимого для выявления умеренного, но клинически важного эффекта лечения. Характерный последний урок заключается в том, что трансляция любых потенциальных эффектов лечения в отношении важных биомаркеров, таких как увеличение гематомы при ВМК, на оптимизацию клинических исходов, происходит не так, как хотелось бы. Небольшие причинно-следственные связи и явное преимущество над вредными последствиями являются более реалистичными целями в продвижении исследований по лечению ВМК.

Основные результаты испытания INTERACT2

Основной прорыв в лечении острого ВМК произошел после публикации результатов основной фазы испытания по снижению артериального давления (АД) при остром мозговом кровоизлиянии INTERACT2 (Intensive Blood Pressure Reduction in Acute Cerebral Hemorrhage Trial); ключевые результаты были анонсированы в марте 2013 г. [8]. Испытание INTERACT2 улучшило наше понимание в отношении управления повышением систолическим АД или острой гипертензивной реакцией [9] при остром ВМК – терапевтической области, которая была окутана многолетней неврологической догоям об опасности быстрого снижения АД, в частности в связи с развитием ишемии головного мозга. Тем не менее несмотря на наличие большой выборки (2839 пациентов), международного сотрудничества (144 клиники в 21 стране) и значительных усилий со стороны китайских исследователей (зачисленных в испытание более двух третей пациентов), влияние лечения на первичный исход не достигло традиционной статистической значимости с обспечиваем пороговым значением р<0,05. Среди 2794 участников сравнивали две группы пациентов, у которых можно было определить первичный исход в виде летальности или тяжелой инвалидизации в соот-
вентиции с модифицированной шкалой Рэйкина (мШР). Сравнивали 719 (52,0%) участников из 1382, которым проводили интенсивную терапию (снижение уровня систолического АД до целевого <140 мм рт.ст. в течение 1 часа) с 785 (55,6%) участниками из 1412, которым проводили рекомендованное стандартами [10] снижение АД в течение 6 часов с момента развития ВМК (целевая уровень систолического АД<180 мм рт.ст.). В первой группе отметили развитие первичного исхода (обращение шансов [ОШ]=0,87; 95% доверительный интервал ДИ от 0,75 до 1,01; p=0,06). Это влияние на первый исход от лечения (3,6% по абсолютной величине) в группе интенсивного снижения давления по сравнению с контрольной группой пациентов был меньше, чем показатель, рассчитанный при разработке дизайна исследования (т.е. 7% по абсолютной величине) на основе различных предположений о частоте развития событий. В пользу эффекта от лечения свидетельствовало: (а) повышение уровня функционального восстановления через 90 дней по результатам порядкового анализа диагностика оценки (ОШ для развития более тяжелой инвалидизации 0,87; 95% ДИ от 0,77 до 1,00; p=0,04) среди участников, рандомизированных в группу интенсивного лечения; (б) данные о значительно лучшем качестве жизни, связанном с физическим и психическим состоянием, по отдельным критериям оценки по шкале EQ-5D [11] среди выживших в группе интенсивного лечения по сравнению с пациентами контрольной группы. И, наконец, что не менее важно, интенсивное снижение АД было безопасным, без различий в уровне смертности (12,0%) или частоте развития других серьезных побочных эффектов, включая ранее неврологическое ухудшение и тяжелую гипотонию, между рандомизированными группами.

Изменения в стандартах

Результаты испытания INTERACT2 ожидаемо приведут к пересмотру стандартов по лечению ВМК. Первый такой шаг сделала Европейская организация инсульта, которая недавно опубликовала осторожную рекомендацию о раннем интенсивном снижении АД, несмотря на то что классифицировала качество доказательств как умеренное [12]. В ближайшее время ожидается пересмотр рекомендаций Американской ассоциации сердца/Американской Ассоциации инсульта 2010 г. [10], в которых, по-видимому, появится четкая рекомендация более интенсивного контроля АД при ВМК, несмотря на то, что требование для доказательства эффективности уровня А предъявляется к данным различных клинических испытаний. В отношении снижения АД: в настоящее время уровень целевого САД<140 мм рт.ст. считается безопасным (Класс I, уровень доказательности I) на основе существующих данных. Данные получены из нескольких источников: испытания INTERACT2, а также из пилотной фазы испытания INTERACT1 [13] и небольшого испытания острого снижения АД при внутримозговом кровоизлиянии (IntraCerebral Hemorrhage Acutely Decreasing Arterial Pressure trial) [14], в которых использовали протокол лечения, аналогичный испытаниям INTERACT, для изучения перфузии головного мозга. Данные также взяты из обсервационных исследований по различной интенсивности снижения АД, в частности первого исследования ангиогипертензивного лечения при остром мозговом кровоизлиянии ATACH (Antihypertensive Treatment of Acute Cerebral Hemorrhage), проведенного в Соединенных Штатах [15], и исследования острого инсульта с оценкой и улучшением неотложных факторов риска при внутримозговом кровоизлиянии (Stroke Management With Urgent Risk-Factor Assessment and Improvement-Intracerebral Hemorrhage Study) в Японии [16].

Представления на пути реализации результатов испытания INTERACT2 в клинической практике

Несмотря на это достижение, все еще существуют проблемы во многих аспектах лечения, которые требуют дальнейших исследований, в частности в отношении сроков, интенсивности, продолжительности и подхода к снижению АД. Кроме того, существуют проблемы, связанные с реализацией этих результатов в клинической практике и процессом принятия решений при оказании медицинской помощи [17, 18] из-за множества сложных препятствий в системе, организации, знании, отношении и поведении [19]. К наиболее важным препятствиям в отношении реализации результатов интерпретации INTERACT2 относятся: (а) сомнения относительно обобщения существующих данных по эффективности, полученных в условиях изменений в клинической практике и системе здравоохранения; (б) постоянные опасения по поводу безопасности или трудоемкости лечения; (в) инерция, связанная с привычками врачом и привычками в сочетании с необходимостью выделения ресурсы в процессе инновирования новых протоколов и стратегии лечения; (г) технические трудности в реализации новых методов лечения, которые требуют системных изменений и подготовки персонала, например использование инфузоматов и внутриarterиальных катетеров, мониторинг пациентов не в палатах интенсивной терапии (как у двух третей пациентов в испытании INTERACT2); (д) различия во мнениях относительно величины эффекта нового метода вмешательства, необходимого для изменения практики. В какой-то степени, реализации результатов испытания INTERACT2 будет препятствовать невысокая надежность основных результатов, чем, чтобы обсудили многие люди, что отражено в последних редакционных статьях, письмах и положениях [20–22]. В частности, отражено незначительное влияние на начальный исход, проанализированное с помощью заранее определенного традиционного бинарного анализа оценки по использованной шкале Рэйкина (МР). Некоторые эксперты интерпретируют этот результат, как требующий дополнительного подтверждения [22], несмотря на более эффективный анализ скорого свинга оценки по МР [23, 24], демонстрирующий существенное различие в частоте развития благоприятных исходов между интенсивным и консервативным подходами к снижению АД, со стойким
терапевтическим эффектом при всех степенях тяжести заболевания [8]. Тем не менее большое значение имеют вопросы относительной величины эффекта при раннем и более быстром снижении АД или при проведении лечения только в определенных подгруппах пациентов с исходно высоким уровнем АД или при длительной и средней тяжести заболевания по клинической классификации, или в зависимости от объема гематомы. Конечно, такие ограничения в использовании интенсивного снижения АД могут серьезно изменить профиль стратегии риск-польза и затруднить обследование и сортировку пациентов.

Другая проблема заключается в отсутствии четкой временной связи между контролем АД и исходом у пациентов, рандомизированных в раннем (<4 часов) по сравнению с позднем (>4 часов) периодом после развития ВМК в испытании INTERACT2 [8]. Незначительное уменьшение объема гематомы у участников исследования через 24 часа, по данным компьютерной томографии, свидетельствует о том, что снижение АД не оказывает биологического эффекта. Тем не менее умеренное замедление увеличения гематомы, наблюдаемое в испытании INTERACT2, является независимым подтверждением эффекта лечения, отмеченного в пилотной фазе испытания INTERACT1 [13] и являющегося статистически значимым при обобщении результатов этих исследований (рис. 1), а также в недавнем мета-анализе всех завершённых испытаний [25]. Эти данные указывают на то, что ранее интенсивное снижение АД оказывает относительно небольшой (уменьшение на ≥2 мл) общий эффект на увеличение гематомы по сравнению с использованием гемостатических препаратов, таких как рекомбинантный тканевой фактор VIIa, в отношении которого в крупном клиническом исследовании было продемонстрировано уменьшение объема гематомы на 4 мл при условии его введения в течение первых 4 часов после развития ВМК [26]. Снижение АД может иметь больший эффект при раннем начале лечения. В испытании INTERACT2 не хватило мощности, чтобы надежно оценить лечение в течение первых нескольких часов после развития ВМК, а именно в определенные временные рамки развития больших кровоизлияний, когда эффект ослабления роста гематомы будет максимальным. Несмотря на постоянные попытки сокращения протокола лечения, только 30% участников в группе интенсивного лечения достигли целевого уровня АД < 140 мм рт.ст. в течение 1 часа; большинство участников достигли целевого уровня систолического АД в течение более 2–4 часов после начала лечения, а некоторые – только спустя несколько часов после развития ВМК и за пределами временного окна наибольшего увеличения размера гематомы (рис. 2). По дополнительным данным вторичного анализа результатов испытания INTERACT2

Рисунок 1. Уровень систолического артериального давления на момент рандомизации и через 24 часа после рандомизации в испытании INTERACT2 (Intensive Blood Pressure Reduction in Acute Cerebral Hemorrhage Trial). Линиями обозначены значения артериального давления (АД) с 95% доверительными интервалами, представленными вертикальными полосами для группы интенсивного лечения по сравнению с контрольной группой, по 15-минутным интервалам в течение 1 часа и 6-часовым интервалом в течение 24 часов после рандомизации. Все межгрупповые уровни АД были значимыми (p<0,0001) по 15 минут. Среднее время от начала внутримозгового кровоизлияния (ВМК) составило 3,8 часа. ДИ – доверительный интервал.
выявили наличие тенденции зависимости терапевтической эффективности от сроков, интенсивности и степени снижения АД в отношении клинических исходов и увеличения объема гематомы [27, 28].

Важную информацию в отношении эффективности (и безопасности) раннего быстрого снижения АД можно будет получить по окончании продолжающегося клинического испытания ATACH II, в котором при использовании протокола с внутривенным введением никардипина на сегодняшний день уже достигли ожидаемых параметров АД [29]. В отличие от осторожного использования прерывистой болюсной инфузии большинства гипотензивных препаратов для внутривенного введения с целью профилактики развития выраженной гипотензии на высоте эффекта (=20–30 минут), инфузии препаратов короткого действия, таких как никардипин и клеввидипин [30], позволяют более надежно титровать дозу до развития гипотензивной реакции. Внутривенное введение гипотензивных препаратов позволяет избежать вариабельности АД [31], в частности скачков АД, которые являются четкими предикторами развития неблагоприятного исхода независимо от достигнутого среднего уровня системического АД [32].

Наконец, исключение пациентов с тяжелыми или требующим раннего хирургического вмешательства ВМК, преобладание пациентов, зачисленных в клиники Китай, и гетерогенность препаратов, используемых для снижения АД, могут быть причиной появления вопросов об обобщении результатов и об идеальном гипотензивном препарате для этой специфической группы пациентов [22]. Тем не менее не существуют доказательств отличий спектра, ассоциированного с гипертензией ВМК и острой гипертензивной реакцией, в различных популяционных группах. В испытании INTERACT2 изучали эффективность стратегии лечения, а не определенного препарата у пациентов с ВМК. Безопасность лечения, высокая частота увеличения размера гематомы в первые несколько часов после появления симптомов и относительная неопределенность в отношении краткосрочного прогноза после ВМК лежат в основе широкого применения этого подхода [33].

Оценка реорганизации системы здравоохранения в отношении раннего интенсивного снижения АД

Начало лечения на догоспитальном этапе усилиями среднего медицинского персонала (бригады скорой помощи) является идеальным подходом к достижению скорейшего снижения АД, что наиболее эффективно продемонстрировали в испытании лечения инсульта бригадой скорой медицинской помощи при введении магнезии (FAST-Mag) [34]. Однако прежде чем такую стратегию использовать в практических условиях, в которых ограниченный клинический опыт и делается упор на сортировку и немедленную эвакуацию больных в ближайшее медицинское учреждение, необходимо больше данных о целесообразности применяемых препаратов, безопасности и эффективности снижения АД у пациентов с диагнозом острого инсульта, с ВМК, которое невозможно отличить от ишемического инсульта и масок инсульта. Одним из простых подходов к догоспитальному снижению уровня АД

<table>
<thead>
<tr>
<th></th>
<th>Интенсивное</th>
<th>Стандартное</th>
<th>В пользу интенсивного</th>
<th>В пользу стандартного</th>
<th>Различие (95% ДИ)</th>
<th>P homog</th>
</tr>
</thead>
<tbody>
<tr>
<td>Нескорректированы</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTERACT1</td>
<td>0,9 мл</td>
<td>2,7 мл</td>
<td></td>
<td></td>
<td>1,7 мл (-0,5–4,0)</td>
<td>0,99</td>
</tr>
<tr>
<td>INTERACT2</td>
<td>3,1 мл</td>
<td>4,9 мл</td>
<td></td>
<td></td>
<td>1,8 мл (-0,3–3,8)</td>
<td></td>
</tr>
<tr>
<td>Всего</td>
<td>2,5 мл</td>
<td>4,3 мл</td>
<td></td>
<td></td>
<td>1,8 мл (0,1–3,4)</td>
<td></td>
</tr>
<tr>
<td>Скорректированные</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTERACT1</td>
<td>1,5 мл</td>
<td>3,3 мл</td>
<td></td>
<td></td>
<td>1,8 мл (-0,4–4,0)</td>
<td>0,96</td>
</tr>
<tr>
<td>INTERACT2</td>
<td>2,9 мл</td>
<td>4,6 мл</td>
<td></td>
<td></td>
<td>1,8 мл (-0,3–3,8)</td>
<td></td>
</tr>
<tr>
<td>Всего</td>
<td>1,9 мл</td>
<td>3,7 мл</td>
<td></td>
<td></td>
<td>1,8 мл (0,2–3,4)</td>
<td></td>
</tr>
</tbody>
</table>

Рисунок 2. Эффективность лечения по показателям абсолютного увеличения гематомы (мл) от исходного уровня до 24 часов во время проведения исследования. Закрашенными квадратами показано отношение шансов (ОШ), а горизонтальными линиями – 95% доверительный интервал (ДИ) в отдельных испытаниях; ромбами показан 95% ДИ для обобщенного результата. В группе интенсивного лечения произошло снижение артериального давления (АД) до целевого уровня <140 мм рт.ст. в течение 1 часа; в контрольной группе снижение АД проводили без определенного целевого значения при уровне системического АД >180 мм рт.ст. Результаты были скорректированы по исходному объему и локализации гематомы, времени с момента появления симптомов до проведения компьютерной томографии и испытанию. ВМК – внутримозговое кровоизлияние.
является использование трансдермальных пластырей с тринитроглицерином [35].
Можно добиться оптимизации снижения АД в клинике посредством хорошо организованной медицинской помощи [36] с участием различных специалистов отделения неотложной терапии и использованием упрощенных протоколов и стратегии улучшения качества. Было продемонстрировано, что такие организационные парадигмы эффективно облегчают проведение вмешательств при коронарных событиях [37] и ишемическом инсульте; например значительное уменьшение временного окна при использовании rt-PA было достигнуто в течение нескольких месяцев реализации хельсинского руководства по улучшению качества в Королевском Мельбурнском госпитале в Австралии [38]. Самой большой отсрочкой для достижения контроля АД в испытании INTERACT2 было время с момента постановки диагноза (т.е. компьютерная томография головного мозга) до рандомизации, без улучшения в достижении этой цели в группе интенсивного лечения на протяжении исследования. Исследователи выделили отсрочки, связанные с сохраняющимися опасениями по поводу безопасности, затруднениями в достижении целевого АД с использованием доступных препаратов, временем для получения согласия/рандомизации и выбора, разведения и введения препарата. Все эти препятствия реально преодолеть при системном подходе к улучшению качества.
Включение различных параметров снижения АД в качестве многочисленных показателей эффективности качества позволяет ускорить внедрение клинических рекомендаций и улучшить процесс оказания помощи при ВМК [3, 4]. В дальнейшем это может привести к улучшению сертификации или возмещению расходов клиникам, как это было при использовании тромболизиса при остром ишемическом инсульте [39]. Например, критерием эффекта лечения может быть число пациентов с ВМК и артериальной гипертензией (например, 2 подряд измерения систолического АД>180 мм рт.ст. и первое измерение систолического АД<140 мм рт.ст.) в течение 1 часа после начала внутривенного введения гипотензивных препаратов. Исследование таких показателей качества медицинской помощи показало, что число совпадающих параметров коррелирует с лучшей выживаемостью после ВМК [5].

Литература

