Response to Letter Regarding Article,
“Monocyte Count and 30-Day Case Fatality in Intracerebral Hemorrhage”

We appreciate the letter from Hu et al1 on our recent publication.2 Our response addresses 2 points raised in their letter: (1) evidence that infiltrating neutrophils (not monocytes) play a role in intracerebral hemorrhage (ICH)–induced brain injury and (2) their multivariate logistic regression analysis of 321 patients with ICH, which found (contrary to our analysis) that higher total white blood cell and neutrophil counts, but not monocyte count, were independently associated with mortality.

We agree that there is a preponderance of evidence that neutrophils are present in and around the hematoma after ICH. However, we note that neutrophils facilitate monocyte recruitment to the injury site, and recent experiments have found that monocytes were more numerous than other leukocytes at the site of injury early after ICH.1,4 Fewer inflammatory monocytes at the ICH site were associated with improved motor function,4 and reducing monocyte recruitment has been associated with less behavioral disability. Finally, we note that until recently, phagocytic microglia (the first nonneuronal cells to react to brain injury) have been difficult to distinguish from infiltrating monocytes/macrophages.3 Thus, the early evidence for neutrophils may have reflected limitations of cell identification techniques.

The patients enrolled by Hu et al1 (n = 321) and in our investigations (n = 1866 and 2407) were similar with regard to age, sex, and time from symptom onset to blood draw. There were obvious racial/ethnic differences, including 100% Chinese in the analysis by Hu et al1 compared with 78% white and 22% black in our first cohort,2 and 37% white, 33% black, and 30% Hispanic in the second.2 In addition, the patients enrolled by Hu et al1 had larger median ICH volume (16.5 mL [interquartile range (IQR), 6.8–36.2] versus 12.8 mL [IQR, 4.9–29.4] and 9.9 mL [IQR 4.4–26.7]) and lower median Glasgow Coma Scale (11 [IQR, 6–13] versus 14 in both of our publications [IQR, 10 to 15 and 11 to 15]).

To achieve better linearity, ICH volume was log transformed in our regression models. A model without log transformation of ICH volume, particularly with larger hematomas and higher associated white blood cell and neutrophil counts, could result in predominance of those cell types in the model. It was not evident to us whether Hu et al1 transformed variables and what effect that may have on their findings. Furthermore, we note that neutrophils are the primary component of total white blood cells. As such, we posit that the independent association of white blood cells identified by Hu et al1 is driven primarily by neutrophils. Ultimately, sufficient preclinical and now clinical data exist implicating both neutrophils and monocytes as putative mediators of secondary injury after ICH. Additional research is needed to further characterize the role of specific leukocytes in the secondary inflammatory response after ICH.

Sources of Funding
This study was supported by grant (NS-069763) from the National Institutes of Health.

Disclosures
None.

Kyle B. Walsh, MD
Department of Emergency Medicine
University of Cincinnati
OH

Daniel Woo, MD, MS
Department of Neurology and Rehabilitation Medicine
University of Cincinnati
OH

Opeolu Adeoye, MD, MS
Department of Neurosurgery
Department of Emergency Medicine
University of Cincinnati
OH

Response to Letter Regarding Article, "Monocyte Count and 30-Day Case Fatality in Intracerebral Hemorrhage"
Kyle B. Walsh, Daniel Woo and Opeolu Adeoye

Stroke. 2015;46:e244; originally published online October 13, 2015; doi: 10.1161/STROKEAHA.115.011288
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2015 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/46/11/e244

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/