Efficacy and Safety of Platelet Glycoprotein Receptor Blockade in Aged and Comorbid Mice With Acute Experimental Stroke

Peter Kraft, MD*; Michael K. Schuhmann, PhD*; Felix Fluri, MD; Kristina Lorenz, PhD; Alma Zernecke, MD; Guido Stoll, MD; Bernhard Nieswandt, PhD; Christoph Kleinschnitz, MD

Background and Purpose—Despite the medical and socioeconomic effect of ischemic stroke and extensive preclinical research, treatment options for ischemic stroke are limited. We recently identified and characterized essential steps of thrombus formation in stroke and demonstrated that inhibition of the platelet glycoprotein (GP) receptors Ib and VI, but not IIb/IIIa, protects young and healthy mice from ischemic neurodegeneration. Whether these findings translate to the clinic remains unclear. Considering that the typical stroke patient is elderly with comorbidity, we aimed to analyze the efficacy and safety of novel preclinical antithrombotics in adult and comorbid mice with acute experimental stroke.

Methods—We subjected adult, healthy, atherosclerotic (Ldlr−/−), diabetic (streptozotocin treated), and hypertensive (RenTgMK) mice to a 60-minute transient middle cerebral artery occlusion. Animals were pretreated with anti-GPVI antibodies or treated 1 hour after stroke induction with anti-GP Ib or anti-GPIIb/IIIa antigen–binding fragments, respectively. Isotype treatment served as control. Twenty-four hours after transient middle cerebral artery occlusion, we visually assessed the intracerebral hemorrhage rate and measured infarct volumes (using 2,3,5-triphenyltetrazolium chloride–stained brain slices) and functional outcome (using Bederson and grip-test scores).

Results—GPIIb and GPVI inhibition protected the mice from ischemic stroke without increasing bleeding complications. In contrast, GPIIb/IIIa inhibition was not protective but increased the intracerebral hemorrhage rate.

Conclusions—Inhibition of early steps of thrombus formation protects adult and comorbid mice from ischemic stroke.

The use of clinically meaningful mouse strains might improve the translation of preclinical stroke research to the clinic. (Stroke. 2015;46:3502-3506. DOI: 10.1161/STROKEAHA.115.011114.)

Key Words: middle cerebral artery occlusion ■ platelet aggregation inhibitors ■ streptozotocin ■ stroke ■ translation

Ischemic stroke (IS) is one of the leading causes of death and disability worldwide. Although the benefits of antiplatelet and anticoagulation therapies in the acute phase and in secondary prevention of IS are well established, the distinct molecular steps of platelet activation in the ischemic brain remain, to a large extent, unknown.

We have previously demonstrated that targeting key pathways of thrombus formation can affect stroke outcome. For example, blockade of the platelet glycoprotein (GP) Ib and VI receptors reduced infarct volumes and improved functional outcome without increasing bleeding complications in a mouse model of acute experimental stroke, leading to the intriguing possibility of a bleeding-free antithrombosis. In contrast, GPIIb/IIIa blockade did not ameliorate stroke volumes or clinical outcome, but instead, it was associated with cerebral hemorrhage. On the basis of these observations, we concluded that GPIIb- and GPVI-targeted therapies might be promising for human stroke studies.

The translation of results from preclinical stroke studies to humans has been largely unsuccessful. One reason for this might be the lack of studies in laboratory animals that more accurately represent the population of patients with stroke, that is, elderly and with comorbidity. To increase the probability of a successful translation from bench to bedside, criteria for experimental stroke research have been developed, including the validation of novel treatments in adult and comorbid animals. Therefore, we applied a translational approach to examine the efficacy and safety of preclinical antithrombotics in adult and comorbid mice with acute experimental IS.
Methods

Detailed descriptions of the methods and statistics are provided in the Methods section in the online-only Data Supplement.

Mice

In this study, C57BL/6 wild-type (n=142), hyperlipidemic Ldlr^{−/−} (lacking the low-density lipoprotein receptor [atherosclerotic] mice; Ldlr^{−/−}, n=70), and hypertensive RenTgMK mice (age, 6 months) as spontaneous mortality increases after 6 months because of cardiac events. Animal experiments were approved by the legal state authorities (Regierung von Unterfranken) and performed according to the recommendations for research in experimental stroke studies¹⁰ and the current Animal Research: Reporting of In Vivo Experiments guidelines.⁷

Ischemia Model

Focal cerebral ischemia was induced in 1-year-old male mice by a 60-minute transient middle cerebral artery occlusion (tMCAO) as previously described.^{3,11} Mice were controlled for physiological parameters that could affect stroke outcome (Figures I and II and Table I in the online-only Data Supplement). Edema-corrected infarct volumes were calculated from 2,3,5-triphenyltetrazolium chloride–stained brain slices. The Bederson and grip-test scores were used to monitor neurological function.⁷ Mice were randomly assigned to the operators by an independent researcher not involved in data analysis. Investigators involved in the surgery and evaluation of all readout parameters were blinded to the experimental groups.

Occurrence of intracerebral hemorrhage (ICH) was macroscopically assessed on whole brains and again after the 2-mm-thick coronal brain slices were cut between 2.3 and 3-triphenyltetrazolium chloride staining. Mice showing ICH were excluded from the assessment of infarct volumes and the functional tests. Likewise, 2,3,5-triphenyltetrazolium chloride volume was not measured in animals that died within 24 hours after stroke induction.

Animal Treatment

To inhibit GPIb and GP Ib/IIa, mice received 100 μg of p0p/B antigen–binding fragment (Fab) or 100 μg JON/A F(ab)₂, respectively, 1 hour after stroke induction (ie, at the time of filament removal).³ To inhibit GPVI, mice received 100 μg of JAQ1 5 days before stroke induction. Mice had at that time point no detectable GPVI in platelets for at least 5 more days.^{5,11} Two groups of control animals received either 100 μg of purified rat immunoglobulin G2a or 100 μg of rat IgG Fab.

For diabetes mellitus induction, wild-type mice were treated with a single peritoneal injection of streptozotocin (40 mg/kg) for 5 consecutive days beginning 21 days before tMCAO. For atherosclerosis induction at 8 weeks of age, Ldlr^{−/−} mice were placed on an atherogenic diet (15% milk fat and 1.25% cholesterol; Altromin, Germany) for 9 weeks.

Protein Extraction and Western Blot Analysis

Western blot analysis was performed according to standard procedures using monoclonal antibodies (mAbs) against GPIbβ (Clone 3G6; Emfret Analytics) and anti–β-actin (AS5441; Sigma-Aldrich).¹³

Results

Adult mice receiving anti-GPIbβ Fab 1 hour after ischemia onset developed significantly smaller brain infarctions on day 1 (28.9±18.8 mm³) compared with isotype-treated controls (71.9±19.9 mm³; P<0.01; Figure 1; Figure III in the online-only Data Supplement). Smaller infarctions were also observed after treatment with anti-GPVI mAb, but the difference did not reach statistical significance (42.1±28.1; P>0.05). Reduced stroke size in anti-GPVI-mAb–treated mice translated into improved functional outcome, as assessed by the Bederson score (median [25th and 75th percentiles]: isotype control, 3.0 [3.0 and 4.0] versus anti-GPVI mAb treatment 1.0 [1.0 and 2.0], P<0.01; grip-test score (median [25th and 75th percentiles]: isotype control 2.0 [1.0, 2.0] versus anti-GPVI mAb treatment 4.0 [3.0, 4.0], P<0.05). Likewise, compared with the isotype control, anti-GPVI Fab treatment improved functional outcome, although without reaching statistical significance (Bederson score: 2.0 [1.0, 2.0] versus 3.0 [3.0, 3.0], P>0.05; grip-test score: 3.0 [3.0, 5.0] versus 2.0 [1.0, 3.0], P>0.05; Figure 1). A poor correlation between stroke size and functional outcome is well established in rodents^{14,15} and might at least in part be explained by slight variations of stroke localization within the territory supplied by the MCA. Lesions in some regions of the MCA might induce more measurable deficits (in certain functional tests) than iso-volumetric lesions in other regions.

Western blot analysis revealed significantly less GPIbβ protein expression (ie, reduced thrombus formation) in the ischemic cortices of anti-GPIbβ–treated mice compared with isotype controls (optical density: cortices, control Fab 1.83±0.30 versus anti-GPIb 0.43±0.23, P<0.05; basal ganglia, control Fab 1.90±0.68 versus anti-GPIb 0.69±0.50, P<0.05). Analogous to smaller brain infarctions, anti-GPVI mAb treatment inhibited thrombus formation, although this was insignificant (optical density: cortices, control IgG 1.59±0.40 versus anti-GPVI 0.64±0.43; P=0.08 and basal ganglia, control IgG 1.55±0.36 versus anti-GPVI 0.92±0.76; P=0.19), and also anti-GPIIb/IIIa F(ab)₂, did not reduce GPIbβ expression levels in both tissues (optical density: cortices, control Fab 1.90±0.68 versus anti-GPIIb/IIIa F(ab)₂, 1.58±0.16; P=0.47 and basal ganglia, control Fab 1.90±0.68 versus anti-GPIIb/IIIa F(ab)₂, 2.25±0.33; P=0.33; Figure 2).

Despite the reduction in pathological thrombus formation after stroke, GPIb or GPVI blockade did not increase the ICH rate in the tMCAO model (P>0.05; Table). This was in stark contrast to the findings after blockade of the final common pathway of platelet aggregation, that is, the GP IIb/IIIa pathway. Here, anti-GP IIb/IIIa F(ab)₂ induced ICH in 10 of 21 animals (47.6%) until day 1 after tMCAO (P=0.03), and ICH was associated with increased mortality in this group (47.6%; P=0.04; Table; Figure IV in the online-only Data Supplement). Interestingly, in the surviving animals, treatment with anti-GP IIb/IIIa F(ab)₂, had no effect on infarct size, neurological function (Figure 1; Figure III in the online-only Data Supplement), or thrombus formation (Figure 2) on day 1 after tMCAO.

Cardiovascular comorbidities are common in patients with stroke.¹⁶ Therefore, we evaluated whether protection from stroke after platelet inhibition is preserved in adult mice with hypercholesterolemia/atherosclerosis, diabetes mellitus, or hypertension. Similar to adult but otherwise healthy mice, adult Ldlr^{−/−} mice, wild-type mice treated with streptozotocin, and also RenTgMK mice, developed smaller strokes or less severe neurological deficits, or both, after treatment with anti-GPIb Fab and anti-GPVI mAb compared with isotype-treated controls (Figure 1). Again, this did not result in a higher risk of infarct-related or reperfusion-related bleeding in the comorbid mouse groups (P>0.05; Table). Blocking GPIIb/IIIa
after tMCAO increased ICH frequency and overall mortality in adult healthy, diabetic, and hypertensive animals (Table).

In Ldlr−/− mice and the non-GPIIb/IIIa treatment groups, a slight elevation of ICH (up to ≥25% in the Ldlr−/− group) was observed (Table), suggesting a mild bleeding phenotype independent of the therapeutic platelet inhibition.

Discussion

We provide further translational evidence that blocking the early steps of platelet adhesion and activation represents an effective approach to counteract IS with a favorable safety profile. Specific GPIb and GPVI blockade improved functional outcome in adult and comorbid animals without increasing ICH risk. Importantly, GPIb blockade was effective when performed 1 hour after tMCAO. These results correspond to our previous findings in young and otherwise healthy mice.

GPIb blockade was more effective than GPVI blockade in reducing stroke severity in both our current study of adult and comorbid animals and our previous study using young and healthy mice. This result is consistent with the understanding that GPIb is mandatory for the initial attachment of platelets to endothelial cells under high shear rates, whereas GPVI mainly serves as an activating receptor, a function that can also be fulfilled by alternative pathways. Moreover, the pleiotropic function of GPIb, which is attributed to important binding partners, such as Mac-1 (an integrin expressed on neutrophils and monocytes [CD11b/CD18]), mediates inflammatory mechanisms. Thus, taken together, GPIb seems to be a major player in thromboinflammation pathophysiology. The necessity of a preischemia anti-GPVI treatment is a limitation of our study. Nevertheless, the positive results encourage further development of anti-GPVI agents that can be applied in a therapeutic approach.

In our current and previous studies, GPIb or GPVI blockade did not increase bleeding rates. At first glance, this is surprising, as anti-GPIb and anti-GPVI treatments usually prolong bleeding times. However, there is no direct correlation between bleeding time and bleeding risk, and the mechanisms preventing ICH are different from those involved in sealing a tail-bleeding wound. In all experimental groups, anti-GPIIb/IIIa treatment increased ICH and mortality risks, without reducing stroke volumes in the subgroup of animals that did not develop ICH. Our experimental findings perfectly fit the clinical situation in stroke. Here, a phase III trial testing the GPIIb/IIIa antagonist abciximab in patients with IS had to be stopped prematurely because of an increased risk of ICH and lack of efficacy in the treatment arm. The unfavorable risk/benefit ratio of GPIIb/IIIa antagonists in the setting of IS might be explained by their narrow therapeutic window. It is known that at peak concentrations, GPIIb/IIIa inhibitors may effectively act as platelet antagonists, although their usage is accompanied by increased bleeding
complications. In contrast, subthreshold GPIIb/IIIa antagonism may lead to platelet activation and thrombus formation.\(^3,20\)

In this study, we used adult mice and mice having common cardiovascular comorbidities, thereby fulfilling key postulations of current quality guidelines for translationally oriented stroke research, such as the Stroke Treatment Academic Industry Roundtable criteria.\(^6\) It has been shown that platelet function\(^21\) and outcome in experimental stroke studies depend on age\(^22,23\) and comorbidities.\(^24\) Nevertheless, and despite consensus statements such as the Stroke Treatment Academic

![Figure 2. Blocking of platelet adhesion and activation via the glycoprotein (GP) Ib and VI pathway reduces thrombus formation in ischemic stroke. Top, Representative anti-GPIbβ immunoblot 24 hours after transient middle cerebral artery occlusion in 1-year-old but otherwise healthy wild-type animals. Bottom, Densitometric quantification (n=4). \(P<0.05\) and \(**P<0.01\); 1-way ANOVA followed by Bonferroni multiple comparison test. Ctrl indicates control; Fab, antigen-binding fragment; GP, glycoprotein; mAb, monoclonal antibody; and n.s., not significant.

Table. Rates of ICH and Mortality of Mice Within the Distinct Genetic and Treatment Groups

<table>
<thead>
<tr>
<th>Group</th>
<th>Control IgG</th>
<th>Control Fab</th>
<th>GPIb Fab</th>
<th>GPVI mAb</th>
<th>GPIb/IIIa Fab(αβ)</th>
<th>(P) Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy</td>
<td>Operated mice, n</td>
<td>12</td>
<td>12</td>
<td>8</td>
<td>8</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>ICH, n (%)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>1 (12.5)</td>
<td>1 (12.5)</td>
<td>10 (47.6)</td>
</tr>
<tr>
<td></td>
<td>Mortality, n (%)</td>
<td>1 (8.3)</td>
<td>1 (8.3)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>10 (47.6)</td>
</tr>
<tr>
<td>(Ldlr^{-/-})</td>
<td>Operated mice, n</td>
<td>12</td>
<td>11</td>
<td>9</td>
<td>9</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>ICH, n (%)</td>
<td>3 (25)</td>
<td>3 (27.3)</td>
<td>1 (11.1)</td>
<td>2 (22.2)</td>
<td>9 (50.0)</td>
</tr>
<tr>
<td></td>
<td>Mortality, n (%)</td>
<td>3 (25)</td>
<td>2 (18.2)</td>
<td>2 (22.2)</td>
<td>1 (11.1)</td>
<td>8 (44.4)</td>
</tr>
<tr>
<td>STZ</td>
<td>Operated mice, n</td>
<td>10</td>
<td>12</td>
<td>8</td>
<td>7</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>ICH, n (%)</td>
<td>1 (10)</td>
<td>2 (16.7)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>10 (58.8)</td>
</tr>
<tr>
<td></td>
<td>Mortality, n (%)</td>
<td>0 (0)</td>
<td>1 (8.3)</td>
<td>1 (12.5)</td>
<td>0 (0)</td>
<td>8 (47.1)</td>
</tr>
<tr>
<td>(RenTgMK)</td>
<td>Operated mice, n</td>
<td>12</td>
<td>11</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>ICH, n (%)</td>
<td>2 (16.7)</td>
<td>1 (9.1)</td>
<td>0 (0)</td>
<td>1 (12.5)</td>
<td>8 (100.0)</td>
</tr>
<tr>
<td></td>
<td>Mortality, n (%)</td>
<td>1 (8.3)</td>
<td>1 (9.1)</td>
<td>0 (0)</td>
<td>1 (12.5)</td>
<td>8 (100.0)</td>
</tr>
</tbody>
</table>

Fab indicates antigen-binding fragment; GP, glycoprotein; ICH, intracerebral hemorrhage; \(Ldlr^{-/-}\), lacking the low-density lipoprotein receptor (atherosclerotic); mAb, monoclonal antibody; \(RenTgMK\), hypertensive; and STZ, streptozotocin treated (hyperglycemic).
Industry Roundtable criteria, antithrombotic substances have hardly been tested in these clinically relevant experimental settings. In our study, despite a small decrease in the extent of protection compared with young and healthy mice, overall efficacy and safety of anti-GP Ib and anti-GPVI inhibition remained in adult and comorbid animals.

In conclusion, platelet GPIb and GPVI receptor blockade is effective in counteracting acute IS in both adult and comorbid mice. With such promising findings, we hope to accelerate the translation of our preclinical work to the testing of anti-GP Ib– and anti-GPVI–targeted therapies in a clinical setting.

Acknowledgments

We thank Daniela Urlaub, Andrea Sauer, and Susanne Hellmig for excellent technical assistance.

Sources of Funding

This work was supported by the Deutsche Forschungsgemeinschaft, SFB 688 (project A13 to Dr Kleinschnitz and project B1 to Drs Stoll and Nieswandt), and the Interdisziplinäres Zentrum für Klinische Forschung der Universität Würzburg (project E-179 to Drs Kleinschnitz and Zernecke-Madsen). The sponsors did not play any active role in the study.

Disclosures

None.

References

Efficacy and Safety of Platelet Glycoprotein Receptor Blockade in Aged and Comorbid Mice With Acute Experimental Stroke

Bernhard Nieswandt and Christoph Kleinschnitz

Stroke. 2015;46:3502-3506; originally published online October 20, 2015;
doi: 10.1161/STROKEAHA.115.011114

Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2015 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/46/12/3502

Data Supplement (unedited) at:
http://stroke.ahajournals.org/content/suppl/2015/10/20/STROKEAHA.115.011114.DC1
http://stroke.ahajournals.org/content/suppl/2016/04/10/STROKEAHA.115.011114.DC2

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org/subscriptions/
Efficacy and safety of platelet glycoprotein receptor blockade in aged and comorbid mice with acute experimental stroke

Peter Kraft, MD; Michael K. Schuhmann, PhD; Felix Fluri, MD; Kristina Lorenz, PhD; Alma Zernecke, MD; Guido Stoll, MD; Bernhard Nieswandt, PhD; Christoph Kleinschnitz, MD

Supplemental Methods

Mice, Stroke Model, and Animal Treatment
A total of 142 C57BL/6 (wild-type), 70 Ldlr^{−/−} (lacking the low-density lipoprotein receptor [atherosclerotic] and 58 hypertensive RenTgMK mice² were used in this study. Animal experiments were approved by the legal state authorities (Regierung von Unterfranken) and conducted according to the recommendations for research in experimental stroke studies³ and the current ARRIVE guidelines.⁴ Focal cerebral ischemia was induced in 1-year-old male mice (Harlan Winkelmann) by 60-min transient middle cerebral artery occlusion (tMCAO) as previously described.^{5,6} Only hypertensive RenTgMK mice were analyzed at the age of 6 months, as spontaneous mortality increases thereafter due to cardiac events. Mice were anesthetized with 2.5% isoflurane (Abbott). Following a midline skin incision in the neck, the proximal common carotid artery and the external carotid artery were ligated, and a standardized silicon rubber-coated 6.0 nylon monofilament (60SPPK10; Doccol Corp.) was inserted and advanced via the right internal carotid artery to occlude the origin of the right middle cerebral artery (MCA). The operators were blinded to the treatment groups and the maximum operation time per animal did not exceed 15 min. After occlusion, cerebral reperfusion was allowed by removing the filament.

The following conditions excluded mice from end-point analyses (exclusion criteria):
1. Death within 24 hour after tMCAO
2. Subarachnoid hemorrhage or bleeding into the brain parenchyma (as macroscopically assessed during brain sampling)
3. Bederson score = 0 (immediately after reperfusion)
4. Operation time >15 min

Antiplatelet Treatment
To inhibit glycoprotein (GP) Ib or IIb/IIIa, mice received 100 μg p0p/B Fab or JON/A F(ab)₂, respectively, intravenously 1 hour after stroke induction (i.e. at the time of filament removal). Thus, in contrast to our previous study,⁵ whenever possible, animals were only treated in a therapeutic setting to increase the translational significance of the results. To inhibit GPVI function, mice received 100 μg JAQ1 in an intraperitoneal injection 5 days before infarct induction. At that time point, mice had not had any detectable GPVI in platelets for at least 5 days.⁷ Two different groups of control animals received either 100 μg purified rat immunoglobulin (Ig) G2a or 100 μg rat IgG Fab.

Determination of Stroke Size
Animals were sacrificed 24 hour after tMCAO. Brains were removed and cut into three 2-mm-thick coronal slices using a mouse brain slice matrix (Harvard Apparatus). The sections were stained with 2,3,5-triphenyltetrazoliumchloride (TTC) for 20 min at 37°C and edema-corrected infarct volumes were quantified by planimetry (ImageJ software, National Institutes of Health) according to the following equation:

\[V_{\text{indirect}} (\text{mm}^3) = V_{\text{infarct}} \times (1 - (VI - VC)/VC), \]
with the term (VI – VC) represents the volume difference between the ischemic hemisphere and the control hemisphere and (VI – VC)/VC) expresses this difference as a percentage of the control hemisphere.

Assessment of Functional Outcome

Twenty-four hours after tMCAO, the modified Bederson score was used to determine global neurological function according to the following scoring system: 0, no deficit; 1, forelimb flexion; 2, decreased resistance to lateral push; 3, unidirectional circling; 4, longitudinal spinning; 5, no movement. Motor function and coordination were evaluated by the grip test. For this test, the mouse was placed midway on a string between two supports and rated as follows: 0, falls off; 1, hangs onto the string by one or both forepaws; 2, as for 1, and attempts to climb onto the string; 3, hangs onto the string by one or both forepaws plus one or both hindpaws; 4, hangs onto the string by fore- and hindpaws plus tail wrapped around the string; 5, escape (to the supports). Neurological scores were assessed by an independent investigator blinded to the experimental conditions of the mice.

Laser Doppler Flowmetry

Laser Doppler flowmetry (Moore Instruments) was performed in untreated wild-type (WT), Ldlr−/−, and RenTgMK animals before (baseline), during (ischemia), and immediately after tMCAO (reperfusion). The regional cerebral blood flow was measured in the territory of the right MCA (6 mm lateral and 2 mm posterior from bregma).

Invasive Hemodynamics

For the assessment of blood pressure and heart rate, untreated WT, STZ-treated WT, antibody-treated WT (anti-GPlb, anti-GPVI, anti-GPIIb/IIIa), Ldlr−/−, and RenTgMK animals were anesthetized with 2.0% isoflurane and catheterized via the right carotid artery with a high-fidelity 1.4-F Millar microtip catheter (Milar Instruments) as described.

Blood Gas Analysis

Arterial blood (100 µl) was drawn from the left cardiac ventricle of anesthetized mice by a heparinized syringe. We determined the partial pressure of oxygen (PaO2) and carbon dioxide (PaCO2) in the arterial blood, and pH in untreated WT, Ldlr−/−, and RenTgMK mice using an ABL 77 automated blood gas analyzer (Radiometer).

Statistics

All data are given as mean±standard deviation except for the ordinal Bederson score and the grip-test score, which are depicted as scatter plots including median with the 25th percentile and the 75th percentile given in brackets in the text. Numbers of animals (n=7 or 8) necessary to detect a standardized effect size on infarct volumes ≥0.25 (treated vs. untreated mice) were calculated via a priori sample size analysis with the following assumptions: α=0.05, β=0.2 (power 80%), mean, standard deviation 20% of the mean (StatMate 2.0, GraphPad Software). According to the necessary group sizes for stroke volumetry, overall group sizes had to be adapted as mice with an intracranial hemorrhage (ICH) were excluded for stroke volumetry. For statistical analysis, PrismGraph 5.0 software package (GraphPad Software) was used. Data were tested for Gaussian distribution with the Kolmogorov–Smirnov test and then analyzed by one-way analysis of variance with post hoc Bonferroni correction, or in the case of non-parametric data (Bederson score, grip test), Kruskal–Wallis test with post hoc Dunn correction. For the statistical evaluation of ICH frequency and overall mortality between the treatment and animal groups, standard contingency tables were used. P<0.05 was considered statistically significant.
Supplementary Figures

Supplementary Figure I. Regional cerebral blood flow (rCBF) in the region of the right middle cerebral artery as measured by laser Doppler flowmetry in the different untreated mouse strains (n=3/group) at baseline levels (before ischemia), after insertion of the filament (ischemia), and again after reperfusion (after 60 min transient middle cerebral artery occlusion). No differences in rCBF were observed between the groups at any time point. Two-way analysis of variance, Bonferroni’s post hoc test. *Ldlr^{−/−}*, lacking the low-density lipoprotein receptor (atherosclerotic), *RenTgMK*, hypertensive; *WT*, wild-type (healthy).
Supplementary Figure II. Upper panel: heart rate per minute in untreated wild-type C57BL/6 (WT) mice, streptozotocin (STZ)-treated WT mice, anti-glycoprotein (GP) Ib-α, anti-GPVI-, and anti-GPIIb/IIIa-treated WT mice, as well as untreated Ldlr^{−/−} (lacking the low-density lipoprotein receptor (atherosclerotic)) and RenTgMK (hypertensive) mice. No significant differences could be observed between the groups. Lower panel: as expected, the mean arterial blood pressure was significantly higher in the RenTgMK mice compared with all other groups. n=4 or 5/group, *P<0.05, Bonferroni-corrected one-way analysis of variance. Fab, antigen-binding fragment.
Supplementary Figure III. Representative 2,3,5-triphenyltetrazolium chloride brain stains of 1-year-old, but otherwise healthy, mice subjected to a 60-min transient middle cerebral artery occlusion. White areas indicate necrotic brain tissue. Fab, antigen-binding fragment; GP, glycoprotein; IgG, immunoglobulin G.
Supplementary Figure IV. 2,3,5-triphenyltetrazolium chloride brain stains of anti-glycoprotein IIb/IIIa-treated mice subjected to a 60-min transient middle cerebral artery occlusion. White areas indicate necrotic brain tissue, arrows indicate hemorrhages. Please note, that in parallel to bleeding complications, mice regularly develop large ischemic strokes.
Supplementary Table

<table>
<thead>
<tr>
<th></th>
<th>WT (n=3)</th>
<th>Ldlr<sup>−/−</sup> (n=3)</th>
<th>RenTgMK (n=3)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>PaO<sub>2</sub> (mmHg)</td>
<td>74.1±8.0</td>
<td>67.5±8.1</td>
<td>75.2±9.6</td>
<td>n.s.</td>
</tr>
<tr>
<td>PaCO<sub>2</sub> (mmHg)</td>
<td>40.5±1.5</td>
<td>38.9±3.1</td>
<td>40.3±2.0</td>
<td>n.s.</td>
</tr>
<tr>
<td>pH</td>
<td>7.41±0.06</td>
<td>7.37±0.05</td>
<td>7.39±0.06</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

Supplementary Table I. Blood gas analysis in wild-type C57BL/6 (WT), Ldlr^{−/−} (lacking the low-density lipoprotein receptor [atherosclerotic]) and RenTgMK (hypertensive) mice. No significant differences were observed between the groups. Bonferroni-corrected one-way analysis of variance. n.s., not significant; PaO₂, partial pressure of oxygen in the arterial blood; PaCO₂, partial pressure of carbon dioxide in the arterial blood.
Supplementary References

Рандомизированное контролируемое испытание ранней реабилитации после геморрагического инсульта. Различия в исходах через 6 месяцев после инсульта

Предпосылки и цель исследования. У пациентов с внутримозговым кровоизлиянием механизмы развития заболевания, методы лечения в остром периоде и исходы могут отличаться от таковых у пациентов с ишемическим инсультом. Исследования методов ранней реабилитации у пациентов с внутримозговым кровоизлиянием. Мы предположили, что раннее начало реабилитации в течение 48 часов после развития инсульта позволит улучшить выживаемость и функциональные исходы у пациентов с внутримозговым кровоизлиянием. Методы. Провели многоцентровое рандомизированное контролируемое испытание с ослеплением при оценке исходов через 3 и 6 месяцев. Соответствующих критериев включения пациентов рандомизировали в группы стандартного лечения или стандартного лечения в сочетании с ранней реабилитацией. Первичной конечной точкой была выживаемость. К вторичным конечным точкам относились качество жизни, связанное с состоянием здоровья, согласно результатам анкетирования с использованием опросника 36-item Short Form Questionnaire, оценку функционирования по модифицированному индексу Бартел, оценку тревожности по шкале самооценки Цунга. Результаты. Рандомизировали 243 из 326 пациентов (средний возраст 59 лет, 56% мужчин). Через 6 месяцев уровень летальности в группе стандартного лечения был выше (сокращенное отношение рисков [ОР]=4,44; 95% доверительный интервал [ДИ] от 1,24 до 15,87); в отношении развития повторных событий приведены данные о разнице в 6 баллах при суммарном оценке физического компонента по анкете 36-item Short Form Questionnaire (95% ДИ от 4,2 до 8,7), разнице в 7 баллах — при суммарной оценке психического компонента (95% ДИ от 4,5 до 9,5), разнице в 13 баллов — при оценке по модифицированному индексу Бартел (95% ДИ от 6,8 до 18,3) и разнице в 6 баллах — при оценке тревожности по шкале самооценки Цунга (95% ДИ от 4,4 до 8,3) в пользу групп вмешательства. Выводы. В настоящем исследовании мы впервые показали, что начало реабилитации в течение 48 часов после развития внутримозгового кровоизлияния улучшает выживаемость и функциональные исходы через 6 месяцев после инсульта у пациентов в Китае.

Ключевые слова: внутримозговое кровоизлияние (cerebral hemorrhage), клиническое испытание (clinical tria), рандомизированный (randomized), оценка исхода (outcome assessment), здравоохранение (health care), реабилитация (rehabilitation)

По крайней мере >30% инсультов в Китае представлены внутримозговыми кровоизлияниями (ВМК) по сравнению с =15% в западных странах, с заметным градиентом с юга на север [1–4]. В абсолютных цифрах это означает высокую заболеваемость ВМК в Китае, в связи с чем важно выяснить эффективные мероприятия по снижению последствий ВМК. Это обусловлено тем, что, как правило, ВМК является более тяжелой патологией, чем ишемический инсульт [5], с более неблагоприятными исходами и высокой летальностью [6]. Данные свидетельствуют о том, что ранняя физическая реабилитация (РФР) у лиц, выживших после инсульта, может привести к улучшению восстановления двигательной функции, уменьшению психического, функционального и неврологического дефицита, а также улучшению качества жизни [7–11]. Тем не менее в ранее проведенных исследованиях принимали участие только небольшое число с ВМК [8, 10], и существует необходимость дальнейшего проведения крупных испытаний III фазы при всех типах инсульта [12]. Пациенты с ВМК могут иметь ряд отличий от пациентов с ишемическим инсультом в отношении факторов риска, механизмов развития инсульта, методов лечения в остром периоде и исходов. Например, их реже госпитализируют в отделения по лечению инсульта и им реже назначают вспомогательные лечебные мероприятия независимо от тяжести инсульта [5]. В стандартах по лечению ВМК рекомендован тщательный мониторинг и строгий контроль уровня кровотечения в остром периоде ВМК [13]. Это может привести к отказу от проведения ранних активных вмешательств у таких пациентов, несмотря на то, что в стандартах также рекомендовано начинать реабилитационные мероприятия как можно раньше [13]. Среди клиницистов до сих пор сохраняются разногласия по срокам начала мобилизации или реабилитации. Тем не менее существует общее мнение, что мобилизацию пациентов с ВМК следует начинать позже, чем пациентов с ишемическим инсультом, несмотря на отсутствие доказательств в поддержку этой точки зрения [14]. Следовательно,
необходимы данные о безопасности и эффективности ранней реабилитации после ВМК. Цель настоящего исследования заключалась в сравнении эффективности РФР со стандартным лечением у пациентов с ВМК. Мы предположили, что РФР в течение 48 часов от момента развития ВМК приведет к снижению летальности, частоты развития повторных кровоизлияний и улучшению качества жизни через 3 и 6 месяцев по сравнению со стандартным лечением.

МАТЕРИАЛЫ И МЕТОДЫ

Дизайн исследования

Провели проспективное многоцентровое рандомизированное контролируемое испытание с 2 параллельными группами и периодом наблюдения продолжительностью 6 месяцев с осложнением при оценке исходов. Испытание проводили в 3 клиниках: первой, второй и третьей аффилированных клиниках Медицинского колледжа университета Xi’an Jiaotong в провинции Шэньси, Китай, в период с апреля 2010 года по май 2013 г. Испытание зарегистрировали в китайском реестре клинических испытаний. (Clinical Trial Registration No. ChiCTR-TRC-13004039). Письменное информированное согласие до проведения рандомизации дали все участники исследования. Пациенты могли в любое время отказаться от участия или отозвать согласие на участие в испытании. По окончании испытания все пациенты получили подарки (стоимостью ≈8 долларов США).

Критерии включения пациентов

В испытание зачисляли пациентов, поступивших на лечение в неврологические или реабилитационные отделения вышеупомянутых клиник в течение первых 48 часов после развития ВМК. Использовали следующие критерии включения: (1) впервые развившееся ВМК, подтвержденное результатами МРТ или компьютерной томографии; (2) отсутствие противопоказаний подтвержденное результатами МРТ или компьютерной томографии; (3) анамнез заболевания, такие как тяжелая сердечная недостаточность, острый коронарный синдром, заболевания нижних конечностей, препятствующих проведению ранней мобилизации; (4) отсутствие информированного согласия.

Процесс отбора и рандомизации

Участникам испытания, соответствующим критериям включения и подписавшим информированное согласие, сообщили, что их будут рандомизировать в 1 из двух различных групп реабилитации: РФР плюс стандартное лечение или стандартное лечение. Распределение по группам было компьютеризированным, с использованием заблокированных процедур рандомизации. Подробную информацию о распределении по группам поместили в непрерывные герметичные конверты, которые тщательно оберегали персонал, участвующий в исследовании. С персоналом клиник связывались по телефону или по электронной почте для получения информации о ходе распределения.

Вмешательство

Пациентам обеих групп назначали стандартное лечение, которое проводили в нейрологических отделениях или отделениях реабилитации после инсульта вплоть до выписки из клиники (средняя продолжительность пребывания в стационаре 28,39 дней; СО=6,21 дня). В Китае стандартные реабилитационные мероприятия выполняют родственниками пациентов под руководством медицинского персонала и, как правило, включают (1) упражнения, характерные для повседневной деятельности, упражнения на растяжку, и нейромышечную электростимуляцию; (2) функциональные тренировки, во время которых пациенты просит систематически выполнять повторяющиеся задания, такие как перемещение, захват предметов и установление на предметы. Реабилитацию обычно начинают через 1 на дель после госпитализации по поводу инсульта. В настоящем исследовании все реабилитационные мероприятия проводили в произвольном порядке для имитации активности в повседневной деятельности или клинической практике, и занятия проводили >16 раз в месяц с продолжительностью каждого сеанса терапии 60 минут.

Всем участникам проводили стандартное лечение, но реабилитацию у участников в группе РФР начали в кратчайшие сроки после рандомизации, в течение 48 часов после развития ВМК. В отличие от этого в группе стандартного лечения реабилитационные мероприятия начали через 7 дней. В течение первой недели после поступления в рамках стандартного реабилитационного лечения назначали постельный режим или отдых на кушетке, характерные для повседневной деятельности или клинической практике, и занятия проводили >16 раз в месяц с продолжительностью каждого сеанса терапии 60 минут.

Исходные показатели

После рандомизации исходные демографические характеристики и данные анамнеза заболевания регистрировал средний медицинский персонал клиник. Собирали следующие данные: (1) социально-демографические данные, такие как возраст, пол, профессия, образование; (2) особенности инсульта, такие как локализация инсульта, возраст на момент развития инсульта, оценка по шкале тяжести инсульта Национальных институтов здравоохранения [16]; (3) анатомия заболевания и факторы риска развития инсульта, такие как употребление алкоголя, продолжительность сна и физическая активность; (4) результаты лабораторных и инструментальных обследований.
Полный текст статьи:

тальных исследований, такие как уровень артериального давления, содержание глюкозы, липопротеидов высокой плотности и липопротеидов низкой плотности в крови. Также собрали данные о клинических сопутствующих заболеваниях, таких как артериальная гипертензия, сахарный диабет и сердечно-сосудистые заболевания.

Первичная конечная точка
Первичной конечной точкой был летальный исход. Причину смерти по данным свидетелей о смерти и при непосредственном контакте с семьями пациентов исследовал, который не знал о распределении по группам (т.е., оспеленная оценка исхода). Первичную конечную точку оценивали через 6 месяцев после развития инсульта.

Вторичные конечные точки
В контрольной группе и группе вмешательства вторичные конечные точки исследователи оценивали через 3 и 6 месяцев после ВМК при определении относительного распределения по группам. При выпаде из клиники участников давали копии анкет. Участникам предлагали вернуть анкеты через 3 и 6 месяцев. Если участники находились дома и не возвращали анкеты, с ними связывались по телефону и заполняли анкеты путем опроса. Если участники по-прежнему оставались в клинике, анкеты заполнили путем опроса при непосредственном контакте.

Применяли следующие анкеты:
– Short Form-36 (SF-36) [17, 18]; эта анкета, позволяющая оценить качество жизни, связанное с состоянием здоровья, содержит 36 вопросов, которые объединены в 8 подшкал и суммарные оценки физического и психического компонентов. Результаты варьируются в диапазоне от 0 до 100 баллов, и более высокая оценка указывает на лучшее качество жизни;
– Модифицированный индекс Бартел [19]; этот функциональный показатель используется для оценки активности в повседневной деятельности. Результаты варьируются в диапазоне от 0 до 100 баллов, и более высокая оценка свидетельствует о независимости в повседневной деятельности;
– Шкала самооценки тревожности Цунга [20]; ее используют для оценки уровня тревожности пациента. Более высокая оценка свидетельствует о более высоком уровне тревожности, а оценка >60 баллов указывает на выраженное или тяжелое тревожное расстройство.
– Повторный инсульт: информацию о развитии у пациентов повторных инсультов получали из реестров клиник.

Размер выборки
Расчет размера выборки проводили с учетом числа пациентов, необходимого для обнаружения различий в нашей первой конечной точке в виде летального исхода, а также различий во вторичной конечной точке в виде инвалидности. Согласно нашим расчетам, минимальный размер выборки должен был составлять >170 пациентов. Такой размер выборки обеспечивал 80% мощности (при уровне 5%) для обнаружения снижения уровня смертности на 30% на основании прогнозируемого уровня смертности в течение 30 дней при ВМК, который составляет в Китае 50%, а размер выборки по 120 человек в группе был конечной целью в этом испытании, что также обеспечило 80% мощность для обнаружения 20% различий в числе участников с тяжелой зависимостью в повседневной деятельности (<70% баллов по индексу Бартел) по окончании периода наблюдения.

Статистический анализ
Для сравнений всех исходов использовали анализ по двустороннему критерию Манна-Уитни для сравнения непрерывных переменных и критерий χ² для сравнения бинарных переменных. Критерий χ² был использован для выявления различий между группами пациентов. Критерий χ² был использован для выявления различных в группах пациентов с относительной низкой зависимостью в повседневной деятельности.

Статистически значимыми считали различия при p<0,05 (2-сторонние), а все анализ проводили с использованием программного обеспечения SSS версии 13.0 (SPSS Inc, Чикаго, Иллинойс).

■ РЕЗУЛЬТАТЫ
В течение периода зачисления в испытание (с апреля 2010 по май 2013 г.) в 3 аффилированные клиники поступили 436 пациентов с ВМК. Из них 326 пациентов соответствовали критериям включения. На рис. 1 представлена блок-схема исследования и изложены причины исключений пациентов из испытания. В общей сложности в исследование включили 243 пациента. Мы отобрали 103 пациента из первой аффилированной клиники, 71 пациента из второй аффилированной клиники и 69 пациентов из третьей аффилированной клиники; в группе РФР было 122 участника, а в группе стандартного лечения — 121 участник. Один из пациентов в группе РФР выбыл из испытания до проведения опроса через 3 месяца по причине развития инвалидности и артрита.

Статистически значимых различий по исходным характеристикам между группой стандартного лечения и группой РФР не было (таблица 1). Средняя продол-
жительность пребывания в стационаре была на 10 дней меньше в группе вмешательства и составила 24 дня (СО=11,2 дня) в группе РФР и 34 дня (СО=15,1 дня) в группе стандартной терапии (р<0,001). Развитие осложнений во время пребывания в стационаре зарегистрировали у 73 пациентов (60,3%) в группе стандартной терапии и у 64 (53,3%) в группе РФР (р=0,318).

Число участников, у которых развилось ≤2 неблагоприятных событий в течение 6 месяцев после ВМК было меньше в группе вмешательства и составила 24 дня (СО=11,2 дня) в группе РФР и 34 дня (СО=15,1 дня) в группе стандартной терапии и у 64 (53,3%) в группе РФР (р<0,001). Развитие осложнений во время пребывания зарегистрировали в группе стандартной терапии. Через 6 месяцев было в общей сложности 3 летальных исхода (РФР – 1 летальный исход; стандартное лечение – 10 летальных исходов). Большинство летальных исходов в первые 3 месяца после инсульта (РФР – 1 летальный исход; стандартное лечение – 10 летальных исходов). Большинство летальных исходов зарегистрировали в группе стандартной терапии. Через 6 месяцев было в общей сложности 3 летальных исхода (РФР – 1 летальный исход; стандартное лечение – 10 летальных исходов). Большинство летальных исходов зарегистрировали в группе стандартной терапии. Через 6 месяцев было в общей сложности 3 летальных исхода (РФР – 1 летальный исход; стандартное лечение – 10 летальных исходов). Большинство летальных исходов зарегистрировали в группе стандартной терапии. Через 6 месяцев было в общей сложности 3 летальных исхода

Рисунок 1. Блок-схема клинического испытания
ний сахарного диабета) и 12 летальных исходов в группе стандартной терапии (5 по причине повторного инсульта, 4 из-за сердечной недостаточности и 3 из-за осложнений сахарного диабета; рис. 2). Выживаемость пациентов в течение 6 месяцев после инсульта в группе стандартной терапии была ниже по сравнению с группой РФР (некорректированное отношение рисков 4,25; 95% доверительный интервал [ДИ] от 1,20 до 15,07), что было подтверждено результатами многофакторного анализа (таблица 2).

Существенных различий в краткосрочном улучшении (0–3 месяца) в отношении вторичных конечных точек не было. Тем не менее в период от 3 до 6 месяцев после инсульта обнаружили статистически значимое различие между группами по всем исходам в пользу группы вмешательства. Это было обусловлено очевидным ухудшением в группе стандартного лечения и улучшением в группе РФР. Через 6 месяцев после ВМК между группой вмешательства и контрольной группой при суммарной оценке физического компонента отметили различие в 6 баллов (95% ДИ, от 4,2 до 8,7), различие в 7 баллах при суммарной оценке психического компонента (95% ДИ от 4,5 до 9,5), различие в 13 баллов между группами по индексу Бартел (95% ДИ 6,8 до 18,3) и различие в 6 баллов по шкале самооценки тревожности Цунга (95% ДИ от -8,3 до -4,4; таблица 3). Различия между 2 группами были клинически значимыми по всем подшкалам анкеты SF-36, общей оценке по шкале SF-36 (минимально клинически значимое различие 5 баллов), и индексу Бартел (минимально клинически значимое различие составляло 2 балла) [22, 23].

■ ОБСУЖДЕНИЕ

Это первое рандомизированное контролируемое испытание в большой выборке китайских пациентов, посвященное сравнению влияния РФР и стандартной терапии на долгосрочные исходы у пациентов с ВМК. Наиболее важный вывод, заключается в том, что выживаемость пациентов с ВМК, рандомизированных в группу РФР, в течение 6 месяцев была выше, чем у пациентов, получавших только стандартное лечение. У пациентов в группе РФР также была меньше продолжительность пребывания в стационаре, значительно более высокое качество жизни, они были независимы в повседневной деятельности и у них происходило улучшение показателей психического здоровья через 6 месяцев после инсульта по сравнению с пациентами, рандомизированными в группу стандартной терапии. Наши результаты свидетельствуют о том, что РФР эффективна у пациентов с ВМК. Хотя в целом уровень летальности был ниже, чем по нашим расчетам мощности, размер эффекта был значительно выше ожидалого снижения на 30% в группе вмешательства.

Хотя имеющиеся данные ограничены, наши результаты схожи с таковыми в последних испытаниях II фазы или в экспериментальных исследованиях, проведенных в общей выборке пациентов с инсультом [8, 10, 24]. В испытании II фазы A Very Early Rehabilitation Trial (AVERT; n = 71) у пациентов, которым проводили очень раннюю и интенсивную мобилизацию, отметили значительное улучшение вторичных конечных точек, таких как инвалидность через 12 месяцев, но не через 3 или 6 месяцев [8]. В других небольших экспериментальных исследованиях, таких как испытание Very Early Rehabilitationor Intensive Teleometry After Stroke (VERITAS) в Норвегии и Швеции [10, 24, 25], также продемонстрировали, что ранняя мобилизация была безопасна и осуществима. Число участников в этих 2 исследованиях были небольшими, и период наблюдения за пациентами составлял только 3 месяца. Как показано в нашем испытании и испытании II фазы AVERT, для того, чтобы продемонстрировать все преимущества РФР могут потребоваться более длительные периоды наблюдения (>6 месяцев).

В нашем исследовании различия между группами через 6 месяцев были обусловлены сочетанием функционального ухудшения в группе стандартного лечения и улучшения в группе РФР. Китай является развивающейся страной с развивающейся системой здравоохранения. У нас есть несколько обученных и квалифицированных практикующих специалистов по лечению инсульта, и нет первичного звена здравоохранения (т.е. лечение проводится только в стационарах) [26]. Следовательно, лиц, перенесших инсульт, выписывают домой с небольшой поддержкой или без нее, без наблюдения, без соблюдения стратегии вторичной профилактики и сохранения здоровья [26]. Родственники пациента заботятся о нем, проводят дальнейшую реабилитацию и осуществляют уход.

Возможно, более короткая продолжительность пребывания в стационаре и раннее начало реабилитации в нашей группе вмешательства, было обусловлено тем, что родственники пациента, скорее всего, и в дальнейшем поощряли активность пациента по возвращению домой по сравнению с пациентами группы стандартной терапии. Лица в группе стандартной терапии могли занять более пассивное положение, что привело к более короткому пребыванию в стационаре и большему времени для самостоятельного восстановления. Что касается РФР, то оно позволяет улучшить качество жизни пациентов, обеспечивая быстрое и полное восстановление функций, а также помогая в привыкании к новой реальности. Это может быть особенно важно для пациентов с сердечно-сосудистыми заболеваниями, которые часто имеют сердечную недостаточность и высокий уровень летальности.

Рисунок 2. Кривые кумулятивной выживаемости Каппана-Мейера для летальности от всех причин в группе ранней физической реабилитации (РФР) и стандартного лечения (СЛ) в течение периода наблюдения после инсульта продолжительностью 183 дня.
Лечение, реабилитация и профилактика

Таблица 1. Исходные демографические характеристики, данные анамнеза, образа жизни и функциональные характеристики

<table>
<thead>
<tr>
<th>Параметры</th>
<th>Ранняя физическая реабилитация (n=122)</th>
<th>Стандартное лечение (n=121)</th>
<th>Значение p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Возраст, годы, среднее (СО)</td>
<td>58,5 (12,3)</td>
<td>59,1 (15,5)</td>
<td>0,62</td>
</tr>
<tr>
<td>Число мужчин</td>
<td>67 (54,9)</td>
<td>70 (57,9)</td>
<td>0,65</td>
</tr>
</tbody>
</table>

Факторы риска развития инсульта

Артериальная гипертензия | 76 (62,3) | 78 (64,5) | 0,76 |
Гиперхолестеринемия | 37 (30,3) | 33 (27,3) | 0,60 |
Сахарный диабет | 57 (46,7) | 46 (38,0) | 0,11 |
Ортопедические заболевания | 27 (22,1) | 27 (22,3) | 0,97 |
Семейный анамнез инсульта | 70 (57,3) | 79 (64,5) | 0,26 |
Фибрилляция предсердий | 30 (24,6) | 28 (23,1) | 0,79 |
Порок сердца | 14 (11,5) | 25 (20,7) | 0,06 |
Сердечная недостаточность | 32 (26,2) | 22 (18,2) | 0,13 |

Показатели тяжести инсульта

Оценка по шкале тяжести инсульта Национальных институтов здравоохранения, среднее (СО) | 9,97 (1,31) | 9,98 (1,43) | 0,98 |
Легкая (1–7) | 2 (1,6) | 2 (1,7) | 0,83 |
Средняя (8–16) | 120 (98,4) | 119 (98,3) | 0,83 |
Тяжелая (>16) | 0 | 0 | 0,83 |

Клинические данные

Систолическое АД, медиана (Q1, Q3) | 156 (120, 169) | 154 (111, 166) | 0,21 |
Диастолическое АД, медиана (Q1, Q3) | 97 (70, 105) | 98 (68, 109) | 0,35 |
Сахар крови, медиана (Q1, Q3) | 4,5 (3,8, 9,9) | 5,1 (4,2, 5,2) | 0,14 |
Триглицериды, медиана (Q1, Q3) | 3,9 (3,2, 5,7) | 3,8 (3,2, 5,9) | 0,43 |
Общий холестерин, среднее (СО) | 4,4 (3,5) | 4,3 (3,5) | 0,50 |
Липопротеиды высокой плотности, среднее (СО) | 1,4 (0,5) | 1,3 (0,5) | 0,20 |
Липопротеиды низкой плотности, среднее (СО) | 3,1 (1,3) | 3,1 (1,3) | 0,52 |
Апоплазтоид A, среднее (СО) | 1,6 (0,6) | 1,5 (0,6) | 0,10 |
Апоплазтоид B, среднее (СО) | 2,0 (0,3) | 0,9 (0,3) | 0,12 |

Примечание. Значения представлены в виде n (%) если не указано иное. АД – артериальное давление.

Таблица 2. Анализ результатов выживаемости через 6 месяцев

<table>
<thead>
<tr>
<th>Ранняя физическая реабилитация, n/N (%)</th>
<th>Стандартное лечение, n/N (%)</th>
<th>ОР (95% ДИ)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>118/122 (97)</td>
<td>108/121 (89)</td>
<td>1,25 (1,20–15,07)</td>
</tr>
</tbody>
</table>

Примечание. ДИ – доверительный интервал, ОР – отношение рисков.

* – внесение поправок на наличие порока сердца и возраст.

к неблагоприятным долгосрочным последствиям для здоровья. Это может также быть частично обусловлено тем, что участники группы осознавали, что не попали в группу ранней реабилитации, как было указано в форме информированного согласия, и что привело к появлению небольшой систематической ошибки. Необходимы дополнительные исследования для определения долгосрочного влияния РФР в рамках условий после выпуска из стационара.

Значение для клинической практики

В нашем исследовании продемонстрировано, что начало реабилитации в течение 48 часов после ВМК безопасно. Точный механизм, посредством которого РФР приводит к улучшению исходов, неизвестен. Более высокий уровень летальности в группе стандартного лечения в первые 3 месяца после ВМК может быть связан со снижением частоты развития осложнений в группе РФР (например, пневмонии или эмболии легочной артерии). Эти выводы совпадают с результатами исследований VERITAS и AVERT, согласно которым в группах вмешательства было зарегистрировано меньше неблагоприятных событий через 5 дней и 3 месяца соответственно [8, 10]. Китай является развивающейся страной, и поэтому в ней еще не создана комплексная система 3-ступенчатой реабилитации [27]. Отсутствие опытных специалистов в смежных с медицинской профессиях и квалифицированных реабилитологов означает, что мероприятие по реабилитации в клинике должны проводить родственники пациента. В связи с этим, опробованная в нашем исследовании РФР во время пребывания в стационаре, подходит для современного положения дел в китайской системе здравоохранения, и ее легко внедрить в существующую клиническую практику.

Ограничения

Мы использовали более широкие критерии включения по сравнению с ранее проведенными испытаниями, проведенными в общей выборке пациентов с инсультом, [8, 24], например отсутствие верхнего возрастного предела, что увеличивает генерализу-
мость полученных результатов. Тем не менее в нашем исследовании существует ряд ограничений. Уровень летальности в нашем исследовании был ниже, чем уровень смертности в эпидемиологических исследованиях [1]. Однако полученные результаты согласуются с последними данными Китайского национального реестра [1]. Однако полученные результаты согласуются с последними данными Китайского национального реестра [1]. Однако полученные результаты согласуются с последними данными Китайского национального реестра [1].

Еще одно ограничение заключается в том, что мы не собрали исходных данных о важных предикторах развития летального исхода у пациентов с ВМК, таких как объем гематомы и локализация гематомы. Вполне вероятно, что эти маркеры тяжести ВМК не были сбалансированы между группами в пользу группы РФР. Мы использовали альтернативные показатели исходной тяжести инсульта для учета этой возможности в нашем многофакторном моделировании. Несмотря на указание времени начала реабилитации, мы не знаем, была ли реабилитация проведена в одинаковом объеме в обеих группах. Поскольку реабилитацию проводили родственники пациентов, не представлялось возможным зарегистрировать точный объем и тип реабилитационной терапии, полученной пациентами. Кроме того, мы определили количество неблагоприятных событий, развившихся в период проведения исследования, но не записывали подробную информацию о них.

Частично зачисление в исследование происходило на основании клинического решения лечащего врача. Хотя это не должно было привести к появлению систематической ошибки в результатах, это могло повлиять на генерализуемость результатов исследования, поскольку у врачей могли быть различные субъективные критерии. Кроме того, пациенты были отобраны из клиник только одного города, что могло повлиять на генерализуемость результатов исследования, поскольку у врачей могли быть различные субъективные критерии.

ВЫВОДЫ

Начало реабилитации в течение 48 часов после ВМК приводит к значительному уменьшению длительности пребывания в стационаре и улучшению долгосрочной выживаемости и исходов по сравнению с общепринятой в Китае практикой начала реабилитации через 7 дней после ВМК. Также была показана возможность применения РФР, как метода лечения пациентов с ВМК. Высокая эффективность РФР у пациентов с ВМК, продемонстрированная в нашем исследовании, подчеркивает потребность проведения дальнейших исследований в этой области.

ЛИТЕРАТУРА