Global Stroke Belt
Geographic Variation in Stroke Burden Worldwide

Anthony S. Kim, MD, MAS; Elizabeth Cahill, MD; Natalie T. Cheng, MD

Over the past several decades, much of the developed world has experienced a sustained reduction in age-standardized stroke mortality and morbidity rates.1 For many of these countries, these improvements have translated into declines in absolute stroke mortality and morbidity as well. For example, stroke had been the third-leading cause of death in the United States for >70 years until 2008, when it became the fourth leading cause of death.2 Just 5 years later, stroke became the fifth leading cause of death—a drop that reflected the >60% decline in the age-adjusted mortality rate from stroke over just the past few decades.3,4

For most other developed countries, the recent experience and outlook for stroke has been similar.1,5 Over the past 20 years, high-income countries as a group have experienced a 13% decline (95% confidence interval, 6–18%) in the age-standardized incidence rate, a 37% decline (95% confidence interval 19–39%) in the age-standardized mortality rate, and a 21% decline (95% confidence interval, 10–27%) in the age-standardized disease burden from ischemic stroke as measured in disability-adjusted life year (DALY) loss rates.5,6 (DALYs are a summary measure of disease burden that combines the impact of years of healthy life lost caused by premature death with the effect of long-term disability on quality of life over time.) For hemorrhagic stroke, there have been similar improvements in these indicators over the same period.8,9

However, the global outlook for the total disease burden from stroke is a bit more humbling. In 2013, an estimated 6.4 million deaths (11.8% of all deaths) were caused by stroke, and stroke remained the third-leading cause of years-of-potential-life lost worldwide (Table 1).1,8,11,12 Between 1990 and 2010, the absolute incidence of ischemic stroke increased by 37% and the absolute incidence of hemorrhagic stroke increased by 47%, whereas the total number of deaths attributable to ischemic and hemorrhagic stroke increased by ~20% over that same period.8 By 2030, there could as many as 12 million stroke deaths, 70 million stroke survivors, and >200 million DALYs lost from stroke each year.1

How can we reconcile the diverging narratives of an expanding global stroke epidemic with some of the recent public health successes in addressing key epidemiological risk factors and reducing stroke incidence rates and mortality rates, particularly in high-income countries? To start, most of the total burden of disease from stroke is borne by the low- and middle-income countries at the center of the global stroke epidemic.11,14 So although high-income countries experienced a 42% decline in absolute stroke incidence between 1970 and 2008, a combination of epidemiological, demographic, and health system factors contributed to a 100% increase in low- and middle-income countries over that same period.15 This substantial disparity in both current and future stroke disease burden focused in the developing world forms the essence of the concept of a global stroke belt.

Global Stroke Belt

The term "stroke belt" has been previously applied to describe the striking and persistent geographic disparities in stroke incidence and mortality observed in the southeastern United States.16–18 Intensive investigation has been focused on developing a better understanding of the reasons for these disparities, including evaluating factors such as regional differences in race/ethnicity, poverty, access to care, case fatality rates, vascular risk factor prevalence, environmental factors, genetic factors, and epidemiological surveillance methods19–23—factors that may be operating on an international level as well.

Within this context, the term global stroke belt refers to the substantial regional and country-level variation in stroke disease burden indicators across the globe, with hotspots of particularly high-stroke incidence, mortality, and morbidity in Eastern Europe, East and Southeast Asia, Central Africa, and Oceania (Figure 1). The most affected countries in the global stroke belt have a >10-fold higher age-standardized stroke mortality rate than the least affected countries.14 For example, in 2010, the age-standardized stroke mortality rate in Russia was 180 per 100,000 when compared with 127 in China and 29 in the United States (Table 1).1

The geography of disability burden from stroke, measured in DALY loss rates, is similar to the observed patterns for stroke mortality and incidence rates worldwide (Figure 1).24 Many low- and middle-income countries have high DALY losses...
from stroke, even though a lower life expectancy at baseline can lead to fewer years of potential life lost and fewer years of expected disability burden over time. However, higher stroke incidence rates, a younger average age of stroke onset, and a shift toward hemorrhagic stroke, which has higher case fatality and disability impacts, as well as differences in access to care and the differential impacts of disability of stroke in low- and middle-income countries, all conspire to produce high DALY loss rates from stroke in some countries that can range >10-fold higher than the least affected countries (Table 1).

Role of Major Epidemiological Risk Factors

Regional differences and trends in the distribution major epidemiological risk factors may contribute to transnational differences in stroke disease burden worldwide. Chief among the epidemiological risk factors for stroke is hypertension, which is also leading risk factor for all-cause disease burden worldwide (Table 2). Although even mild hypertension is a strong risk factor for stroke, the type of unrecognized, untreated, and severe hypertension often seen when capacity for screening and treatment is limited can be associated with an especially high risk for stroke. Severe hypertension is also associated with an increased risk for hemorrhagic stroke, which carries a higher risk of mortality and disability, and which often affects younger patients and leads to a disproportionate contribution to total disease burden.

The worldwide prevalence of hypertension was estimated to be 26% in 2000 and is projected to increase to 29% by 2025. Although global mean age-standardized systolic blood pressure declined slightly from 130.5 mmHg in 1980 to 128.1 mmHg in 2008, this trend is largely a reflection of the substantial improvements in hypertension awareness, treatment, and control in the developed countries of North America, Western Europe, and Australia. For example, the median systolic blood

Table 1. Top 15 and Bottom 15 Ranked Countries by Age-Standardized Stroke Mortality Rate, Stroke Incidence Rate, and DALY Loss Rate, 2010

<table>
<thead>
<tr>
<th>Rank</th>
<th>Country</th>
<th>Age-Standardized Stroke Mortality Per 100 000</th>
<th>Age-Standardized Stroke Incidence Per 100 000</th>
<th>Age-Standardized Stroke DALY Losses Per 100 000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Qatar</td>
<td>22.4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Canada</td>
<td>26.0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>France</td>
<td>27.3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Iceland</td>
<td>28.1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Israel</td>
<td>28.7</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>United States</td>
<td>28.7</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>Switzerland</td>
<td>29.8</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>Australia</td>
<td>29.9</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>New Zealand</td>
<td>31.7</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>Costa Rica</td>
<td>32.3</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>Netherlands</td>
<td>32.5</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>Germany</td>
<td>32.6</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>Austria</td>
<td>33.4</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>El Salvador</td>
<td>34.4</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>Ireland</td>
<td>34.6</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>Malawi</td>
<td>166.3</td>
<td>173</td>
<td>173</td>
</tr>
<tr>
<td>17</td>
<td>Kiribati</td>
<td>168.1</td>
<td>174</td>
<td>174</td>
</tr>
<tr>
<td>18</td>
<td>Tajikistan</td>
<td>170.4</td>
<td>175</td>
<td>175</td>
</tr>
<tr>
<td>19</td>
<td>Kazakhstan</td>
<td>173.2</td>
<td>176</td>
<td>176</td>
</tr>
<tr>
<td>20</td>
<td>Guyana</td>
<td>175.8</td>
<td>177</td>
<td>177</td>
</tr>
<tr>
<td>21</td>
<td>Russia</td>
<td>179.8</td>
<td>178</td>
<td>178</td>
</tr>
<tr>
<td>22</td>
<td>Vanuatu</td>
<td>183.6</td>
<td>179</td>
<td>179</td>
</tr>
<tr>
<td>23</td>
<td>Kyrgyzstan</td>
<td>183.8</td>
<td>180</td>
<td>180</td>
</tr>
<tr>
<td>24</td>
<td>Solomon Islands</td>
<td>187.6</td>
<td>181</td>
<td>181</td>
</tr>
<tr>
<td>25</td>
<td>Indonesia</td>
<td>193.3</td>
<td>182</td>
<td>182</td>
</tr>
<tr>
<td>26</td>
<td>Madagascar</td>
<td>196.1</td>
<td>183</td>
<td>183</td>
</tr>
<tr>
<td>27</td>
<td>Macedonia</td>
<td>203.3</td>
<td>184</td>
<td>184</td>
</tr>
<tr>
<td>28</td>
<td>Mongolia</td>
<td>222.6</td>
<td>185</td>
<td>185</td>
</tr>
<tr>
<td>29</td>
<td>Haiti</td>
<td>230.7</td>
<td>186</td>
<td>186</td>
</tr>
<tr>
<td>30</td>
<td>Afghanistan</td>
<td>263.9</td>
<td>187</td>
<td>187</td>
</tr>
</tbody>
</table>

DALYs indicates disability-adjusted life years.
Pressure in the United States was 150 mm Hg in the 1960s, but had improved to 130 mm Hg by the 1990s, and the proportion of the population with severe hypertension dramatically improved over this same time period. In contrast, mean systolic blood pressure has actually been increasing in some low- and middle-income countries over the past decade, particularly in east Africa, South and Southeast Asia, and Oceania (Figure 2) and the share of all-cause disease burden attributable to high blood pressure in central, eastern, and western sub-Saharan Africa has also been increasing in recent decades.25

Although other major risk factors such as high fasting plasma glucose, high total cholesterol, high body mass index,
and tobacco smoking have historically been more prevalent in high-income countries,24 most high-income countries have also seen improvements or moderation in population measures of these risk factors (with the notable exceptions of obesity and diabetes mellitus). In contrast, many low- or middle-income countries have had accelerating unfavorable trends in these epidemiological risk factors in recent years that are expected to continue to contribute to widening gaps in stroke burden in the years to come (Figure 2).25 For example, even though Eastern Europe already has a particularly high absolute burden of cardiovascular disease and stroke, as well as a high prevalence of high alcohol consumption, tobacco smoking including second-hand smoke, and high body mass index, all of these epidemiological risk factors are expected to worsen in the coming years.25 Similarly, high body mass index is already the leading risk factor for overall disease burden in southern and central Latin America, and high serum glucose is already the leading cause of overall disease burden in Oceania.25

Epidemiological Transition, Demographic Shifts, and Health System Capacity

These shifts in epidemiological risk factors are taking place within a larger shift from infectious disease, childhood diseases, and malnutrition to chronic conditions such as stroke and cardiovascular disease, combined with associated demographic changes and aging, which has been termed the epidemiological transition.25 This model of development posits that as infectious disease and malnutrition become contained and as early mortality declines and life expectancy increases, the chronic diseases related to epidemiological risk factors and aging such as stroke and cardiovascular disease become more prevalent and changes in diet, physical activity, and other factors facilitated by urbanization and globalization emerge as the primary drivers of overall disease burden.

Trends that are consistent with an ongoing epidemiological transition are apparent at the regional and national level. The leading risk factor for disease burden globally shifted from childhood underweight status in 1990 to hypertension in 2010 (Table 3).25 Infection, nutrition, and perinatal disease accounted for 34% of deaths in 1990 but will account for 15% of total deaths by 2020, whereas cardiovascular disease, including stroke, will increase from 28% of deaths in 1990 to 34% over that same period.31 Corresponding demographic shifts and aging populations, which are also strongly tied to economic development, industrialization, and higher national income, have substantial impacts on stroke incidence, mortality, and disease burden.32 This may explain why national income remains such a strong independent predictor of stroke disease burden even after accounting for population-level indicators for epidemiological risk factors.24 Furthermore, the demographic shifts and aging of populations will likely lead to increases in total stroke mortality even if age-standardized mortality rates declines.32 For example, India’s rapidly expanding population and growing elderly population will both contribute to large increases in the absolute burden of stroke mortality in the coming years even if age-specific mortality rates can be stabilized or improved.

Table 2. Top 5 Causes of Years of Potential Life Lost Worldwide, 1990 and 2013

<table>
<thead>
<tr>
<th>Rank</th>
<th>1990</th>
<th>2013</th>
<th>Change From 1990 to 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lower respiratory infections</td>
<td>Ischemic heart disease</td>
<td>+31% (+24 to +41%)</td>
</tr>
<tr>
<td>2</td>
<td>Diarrheal diseases</td>
<td>Lower respiratory infections</td>
<td>-48% (-54 to -43%)</td>
</tr>
<tr>
<td>3</td>
<td>Preterm birth</td>
<td>Cerebrovascular disease</td>
<td>+24% (+18 to +32%)</td>
</tr>
<tr>
<td>4</td>
<td>Ischemic heart disease</td>
<td>Diarrheal diseases</td>
<td>-62% (-66 to -57%)</td>
</tr>
<tr>
<td>5</td>
<td>Cerebrovascular disease</td>
<td>Road injuries</td>
<td>+15% (+2 to +23%)</td>
</tr>
</tbody>
</table>

Figure 2. Trends in estimated crude mean systolic blood pressure (A) and estimated mean age-standardized body mass index (B), in selected countries 1980–2009.29
China: A Case Study

China presents an important case study for the challenges posed by the substantial stroke burden within the global stroke belt. Stroke remains the leading cause of death in China, with an estimated 2.5 million incident strokes and >1.6 million deaths related to stroke occurring each year. The composition of China's disease burden mirrors the pattern seen in many developing countries where stroke is the predominant form of cardiovascular disease, and the incidence of both ischemic stroke and of hemorrhagic stroke exceeds the incidence of ischemic heart disease (Figure 3).35

When measured on a national level, mean population body mass index and mean systolic blood pressure and the prevalence of obesity, diabetes mellitus, and tobacco use have all been increasing.29 All of these trends are projected to result in material increases in stroke incidence, morbidity, and mortality.35 Sociodemographic trends including overall population growth and the significant aging of the population serve to compound the impacts of these unfavorable trends in epidemiological risk factors. On the basis of these current trends, we found that the overall incidence of stroke in China is projected to increase by 50% in the next 20 years (Figure 3).35

As a point of comparison, in the recent past, Japan had a similar pattern of cardiovascular disease burden with a particularly high burden of hemorrhagic and ischemic stroke.36 However, with improvements in primary and secondary preventions, ischemic heart disease and stroke incidence rates have declined, and the pattern of cardiovascular disease has begun to shift toward a pattern that is more typical of high-income countries in North America and Western Europe. Specifically, both the Unites States and Japan have seen improvements in population-level measures of cholesterol, systolic blood pressure, and smoking prevalence although obesity, high mean body mass index, and elevated mean serum glucose remain challenges moving forward (Figure 2). Consistent with global trends, although age-standardized stroke incidence rates have

Table 3. Leading Risk Factors for Global All-Cause Disease Burden, 1990 and 2010

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>% of Total DALYs</th>
<th>Deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Childhood underweight</td>
<td>7.9 (6.8–9.5)</td>
<td>2.3 million</td>
</tr>
<tr>
<td>Household air pollution from solid fuels</td>
<td>7.0 (5.6–8.3)</td>
<td>4.6 million</td>
</tr>
<tr>
<td>Tobacco Smoking including second-hand smoke</td>
<td>6.1 (5.4–6.8)</td>
<td>5.3 million</td>
</tr>
<tr>
<td>High blood pressure</td>
<td>5.5 (5.0–6.0)</td>
<td>7.3 million</td>
</tr>
<tr>
<td>High blood pressure</td>
<td>7.0 (6.3–7.6)</td>
<td>9.4 million</td>
</tr>
<tr>
<td>Tobacco smoking including second-hand smoke</td>
<td>6.3 (5.5–6.9)</td>
<td>6.3 million</td>
</tr>
<tr>
<td>Household air pollution from solid fuels</td>
<td>4.3 (3.4–5.3)</td>
<td>3.5 million</td>
</tr>
<tr>
<td>Diet low in fruits</td>
<td>4.2 (3.3–5.0)</td>
<td>4.9 million</td>
</tr>
</tbody>
</table>

DALYs indicates disability-adjusted life years.

Lower national income is also correlated with resource constraints for public health investments in prevention and limited capacity for providing stroke care.33 Because improving population measures of hypertension control requires public health capacity to be able to screen, identify, and treat high-risk subpopulations or careful implementation of population-based primary prevention approaches, additional investments in public health surveillance and prevention may be necessary to target subpopulations with extremes of undetected and untreated epidemiological risk factors. In addition, the notion of chronic treatment for an initially asymptomatic condition such as hypertension and education efforts about stroke and stroke risk factors will be important for long-term prevention and treatment efforts. Expanded capacity for stroke treatment and recovery services enabled by additional health-care resources such as stroke units and acute and emergency treatment may also influence case fatality rates and stroke morbidity as well.

Figure 3. Projected incidence of coronary heart disease (CHD), ischemic stroke, and hemorrhagic stroke among men in China, 2010 to 2030. Based on Demographic and Risk Factor Trends refers to projections assuming a continuation of current combined main trends in systolic blood pressure, total cholesterol, diabetes mellitus, and smoking, and Based on Demographic Trends Only refers to projections assuming no change in year 2000 risk factor levels. Adapted from Moran et al with permission of the publisher. Copyright ©2010, American Heart Association. Authorization for this adaptation has been obtained both from the owner of the copyright in the original work and from the owner of copyright in the translation or adaptation.
been decreasing overall, ongoing demographic shifts and aging portend increase in the absolute number of stroke deaths for both countries in the coming years.

Global Efforts to Address the Burden of Noncommunicable Disease

At the international level, there has been a renewed emphasis on addressing the global impact of noncommunicable diseases such as stroke in the coming decades. These efforts have been facilitated by high-quality data from Global the Burden of Disease Study and by the efforts of international bodies such as the World Health Organization and World Stroke Organization. However, the epidemic of stroke burden in low- and middle-income countries suggests that interventions to specifically target stroke burden within the global stroke belt may be justified within the context of this overall pivot to address noncommunicable diseases globally.

Given the strong association between hypertension and stroke risk, any improvements in hypertension diagnosis and treatment would be expected to have disproportionate impacts on reducing stroke disease burden. Similar approaches to other epidemiological risk factors, including tobacco use, high body mass index, and alcohol use, may be helpful. Also because many of the epidemiological risk factors for stroke are shared with other chronic diseases such as heart disease and vascular cognitive impairment, any decrease in stroke disease burden would likely reduce all-cause disease burden as well.

The types of targeted initial investments to begin to address these ongoing challenges could be modest. For example, increasing tobacco prices to reduce cardiovascular disease burden would require as little as $3 to 42 per DALY loss averted, aspirin for acute stroke treatment would require $100 to 700 per DALY loss averted, and secondary prevention with aspirin and an antihypertensive could be cost-saving from a societal perspective. The potential role of a polypill—a single pill with a combination of an antihypertensive, a lipid-lowering agent, and antiplatelet agent—to improve adherence and reduce costs has been investigated and seems to be safe and variably effective depending on the target population. For example, the China National Stroke Prevention Project found that only a minority of patients with stroke receive medications for secondary stroke prevention, the vast majority of these patients could be eligible for a polypill. These types of continued innovations, adequate resourcing, and a transnational organizing framework for developing and implementing targeted and sustained interventions will be required moving forward. However, economic development alone without these targeted may not reduce the absolute number of deaths from stroke moving forward.

Limitations

Much of the above discussion has focused at the country-level, which may be particularly relevant for setting national public health policies. However, within-country or within-region differences in the pattern of stroke disease burden may have profound policy implications as well. For example, differences between urban and rural areas within the same country may be as great or greater than the differences between global cities in different countries in ways that could justify more granular disease surveillance and specific, targeted interventions. Finally, country-level comparisons are subject to the ecological fallacy because population-level measurements fail to take into account joint effects of risk factors or the distribution of risk factors within a population. Next, although data on stroke incidence are increasingly based on population-based studies, much of the data from low- and middle-income countries continue to be based on hospital data or modeling estimates because the infrastructure for more standardized stroke surveillance data collection may not yet be in place. In addition, surveillance methods and measurement and misclassification differences as well as secular trends in these methods could also contribute to the observed transnational differences as well.

Conclusions

The ongoing epidemic of stroke is concentrated in a global stroke belt in the developing world with substantial disparities in stroke disease burden among countries and regions. Although there has been some success in reducing the age-standardized mortality and morbidity from stroke, particularly in developed countries, the total disease burden from stroke on a global basis remains substantial, particularly in low- and middle-income countries. Unfavorable trends in epidemiological risk factors, along with aging and population growth, and health systems capacity in the coming decades are expected to lead to increases in the absolute burden of disease from stroke as part of the continued shift from infectious to noncommunicable disease. A renewed focus on risk factors, particularly hypertension, tobacco use, and alcohol use, would be expected to have disproportionate impacts on reducing the burden of disease from stroke and other related noncommunicable diseases. Additional investments in public health infrastructure for prevention and treatment will be required, and systematic epidemiological surveillance will help to prioritize and target public health efforts moving forward.

Disclosures

None.

References

Key Words: epidemiology ■ global health ■ hypertension ■ risk factors ■ stroke
Глобальный пояс инсульта. Географические вариации бремени инсульта в мире

Department of Neurology, University of California, San Francisco.

Ключевые слова: эпидемиология (epidemiology), глобальное состояние здоровья населения (global health), гипертензия (hypertension), факторы риска (risk factors), инсульт (stroke)

За последние несколько десятилетий в большинстве развитых стран мира произошло устойчивое снижение стандартизированной по возрасту смертности от инсульта и заболеваемости инсультом [1]. Во многих из этих стран такие улучшения отразились на снижении абсолютной смертности от инсульта и заболеваемости инсультом. Например, инсульт был третьей по значимости причиной смерти в Соединенных Штатах в течение более 70 лет, вплоть до 2008 г., когда он переместился на четвертую позицию [2, 3]. Всего 5 лет спустя, инсульт стал пятой по значимости причиной смерти [4]. Эти показатели отражают снижение стандартизированного по возрасту уровня смертности от инсульта более чем на 60% за последние несколько десятилетий [5, 6].

Для большинства других развитых стран опыт лечения и прогноз при инсульте были аналогичными [1, 7]. За последние 20 лет в странах с высоким уровнем дохода, если рассматривать их как отдельную группу, произошло снижение на 13% (95% доверительный интервал [ДИ]: от 6 до 18%) стандартизированного по возрасту уровня заболеваемости, снижение на 37% (95% ДИ: от 19 до 39%) стандартизированного по возрасту уровня смертности и снижение на 21% (95% ДИ: от 10 до 27%) стандартизированного по возрасту бремени ишемического инсульта (ИИ), согласно показателям потери лет жизни, скорректированному по нетрудоспособности (DALY — disability-adjusted life year) [8, 9]. DALY является суммарным показателем заболеваемости, который учитывает число утраченных лет здоровой жизни, связанной с преждевременной смертью, и влияние длительной нетрудоспособности на качество жизни, в течение продолжительного периода времени. В отношении геморрагического инсульта (ГИ) за тот же период времени были зарегистрированы аналогичные показатели [8, 10].

Тем не менее глобальные перспективы общего бремени инсульта несколько угрожающие. Согласно оценкам, в 2015 г. было 1,6 млн смертей (11,8% от всех смертей) были связаны с инсультом, который оказался третьей ведущей причиной потери потенциальной жизни во всем мире (таблица 1) [1, 8, 11, 12]. С 1990 по 2010 г. абсолютная заболеваемость ИИ выросла на 37%, абсолютная заболеваемость ГИ увеличилась на 47%, а общее количество смертей, связанных с ИИ и ГИ, увеличилось приблизительно на 20% за тот же период [8]. К 2030 г. можно ожидать 12 млн смертей от инсульта, 70 млн лиц, выживших после инсульта, и >200 млн DALY от инсульта ежегодно [11].

Как же нам сопоставить расходящиеся данные об усугублении глобальной эпидемии инсульта с некоторыми последними достижениями здравоохранения в устранении основных эпидемиологических факторов риска и уменьшении заболеваемости инсультом и смертности от инсульта, особенно в странах с высоким уровнем дохода? Для начала, большая часть общего бремени инсульта ложится на страны с низким и средним уровнями дохода в центре глобальной эпидемии инсульта [13, 14]. Таким образом, несмотря на снижение абсолютной заболеваемости инсультом на 42% в период с 1970 по 2008 г. в странах с высоким уровнем доходов, за этот же период сохраняется эпидемиологическая, демографическая периоды и факторов системы здравоохранения способствовало увеличению этого показателя на 100% в странах с низким и средним уровнями доходов [15]. Это значимое различие в современном и будущем бремени инсульта, сомнительно, в развивающихся странах, составляет суть концепции глобального пояса инсульта.

Глобальный пояс инсульта

Термин «пояс инсульта» ранее применяли для описания корреляционных и статистических географических различий в заболеваемости и смертности от инсульта, наблюдаемых в юго-восточных регионах Соединенных Штатов [16–18]. Прилагаю значительные усилия по изучению причин этих различий, в т.ч. направленные на оценку таких факторов, как региональная отличие в расовой/этической принадлежности, уровне дохода, доступности медицинского обслуживания, показателях смертности, распространенности сердечно-сосудистых факторов риска, влияния факторов окружающей среды, генетических факторов и методов эпидемиологического контроля [19–23], т.е. факторов, которые также имеют значение на международном уровне.

В этом контексте термин «глобальный пояс инсульта» относится к существенным различиям на уровне регионов и стран в отношении бремени инсульта во всем мире. Особенно с высокими показателями заболеваемости инсультом и смертности от него в Восточной Европе, Восточной и Юго-Восточной Азии, в Центральной Африке и Океании (рис. 1, см. на цв. вклейке). В наиболее неблагополучных странах глобального пояса инсульта стандартизированная по возрасту смертность от инсульта более чем в 10 раз выше, чем в странах с меньшим бременем инсульта [1, 24]. Например, в 2010 г. стандартизированная по возрасту смертность от инсульта
Таблица 1. Список 15 лидирующих и 15 отстающих стран, составленный с учетом стандартизированного по возрасту показателя смертности от инсульта, стандартизированного по возрасту показателя заболеваемости инсультом и показателя потери лет жизни, скорректированных по нетрудоспособности (DALY) в 2010 г. [9]

<table>
<thead>
<tr>
<th>Место</th>
<th>Страна</th>
<th>Стандартизированная по возрасту смертность от инсульта на 100 тыс. населения</th>
<th>Стандартизированная по возрасту заболеваемость инсультом на 100 тыс. населения</th>
<th>Стандартизированная по возрасту потеря DALY из-за инсульта на 100 тыс. населения</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Намибия</td>
<td>22,4</td>
<td>1</td>
<td>99,6</td>
</tr>
<tr>
<td>2</td>
<td>Канада</td>
<td>26,0</td>
<td>2</td>
<td>66,4</td>
</tr>
<tr>
<td>3</td>
<td>Франция</td>
<td>27,3</td>
<td>3</td>
<td>75,6</td>
</tr>
<tr>
<td>4</td>
<td>Испания</td>
<td>28,1</td>
<td>4</td>
<td>91,4</td>
</tr>
<tr>
<td>5</td>
<td>Израиль</td>
<td>28,7</td>
<td>5</td>
<td>96,3</td>
</tr>
<tr>
<td>6</td>
<td>США</td>
<td>28,7</td>
<td>6</td>
<td>101,4</td>
</tr>
<tr>
<td>7</td>
<td>Австралия</td>
<td>29,8</td>
<td>7</td>
<td>105,5</td>
</tr>
<tr>
<td>9</td>
<td>Новая Зеландия</td>
<td>31,7</td>
<td>9</td>
<td>115,4</td>
</tr>
<tr>
<td>10</td>
<td>Коста Рика</td>
<td>32,3</td>
<td>10</td>
<td>115,8</td>
</tr>
<tr>
<td>11</td>
<td>Нидерланды</td>
<td>32,5</td>
<td>11</td>
<td>116,6</td>
</tr>
<tr>
<td>12</td>
<td>Германия</td>
<td>32,6</td>
<td>12</td>
<td>116,9</td>
</tr>
<tr>
<td>13</td>
<td>Австрия</td>
<td>32,8</td>
<td>13</td>
<td>119,3</td>
</tr>
<tr>
<td>14</td>
<td>Эль Салвадор</td>
<td>34,4</td>
<td>14</td>
<td>123,2</td>
</tr>
<tr>
<td>15</td>
<td>Ирландия</td>
<td>34,6</td>
<td>15</td>
<td>124,7</td>
</tr>
<tr>
<td>16</td>
<td>Малави</td>
<td>166,3</td>
<td>173</td>
<td>342,3</td>
</tr>
<tr>
<td>17</td>
<td>Киргизия</td>
<td>168,1</td>
<td>174</td>
<td>347,5</td>
</tr>
<tr>
<td>18</td>
<td>Таджикистан</td>
<td>170,4</td>
<td>175</td>
<td>350,8</td>
</tr>
<tr>
<td>19</td>
<td>Казахстан</td>
<td>173,2</td>
<td>176</td>
<td>353,3</td>
</tr>
<tr>
<td>20</td>
<td>Гайана</td>
<td>175,8</td>
<td>177</td>
<td>354,3</td>
</tr>
<tr>
<td>21</td>
<td>Россия</td>
<td>179,8</td>
<td>178</td>
<td>363,3</td>
</tr>
<tr>
<td>22</td>
<td>Вануату</td>
<td>183,6</td>
<td>179</td>
<td>400,4</td>
</tr>
<tr>
<td>23</td>
<td>Киргизия</td>
<td>183,8</td>
<td>180</td>
<td>432,7</td>
</tr>
<tr>
<td>24</td>
<td>Соломоновы острова</td>
<td>187,6</td>
<td>181</td>
<td>433,4</td>
</tr>
<tr>
<td>25</td>
<td>Индонезия</td>
<td>193,3</td>
<td>182</td>
<td>442,1</td>
</tr>
<tr>
<td>26</td>
<td>Мадагаскар</td>
<td>196,1</td>
<td>183</td>
<td>495,1</td>
</tr>
<tr>
<td>27</td>
<td>Монголия</td>
<td>203,3</td>
<td>184</td>
<td>503,9</td>
</tr>
<tr>
<td>28</td>
<td>Бангладеш</td>
<td>230,7</td>
<td>186</td>
<td>622,0</td>
</tr>
<tr>
<td>29</td>
<td>Афганистан</td>
<td>263,9</td>
<td>187</td>
<td>689,3</td>
</tr>
</tbody>
</table>

Примечание. DALYs – годы жизни, скорректированные по времени нетрудоспособности (disability-adjusted life years).

в России составила 180 на 100 тыс. по сравнению со 127 в Китае и 29 в Соединенных Штатах (таблица 1) [1].

География демографии инвалидности от инсульта, измеряемая по показателю DALY, аналитична наблюдаемой картине заболеваемости и смертности от инсульта по всему миру (рис. 1, см. на цв. вклейке) [24]. Во многих странах с низким и средним уровнями дохода показатель потери DALY очень высок, хотя небольшая продолжительность жизни изначально может привести к уменьшению числа потерянных лет потенциальной жизни и меньшему числу лет ожидаленного времени инвалидности с течением времени. Тем не менее вывод о высокой заболеваемости инсультом [8], развитие инсульта в среднем в более молодом возрасте [1] и сдвиг тенденции в сторону развития ГИ, для которого характерны более высокая летальность и инвалидизация [8], а также различия в доступности медицинской помощи и дифференциальные последствия инвалидности после инсульта в странах с низким и средним уровнями дохода в совокупности обеспечивают высокий показатель DALY при инсульте в некоторых странах, который может быть еще больше в 10 раз превышать аналогичный показатель в более благополучных странах (таблица 1) [1, 24].

Роль главных эпидемиологических факторов риска

Региональные различия в тенденциях в распределении основных эпидемиологических факторов риска могут способствовать появлению межнациональных различий в бремени инсульта во всем мире. Главным среди эпидемиологических факторов риска развития инсульта является артериальная гипертензия (АГ), которая также является ведущим фактором риска, бремени инсульта среди всех причин по всему миру (таблица 2) [25]. Даже пограничная гипертензия является фактором риска развития инсульта, поэтому наличие нераспознанной, нелечной и тяжелой АГ, которая часто встречается
при ограниченных возможностях скрининга и лечения, может быть связано с особенно высоким риском развития инсульта. Тяжелая АГ также ассоциирована с повышенным риском развития ГИ, который несет высокий риск смертности и инвалидизации, а также часто развивается у молодых пациентов и вносит непропорциональный вклад в общее время заболевания [10].

Согласно оценкам, распространенность АГ во всем мире в 2000 г. составляла 26% и, по прогнозам, увеличится до 29% к 2025 г. [26]. Глобальный средний стандартизированный по возрасту уровень систолического артериального давления (АД) снизился со 130,5 мм рт.ст. в 1980 г. до 128,1 мм рт.ст. в 2008 г. [27], и эта тенденция во многом является отражением существенного улучшения осведомленности населения об АГ, методах ее лечения и контроля в развитых странах Европы, Западной Европы и Австралии [27]. Например, медиана уровня систолического АД в Соединенных Штатах составляла 150 мм рт.ст. в 1960 г., но снизилась до 130 мм рт.ст. к 1990 г., доля лиц с тяжелой АГ значительно уменьшилась за этот период времени [28]. В отличие от этого за последнее десятилетие фактически произошло повышение среднего уровня систолического АД в некоторых странах с низким и средним уровнями доходов, особенно в Восточной Африке, Южной и Юго-Восточной Азии и Океании [27] (рис. 2), а доля бремени болезней, связанных с высоким уровнем АД в центральной, восточной, западной и расположенной к югу от Сахары Африке также выросла за последние десятилетия [25].

Хотя другие основные факторы риска, такие как высокое содержание глюкозы в плазме натощак, высокое содержание общего холестерина, высокий индекс массы тела (ИМТ) и табакокурение исторически были более распространенными в странах с высоким уровнем дохода [24]. В большинстве стран с высоким уровнем дохода также произошло улучшения или стабилизации популяционных показателей этих факторов риска (за исключением ожирения и сахарного диабета). В отличие от этого во многих странах с низким и средним уровнями доходов произошло ускорение неблагоприятных тенденций относительно этих эпидемиологических факторов риска в последнее десятилетие, что, как ожидается, продолжит вносить вклад в увеличение различий в бремени инсульта в последующие годы (рис. 2) [25]. Например, для Восточной Европы характерно особенно высокое абсолютное бремя сердечно-сосудистых заболеваний и инсульта. В то же время наблюдается высокая распространенность злоупотребления алкоголем, табакокурения, в т.ч. пассивного курения, и высокого ИМТ, причем в ближайшие годы по прогнозам ожидается ухудшение всех этих эпидемиологических факторов риска [25]. Аналогично, высокий ИМТ уже является ведущим фактором риска для общего бремени болезней в южной и центральной Латинской Америке, а высокое содержание глюкозы в сыворотке крови – ведущей причиной всего бремени болезней в Океании [25].

Таблица 2. Ведущие 5 причин потерянных лет потенциальной жизни во всем мире в 1990 и 2013 гг. [11]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Инфекции нижних дыхательных путей</td>
<td>Ишемическая болезнь сердца</td>
<td>+31% (от +24 до +41%)</td>
</tr>
<tr>
<td>2</td>
<td>Острые инфекционные заболевания</td>
<td>Инфекции нижних дыхательных путей</td>
<td>-48% (от -54 до -43%)</td>
</tr>
<tr>
<td>3</td>
<td>Преждевременные роды</td>
<td>Цереbroваскулярная патология</td>
<td>+24% (от +18 до +32%)</td>
</tr>
<tr>
<td>4</td>
<td>Ишемическая болезнь сердца</td>
<td>Острые инфекционные заболевания</td>
<td>-62% (от -66 до -57%)</td>
</tr>
<tr>
<td>5</td>
<td>Цереbroваскулярная патология</td>
<td>Травмы в результате ДТП</td>
<td>+15% (от +2 до +23%)</td>
</tr>
</tbody>
</table>
населения и увеличивается доля пожилых людей, что способствует значительному увеличению абсолютного бремени смертности от инсульта в ближайшие годы, даже при улучшении стабилизации стандартизированной по возрасту общей смертности.

Табл. 3. Ведущие факторы риска глобального бремени болезней от всех причин в 1990 г. и в 2010 г. [25].

<table>
<thead>
<tr>
<th>Факторы риска</th>
<th>% общих DALY</th>
<th>Число смертей, млн</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Пониженная масса тела в детском возрасте</td>
<td>7,9 (6,8–9,5)</td>
<td>2,3</td>
</tr>
<tr>
<td>Бытовое загрязнение воздуха из-за использования твердого топлива</td>
<td>7,0 (5,6–8,3)</td>
<td>4,6</td>
</tr>
<tr>
<td>Курение табака, в т.ч. пасивное курение</td>
<td>6,1 (5,4–6,8)</td>
<td>5,3</td>
</tr>
<tr>
<td>Высокое артериальное давление</td>
<td>5,5 (5,0–6,0)</td>
<td>7,3</td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Высокое артериальное давление</td>
<td>7,0 (6,3–7,6)</td>
<td>9,4</td>
</tr>
<tr>
<td>Курение табака, в т.ч. пасивное курение</td>
<td>6,3 (5,5–6,9)</td>
<td>6,3</td>
</tr>
<tr>
<td>Бытовое загрязнение воздуха из-за использования твердого топлива</td>
<td>4,3 (3,4–5,3)</td>
<td>3,5</td>
</tr>
<tr>
<td>Диета с низким содержанием фруктов</td>
<td>4,2 (3,3–5,0)</td>
<td>4,9</td>
</tr>
</tbody>
</table>

Примечание. DALYs – годы жизни, скомпенсированные по недовоспособности (disability-adjusted life years).

Низкий национальный доход также коррелирует с ограничением ресурсов для инвестиций системы здравоохранения в профилактику и ограничением возможностей оказания медицинской помощи при инсульте [33]. Поскольку для улучшения популяционных показателей контроля АГ необходимы возможности системы здравоохранения для обеспечения скрининга, выявления и лечения субпопуляции высокого риска или щадительного осуществления популяционных подходов к первичной профилактике, для целевой субпопуляции с экстремальными невыявленными и нелеченными эпидемиологическими факторами риска нужны дополнительные инвестиции в надзор в области здравоохранения и профилактику. К тому же для долгосрочной профилактики и лечения будет иметь большое значение концепция хронического лечения изначально бессимптомных состояний, таких как АГ, и организация т.н. паллиативного скрининга, выявления больных приблизительно 2,5 млн случаев инсульта и >1,6 млн смертей, связанных с инсультом [34]. Структура бремени болезней в Китае отражает картину, наблюдаемую в развитых странах, где инсульт является преобладающей формой сердечно-сосудистого заболевания, а заболеваемость ИИ и ГИ превышает заболеваемость ишемической болезнью сердца (рис. 3) [35].

Рисунок 2. Динамика показателей среднего уровня систолического артериального давления (А) и среднего стандартизированного по возрасту индекса массы тела (Б) в отдельных странах с 1980 по 2009 г. [29].
общая заболеваемость инсультом в Китае в ближайшие 20 лет увеличится на 50% (рис. 3) [35].

В качестве отправной точки для сравнения: в недавнем прошлом в Японии существовала аналогичная картина бремени сердечно-сосудистых заболеваний с особенно тяжелым бременем ГИ и ИИ [36]. Тем не менее в связи с увеличением уровня смертности в результате, заболеваемость ишемической болезнью сердца и инсульта снизилась, и картина бремени сердечно-сосудистых заболеваний начала смещаться в сторону особенностей, характерных для стран Северной Америки и Западной Европы с высоким уровнем дохода. В частности, в США и Японии отметили увеличение в популяционных показателях содержания холестерина, уровня систолического АД и распространенности курения, хотя ожирение, средний высокий или среднее высокое содержание глюкозы в сыворотке крови остается проблемой для продвижения вперед (рис. 2). В соответствии с глобальной тенденцией, несмотря на снижение стандартизованных по возрасту показателей заболеваемости инсультом, современные демографические сдвиги и старение предвосхищают увеличение абсолютного числа смертей от инсульта в обеих странах в ближайшие годы.

Глобальные усилия по снижению бремени неинфекционных заболеваний

На международном уровне появился новый акцент на борьбу с глобальным воздействием неинфекционных заболеваний, таких как инсульт, в ближайшие десятилетия. Этому способствовали высококачественные данные исследования Global the Burden of Disease Study и усилия международных организаций, таких как Всемирная организация здравоохранения и Всемирная организация по борьбе с инсультом [18, 33]. Однако эпидемия бремени инсульта в странах с низким и средним уровнями дохода предполагает, что вмешательства, направленные главным образом на бремя инсульта в рамках глобального пояса инсульта, могут быть оправданы в контексте этого общего направления борьбы с неинфекционными заболеваниями во всем мире.

Учитывая тесную связь между АГ и риском развития инсульта, возможность усечения, что быстрее улучшения диагностики и лечения АГ ожидать непропорциональное воздействие на снижение бремени инсульта. Подобные подходы к другим эпидемиологическим факторам риска, включая табакокурение, высокий ИМТ и употребление алкоголя, могут быть аналогичным образом эффективны [25]. Кроме того, поскольку многие из эпидемиологических факторов риска развития инсульта совпадают с факторами риска развития других хронических заболеваний, таких как болезни сердца и сосудистые когнитивные нарушения, любое снижение бремени инсульта, скорее всего, приведет к снижению общего бремени болезней.

Целевые первоначальные инвестиции в решение этих текущих проблем могут быть умеренными. Например, увеличение вен на табачные изделия для снижения бремени сердечно-сосудистых заболеваний потребует всего лишь 3 дол. на предотвращение потери 42 DALY, при...
мение аспирина для лечения острого инсульта потребует 100 дол. на предотвращение потери 700 DALY, а вторичная профилактика с назначением аспирина и гипотензивных препаратов может быть экономически выгодной с социальной точки зрения [37]. Была исследована потенциальная роль полиглотампи — одной таблетки, сочетающей гипотензивное средство, гиполипидемический препарат и антиагрегант — для улучшения приоритетности лечения и снижения расходов на лечение, и она оказалась безопасной и достаточно эффективной в зависимости от целевой популяции [37–39]. Например, проект China National Stroke Prevention Project показал, что только небольшая часть пациентов с инсультом получает препараты для вторичной профилактики инсульта, и подавляющему большинству из этих пациентов показано применение полиглотамипов [40]. Такие виды непрерывных инноваций, соответствующее выделение ресурсов, а также транснациональная организационная структура для разработки и реализации целевых и устойчивых вмешательств потребуют продвижения вперед. Тем не менее только экономическое развитие само по себе без таких ориентиров не сможет снизить абсолютное число смертей от инсульта в перспективе [32].

ОГРАНИЧЕНИЯ

Большая часть перечисленного в статье была ориентирована на уровень отдельных стран, что может иметь особое значение для национальной общественной политики в области здравоохранения. Тем не менее различия в структуре бремени инсульта внутри страны или в пределах регионов могут иметь глубокие политические последствия. Например, различия между городскими и сельскими районами в пределах одной страны могут быть значительно большими, чем различия между глобальными городами разных стран, что может оправдать более детальный контроль заболеваний инсульта и специфические целевые вмешательства. В заключение, сравнения на уровне стран подвержены ложным эпидемическим выводам, поскольку измерения на уровне популяции не позволяют учитывать сочетанное воздействие факторов риска или распределение факторов риска в популяции. Далее, хотя данные о заболеваемости инсультом главным образом основаны на результатах популяционных исследований [15], большинство данных из стран с низким и средним уровнями дохода по-прежнему основаны на клинических данных или результатах моделирования, потому что инфраструктура для стандартизированного сбора данных по лечению инсульта еще не внедрена [41]. Кроме того, методы контроля и измерений и различия в классификациях, а также долгосрочные тенденции в отношении этих методов также могут способствовать появлению наблюдаемых транснациональных различий.

ВЫВОДЫ

Продолжается эпидемия инсульта, сконцентрированная в глобальном поне инсульта в развивающихся странах, с существенными различиями в бремени инсульта между странами и регионами. Несмотря на достижение некоторого успеха в снижении стандартизированных по возрасту смертности и заболеваемости инсультом, особенно в развитых странах, общее время инсульта в глобальном масштабе остается существенным, особенно в странах с низким и средним уровнями дохода. Неблагоприятные тенденции со стороны эпидемиологических факторов риска, наряду со старением населения и увеличением его численности и возможностями системы здравоохранения, в ближайшее десятилетие, как ожидается, приведут к увеличению абсолютного бремени инсульта в рамках продолжающегося сдвига от инфекционных к неинфекционным заболеваниям. Повышение внимания к факторам риска, особенно АГ, табакокурению и употреблению алкоголя приведет к ожидаемому непропорциональному воздействию на снижение бремени инсульта и других ассоциированных неинфекционных заболеваний. Потребуются дополнительные инвестиции в инфраструктуру общественного здравоохранения для профилактики и лечения инсульта, а систематический эпидемиологический подход позволяет определить приоритеты и цели для усилий общественного здравоохранения в перспективе.

ЛИТЕРАТУРА

