Although it is encouraging that during the past decade there has been a notable decline in the incidence of stroke in several countries around the world, further reductions in stroke occurrence will require even better treatment of conventional risk factors, as well as the identification and treatment of nontraditional risk factors. Hypertension, diabetes mellitus, hypercholesterolemia, cigarette smoking, atrial fibrillation, and carotid stenosis are definite causal risk factors because randomized controlled trials showed that treating them reduced the incidence of ischemic stroke/transient ischemic attack (TIA) or because epidemiological studies have shown that they are prospectively and independently associated with incident risk of stroke. Several risk models and risk calculators are available for stroke. However, they include only a few traditional risk factors, and not all ischemic strokes are explained by these factors. About 60% to 80% of all ischemic strokes can be attributed to these factors. Adding more factors may improve the predictive values of the risk models for stroke, and controlling nontraditional risk factors may further reduce stroke risks. The INTERSTROKE study, which examined 10 factors including less traditional factors such as obesity, psychosocial stress and depression, and ratio of apolipoprotein B to A1, found that these conditions were linked to 90% of the risk of stroke. The carotid substudy of Northern Manhattan studies showed that traditional risk factors explain only a minority of the variability in carotid plaque, suggesting a possible role for unaccounted nontraditional risk factors in the development of atherosclerotic plaque. The Reasons for Geographic and Racial Differences in Stroke (REGARDS) study confirmed the existence of a stroke belt in the southeastern United States, where the rates of stroke mortality were higher (>40%) than those of other regions. However, in this study, only modest differences were found in 9 known risk factors common to stroke screening (the Framingham Stroke Risk Score) between the stroke belt and the stroke buckle compared with the rest of the United States. Similarly, a stroke belt with high stroke incidence was found in north and west China. Of note, a high prevalence of obesity was reported in stroke belts of both United States and China (Figure). These findings indirectly suggest a role for nontraditional risk factors to predict and prevent stroke.

Search Strategy and Selection Criteria
In this review, we defined traditional risk factors as those used in the Framingham study (ie, age, sex, hypertension, diabetes mellitus, cigarette smoking, cardiovascular disease [CVD], atrial fibrillation, and left ventricular hypertrophy) and hypercholesterolemia. Others are defined as nontraditional risk factors if the association between the factors and the occurrence of stroke was demonstrated with plausible biological explanation. We identified references for this review by searching PubMed and ClinicalTrials.gov published in English up to January 2015, with the search terms stroke, cerebral infarction, cerebrovascular, risk factor, and trigger. Additionally, we searched references from relevant articles and reviews. The final reference list was generated on the basis of originality and relevance to this topic. Because of space limitation, we were not able to discuss many nontraditional risk factors in depth with critical analysis. We did not include serological biomarkers such as homocysteine. Genetic studies are mentioned only briefly at the end because they are not modifiable risk factors.

Nontraditional Risk Factors
Identification of nontraditional risk factors for stroke is increasing. These conditions include obesity and metabolic syndrome, sleep apnea, chronic inflammation, chronic kidney disease (CKD), and nutrition/diet. In addition, exposure to certain conditions including psychosocial stress, environmental factors, infection, and alcohol abuse may exert a single, sharp, and transient effect on the pathophysiological process, precipitating the onset of stroke/TIA. However, it is often difficult to distinguish an emerging risk factor from a novel triggering factor, but nature (eg, abruptness) of exposure to the condition in temporal relation to occurrence of the stroke event and the severity of the condition may help in making this distinction.
Obesity and Metabolic Syndrome

During the past several decades, a striking rise in the number of people with the metabolic syndrome has taken place, associated with the global epidemics of obesity and diabetes mellitus. Most studies show an association of obesity with increased risk of stroke; for every 1-U increase in body mass index, the risk for ischemic stroke increases ≈5%, and the risk is nearly linear starting with a still normal body mass index of 20 kg/m². Weight reduction in overweight or obese individuals may reduce stroke risk because of favorable effects on blood pressure, cholesterol, and glycemic control. A recent large pooled analysis showed that about three quarters of the excess risk of stroke with high body mass index is mediated by combination of these traditional risk factors, which can be the target of intervention in addition to maintenance of optimum body weight. However, there is a paucity of high-quality data on effect of weight loss interventions on risk of vascular events. The Action for Health in Diabetes (Look AHEAD) study is the only randomized trial adequately designed to assess the role of a behavioral intervention for weight loss on vascular event risk. However, the modest weight loss achieved in Look AHEAD (ie, 6% of initial body weight) did not reduce risk for vascular events, and at this time, it can only be assumed that more substantial weight loss may have a significant effect on risk of vascular events. Indeed, results of a large nonrandomized, controlled cohort study of bariatric surgery reported a reduction in the incidence of stroke (adjusted hazard ratio, 0.66; 95% confidence interval, 0.49–0.90). Metabolic syndrome is a cluster of cardiovascular risk factors and metabolic alterations associated with excess fat weight. Lipid accumulation in the nonadipose tissue decreases hepatic and intramuscular insulin sensitivity, and higher plasma levels of adipokines (hormones secreted from adipose tissue) were associated with increased risks of ischemic stroke. In addition, perivascular adipose tissue surrounds coronary arteries, secretes proinflammatory cytokines, and may be involved in local stimulation of atherosclerotic plaque formation. The Insulin Resistance Intervention After Stroke (IRIS) trial will determine whether treatment of insulin-sensitizing drugs (eg, pioglitazone) improves cardiovascular outcomes of nondiabetic, insulin-resistant patients with stroke/TIA.

Sleep-Disturbing Breathing and Obstructive Sleep Apnea

Recent studies have suggested that poor quality of sleep and daytime sleepiness may be linked to vascular events. Patients with stroke/TIA have a high prevalence of obstructive sleep apnea (OSA; 50%–70%). OSA may be under-recognized in patients stroke; 1 study showed that most patients did not have typical clinical features of OSA, such as obesity and...
daytime sleepiness.^{29} Polysomnography is recommended in acute stroke patients with high risk for OSA.^{30} A recent polysomnography study of patients with stroke showed that endothelial dysfunction and arterial stiffness correlated with sleep-disturbing breathing,^{31} suggesting that sleep-disturbing breathing may be an aggravating factor for vascular injury rather than due effects of a stroke. The association between sleep-disturbing breathing and ischemic stroke could be mediated through traditional risk factors, such as hypertension, diabetes mellitus, and atrial fibrillation. In addition to physical exercise, continuous positive airway pressure is preferentially recommended to stroke/TIA patients with moderate to severe OSA, daytime symptoms, and high cardiovascular risk profile.^{32} Several ongoing controlled trials are aiming to reduce cardiovascular risk or improve symptoms with continuous positive airway pressure (clinical trial identifier NCT01812993, NCT02029183, and NCT01097967). Besides OSA, nonapnea sleep disorders may also be associated with increased stroke risks. Nationwide population-based studies of Taiwan showed that insomnia predisposed individuals to increased risk of stroke, especially among young adults.^{32,33}

Chronic Inflammatory Disease

Chronic inflammation, such as is seen in patients with rheumatoid arthritis, has been shown to be a crucial factor in the development and progression of atherosclerosis. Although rheumatoid arthritis is an organ (ie, synovium)-specific inflammation, proinflammatory cytokines are released into the systemic circulation, resulting oxidative stress, insulin resistance, and endothelial dysfunction.^{34} Effective suppression of inflammation by antirheumatic drugs (including methotrexate and tumor necrosis factor-α blocking agents) may reduce the risk of CVD events.^{35} A recent study of a large primary care database (UK Clinical Practice Research Datalink), including participants with psoriasis and related disorders, bullous skin disorders, ulcerative colitis, Crohn disease, inflammatory arthritis, systemic autoimmune diseases, and systemic vasculitis, showed an increased risk of CVD with chronic inflammatory disease, calling for the importance of clinical management of such conditions to reduce cardiovascular risk.^{35} Chronic inflammation may also be involved in the development of atherosclerosis in persons without rheumatologic disorders. In the JUPITER (Justification for the Use of Statins in Primary Prevention: An Intervention Trial Evaluating Rosuvastatin) trial of apparently healthy persons without hyperlipidemia but with elevated C-reactive protein levels (a marker of inflammation), rosuvastatin significantly reduced the incidence of major cardiovascular events including stroke.^{36} Furthermore, recent genetic and epidemiological data documented shared pathologies of chronic inflammatory diseases and atherosclerosis, and there have been attempts to use anti-inflammatory regimens for intractable atherosclerosis.^{37} The cardiovascular inflammation reduction trial (CIRT) is ongoing, evaluating the effect of very low dose of methotrexate in patients with stable coronary artery disease.

Chronic Kidney Disease

CKD has now been established as conferring higher risk for stroke and is strongly associated with cerebral small vessel diseases and cognitive impairment because the kidney and brain share unique susceptibilities to vascular injury, likely because of similar anatomic and functional features of small artery diseases.^{38} A meta-analysis showed that a baseline estimated glomerular filtration rate of <60 mL/min per 1.73 m² was independently related to incident stroke across a variety of participants and study designs.^{39} Averting future vascular events in patients with a low estimated glomerular filtration rate should be a primary goal because most patients with an estimated glomerular filtration rate <60 mL/min per 1.73 m² die of cardiovascular causes and not progression to end-stage renal disease.^{40} CKD is a strong independent predictor of mortality and poor outcome in patients with acute stroke.^{41} The prevalence of traditional cardiovascular risk factors is high in patients with CKD.^{42} In addition, oxidative stress, inflammation, and metabolic derangement were reported to be renal dysfunction–related factors for CVD, and endothelial dysfunction may be the key factors that might contribute to CVD.^{43} The Chronic Renal Insufficiency Cohort (CRIC) study recently showed that lifestyle factors, such as nonsmoking, overweight (body mass index, 25–30 kg/m²), and regular physical activity, were associated with reduced risk of CKD progression and also reduced risk of atherosclerotic events.^{44} An American Heart Association Advisory recommended that healthcare providers should evaluate their vascular disease patients for the presence of CKD as a part of preventive care and treatment strategies.^{40}

Diet and Nutrition

Both poor nutrition and overnutrition predispose individuals to stroke. Although dietary supplementation with vitamins (eg, antioxidant vitamin, vitamin D, and folic acid), calcium, and ω-3 fatty acid does not reduce the risk of stroke, many foods and beverages affect the risk of stroke.^{46} These results suggest that beneficial effect of food (eg, fish*) intake on stroke risk is likely to be mediated through interplay of a wide range of nutrients rather than 1 single component in food (eg, long-chain ω-3 fatty acid).^{47} An observational study (the REGARDS study), a clinical trial (the PREDIMED [Prevention With Mediterranean Diet] study), and a meta-analysis showed that high adherence to Mediterranean diet (high consumption of fruit, vegetables, nuts, whole grains, and olive oil; moderate consumption of fish; and low consumption of red meat) was associated with a lower risk of ischemic stroke.^{48,50} Other dietary patterns, including traditional Japanese diets, were associated with reduced risk of ischemic stroke but remain to be settled. Low intake of fat and animal protein may be associated with increased risk of hemorrhagic stroke, which is prevalent in Asian countries.^{51} In addition, there is growing evidence of the role of potassium intake in pathophysiology of stroke (eg, lowering blood pressure).^{52,53} calling for the need of randomized trials (dietary intake or supplementation) for prevention of stroke and its complications.

Psychosocial Stress

Psychosocial stress may trigger ischemic stroke/TIA, and the population-attributable risk is 4.7%.^{5} Population-based cohort studies of middle-aged and older adults (Multi-Ethnic Study of Atherosclerosis) and older adults (Chicago Health and Aging Project) showed that higher levels of psychosocial stress are associated with increased risk of stroke, which was not explained by known traditional risk factors.^{54,55} Various types of psychosocial stress, such as anxiety, hostility, and job
strains, have been related to increased risk of stroke or to triggering strokes, either by way of cumulative effects of repeated emotional experiences or because of an extreme acute emotional episode.56,57 Besides personal psychosocial stress, social stress may also be associated with sudden surges of acute stroke. In the areas highly flooded by the tsunami caused by the Great East Japan earthquake (2011), the occurrence of cerebral infarction among elderly men more than doubled in the first 4 weeks after the disaster, and then declined to the same level as before the disaster.58

Depression, Fatigue, and A-Type Behavior

Depression was reported to be an independent risk factor of stroke.59 However, there have been arguments that depression may be associated with medical comorbidities or subclinical previous brain ischemic changes rather than be directly causing strokes. Nevertheless, 2 recent meta-analysis of prospective studies showed that depressed symptoms at baseline are associated with subsequent risk of stroke.59,61 Depression may produce strokes by way of inducing neuroendocrine dysregulation, heart rate variability, platelet aggregation, systemic inflammation, poor health lifestyle, and reduced medical compliance.62–65 It could be associated with the use of antidepressants.56 Although less convincing than depression, anxiety, phobic attack67,68 or extreme fatigue/vital exhaustion69,70 is reported to be related with occurrence of future stroke. Type A behavior, characterized by aggressiveness, ambition, competitiveness, time urgency, and impatience, has been associated with increased risk of stroke in several studies71,72 but not in other.73 Perhaps, only certain components of type A behaviors may be related to a specific type of stroke; for example, tension score was related with atherosclerotic type of stroke.74 Type A behaviors are related with increased catecholamine secretion and hypothalamic–pituitary axis activity against stress, which may result in rigidity/atherosclerosis in cerebral arteries.74

Air Pollution

There is accumulating evidence of a relationship between air pollution and ischemic stroke risk.75–77 One study measured the air pollutants (ie, level of fine particulate matter <2.5 μm in diameter) in Boston and showed that particulate matter <2.5 μm in diameter exposure increase the risk of ischemic stroke at levels below those currently considered safe under US regulations.78 Particulate matter may potentiate risk factors, and patients with pre-existing illness, such as traditional risk factors, subclinical atherosclerosis, or prior stroke, were susceptible to air pollution–associated stroke risk.77 The association between air pollution and ischemic stroke risk could be mediated through direct and indirect effects of exposure to air pollutants on heart rate modulation,79 arrhythmia,80–83 plasma viscosity,84,85 systemic inflammation,86 and endothelial dysfunction.87 In addition, increase of ischemic stroke admission and mortality in East Asian could be at least, in part, explained by the Asian dust (yellow sand).88–91

Infection

Certain infectious agents, such as *Chlamydia pneumonia, Helicobacter pylori*, and cytomegalovirus, are capable of invading the endothelium and have been implicated in cervicocephalic atherosclerotic process.92–94 In addition, recent infections (respiratory infection and bacteremia) were associated with atherosclerotic stroke or coronary disease, suggesting a triggering role of infectious agent in stroke.95,96 Periodontal disease, one of the most common infections, was found to be an important risk factor for ischemic stroke.97,98 These findings raise the possibility of remediation because infectious diseases are treatable. Interestingly, maintaining periodontal health by receiving dental prophylaxis and periodontal disease treatment reduced the incidence of ischemic stroke.99 However, a recent randomized controlled trial of preventive antibiotics showed negative results.100 Finally, several viral diseases have recently emerged and impacted healthcare system worldwide, such as Ebola virus disease, severe acute respiratory syndrome, and recently Middle East respiratory syndrome coronavirus. Acute thrombotic events, including deep venous thrombosis/pulmonary embolism and large artery ischemic stroke, were described in severe acute respiratory syndrome patients, which may related to hypercoagulable status.101 Although these viral diseases are not a worldwide threat, patients with stroke are considered to be at risk of these diseases.

Research Needs and Gaps

Despite advances in our understanding of nontraditional risk factors for stroke, the clinical utility of these factors remains unclear because of limited published data comparisons with traditional risk factors and a dearth of dedicated clinical trials aimed at assessing the effect of controlling these novel factors of stroke occurrence. The prevalence and predictive value of nontraditional risk factors and event triggers should be examined. Guiraud et al102 systematically reviewed 26 studies of 12 potential triggers and found that the majority of studies were dedicated to alcohol abuse and clinical infection, and other triggers have been far underinvestigated.

Recurrent strokes are often of the same cause as the preceding index stroke. Relative importance of a certain risk factor may differ depending on the underlying stroke mechanism. Previous studies including meta-analysis revealed an important difference in the risk factor profiles depending on the causes of ischemic stroke.103–105 Therefore, continuous efforts are needed to demonstrate the causes of stroke and to control subtype-specific risk factors in patients with ischemic stroke/TIA.

Control of traditional and nontraditional risk factors early in the life may be important. Most published studies have focused on the risk factor in the elderly or middle aged. One recent study showed that the risk of stroke was associated with the proportion of residence in stroke belt in adolescence, suggesting the importance of childhood health circumstances in long-term stroke risk.106 Further studies are needed evaluating risk factors during early in the life. Social efforts are mandatory to control nontraditional risk factors (eg, childhood obesity) and triggering factors (eg, air pollution), whereas control of traditional risk factor could be basically clinic base.

Beyond the Framingham stroke risk score and the aforementioned nontraditional risk factors, prediction of future stroke may improve with genetic risk assessment. Previous candidate gene association studies have identified genes associated with strokes. However, these results were difficult to
replicate, and stroke subtypes were not considered. Recent genome-wide association study has shown more reliable results, especially when stroke subtypes were considered. Meta-analysis of genome-wide association study on ischemic stroke identified the ZFHX3 gene on chromosome 16q22 as a locus specifically associated with atrial fibrillation and cardioembolic stroke. Another study identified risk variation associated with cardioembolic stroke on chromosome 4q25 near the PITX2 gene. For atherothrombotic stroke, the 9p21 locus and the HDAC9 gene on chromosome 7p21.1112 were recently identified. For lacunar stroke, several genetic loci have been identified for sporadic lacunar stroke and single-gene disorders causing cerebral small vessel diseases. With these results, there have been efforts to generate a genetic risk score for ischemic stroke, but further studies are needed because the improvement in clinical risk prediction with genetic models was found to be small.113,114

Conclusions

Control of traditional risk factors is the cornerstone of stroke prevention. This strategy is clearly working with improvements in lifestyle modification (eg, lower smoking rates) and effective medications (for treating blood pressure and hyperlipidemia) resulting in recent clear reductions in stroke incidence. However, with aging populations in many countries, prevailing obesity epidemics, greater air pollution, and possibly more psychosocial stress, to make further gains in stroke prevention, more attention needs to be paid to identifying and controlling nontraditional risk factors. Nontraditional risk factors should be considered for testing and inclusion in stroke risk models. It is conceivable that control or avoidance of at least some of these factors may further reduce the personal and societal burden of stroke.

Sources of Funding

This study was supported by the Korea Health Technology R&D Project, the Ministry of Health & Welfare (HI14C1624). Dr Kim has received a research grant from the Ministry for Health, Welfare and Family Affairs, Republic of Korea (HI14C1985).

Disclosures

None.

References

Schulz UG, Rothwell PM. Differences in vascular risk factors between etiological subtypes of ischemic stroke: importance of population-based studies. Stroke. 2003;34:2050–2059. doi: 10.1161/01.STR.0000079818.08343.8C.
by guest on August 3, 2017 http://stroke.ahajournals.org/ Downloaded from

3578

Key Words: chronic kidney disease ■ depression ■ inflammation ■ obesity ■ risk factors ■ sleep apnea syndrome ■ stroke
Nontraditional Risk Factors for Ischemic Stroke: An Update
Oh Young Bang, Bruce Ovbiagele and Jong S. Kim

Stroke. 2015;46:3571-3578; originally published online October 29, 2015; doi: 10.1161/STROKEAHA.115.010954

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/46/12/3571

Data Supplement (unedited) at:
http://stroke.ahajournals.org/content/suppl/2016/12/26/STROKEAHA.115.010954.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/
지난 십년 동안 몇 개의 국가에서 뇌졸중의 발병이 감소한 것은 고무적인 일이다. 1-6 비전통적인 위험인자들의 발견과 치료뿐만 아니라 전통적 위험인자에 대한 치료를 잘 해야 뇌졸중 발병이 더 감소할 것이다. 7 무작위대조시험에서 고혈압, 당뇨, 고지질혈증, 흡연, 심방세동, 경동맥협착증 등을 치료하면 허혈뇌졸중이나 일시적혈관질환(transient ischemic attack, TIA)의 발병이 감소하며 역학연구가 이들이 뇌졸중의 발병과 전향적, 독립적으로 연관되어 있다는 것을 보여 주었으므로 이들은 원인 이 되는 확실한 위험인자이다. 8 뇌졸중에 대한 여러 가지 위험모델과 위험계산기와가 존재한다. 그러나 이것은 몇 가지 전통적 위험인자들은 이론 인자들이 모든 혈관종류의 발병을 설명하지 못한다. 이런 위험인자들에서는 60%에서 80% 정도의 혈관종류의 발병을 설명할 수 있다. 9 인자를 더 추가하면 뇌졸중 위험모델의 예측력은 높아질 것이며 비전통적 위험인자들을 조절하면 뇌졸중 발병은 더 감소할 것이다. INTERSTROKE 연구는 비만, 심리적 스트레스, 우울증, 아포지질단백질 B와 A1의 비율 등의 비전통적 인자들을 포함한 열 개의 인자를 연구하여 이들이 뇌졸중 발병의 90%에 치명적 기여가 있음을 발견했다. 10

Northern Manhattan 연구의 경동맥 하위연구에 전통적 위험인자가 경동맥판의 변이의 일부만을 설명할 뿐이며 이는 합병되지 않은 비전통적 위험인자들이 경동맥판의 발병에 일조할 것이라는 것을 시사한다. 11 Reasons for Geographic and Racial Differences in Stroke (REGARDS) 연구는 미국 남동부에 다른 지역보다 뇌졸중 사망률이 높은(>40%) 뇌졸중 지대가 존재함을 입증했다. 12 그러나 이 연구에서 뇌졸중 지대와 나머지 지역 사이에는 뇌졸중 선별검사(Framingham Stroke Risk Score)의 통계적으로 들어가는 아홉 가지의 잘 알려진 위험인자들의 차이가 크지 않았다. 비만으로는 뇌졸중 발병이 높은 뇌졸중 지대를 북부 및 서부 중국에서도 발견하였다. 13 이 연구에서는 고혈압, 당뇨, 고지질혈증, 흡연, 심방세동, 경동맥협착증 등을 치료하면 허혈뇌졸중이나 일시적혈관질환의 발병이 감소할 것이다. INTERSTROKE 연구는 비만, 심리적 스트레스, 우울증, 아포지질단백질 B와 A1의 비율 등의 비전통적 인자들을 포함한 열 개의 인자를 연구하여 이들이 뇌졸중 발병의 90%에 치명적 기여가 있음을 발견했다. 14

검색 전략과 선택 기준
이 리뷰에서 우리는 Framingham 연구(예를 들면 연령, 성별, 고혈압, 당뇨, 흡연, 심혈관질환[cardiovascular disease, CVD], 심방세동, 좌심실비대)에서 이용한 인자들과 고지질혈증을 전통적인 위험인자로 정의했다. 나머지 위험인자들의 경우 생물학적으로 위험인자와 뇌졸중 발생과의 관계를 그럴듯하게 설명할 수 있는 경우 비전통적 위험인자로 정의하였다. 우리는 stroke, cerebral infarction, cerebrovascular, risk factor, trigger 등의 검색어어를 이용해서 PubMed와 ClinicalTrials.gov를 검색하여 2015년 1월까지 영어로 출판된 문헌들을 찾았다. 그 외에도 관련된 논문과 리뷰에서 문헌을 검색했다. 독창성과 이 주제에 대한 연관성의 관점에서 최종 문헌 목록을 작성했다. 지연 역제 때문에 우리는 많은 비전통적 위험인자들을 심층적, 비판적으로 논의하지 못했다. 우리는 화모시스템에 같은 형평학적 영향요인들 자들을 포함하지 않았다. 유전은 치료가 가능한 위험인자가 아니므로 끝에 간단히 언급하였다.

비전통적 위험인자
새로 발견된 뇌졸중의 비전통적 위험인자가 증가하고 있다. 이들 인자들에는 비만, 대사증후군, 수면무호흡, 만성질환, 만성장, 만성장

From the Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (O.Y.B.); Department of Neurosciences, Medical University of South Carolina, Charleston (B.O.); and Department of Neurology, Asan Medical Center, University of Ulsan, Seoul, South Korea (J.S.K.).

Guest Editor for this article was Ralph L. Sacco, MD.

Correspondence to Oh Young Bang, MD, PhD, Department of Neurology, Samsung Medical Center, Sungkyunkwan University, 50 Irwon-dong, Gangnam-gu, Seoul 135–710, South Korea. E-mail ohyoung.bang@samsung.com

ⓒ 2015 American Heart Association, Inc.
팥병(chronic kidney disease, CKD), 영양 또는 식이 등이 있다. 또 심리적 스트레스, 환경요인, 압박을 낮추는 등은 포함하는 특정 요인에 대한 폭로가 병태생리학 과정을 발화시키며, 뇌졸중이나 TIA의 발생을 조장할 수 있다. 그러므로 새로운 위험인자와 새로운 유발인자를 구분하는 것은 종종 어려운 일이지만 이런 상황에서 노출되는 영양학적 위험의 가능성을 조장하고, 이런 상황의 심각도를 고려하면 이런 구분을 하는데 도움이 될 것이다.

비만과 대사증후군

지난 몇 십년 동안 비만과 당뇨가 전세계적으로 증가하면서 대사증후군 환자의 수가 급격히 증가하였다. 대부분 연구들은 비만이 뇌졸중의 발생과 관련이 있다는 것을 발견했다. 체질량지수 1 증가할 때마다 허혈뇌졸중의 발병률이 약 5% 증가하며, 정상 체질량지수인 20 kg/m2에서부터 거의 선형적으로 증가한다.16–18 과체중이거나 비만인 사람에서 체중감량은 뇌졸중 발병을 감소시킬 수 있는데 이는 체중감량이 혈압, 콜레스테롤, 혈당조절에 긍정적 영향을 주기 때문이다. 최근의 대규모 통합분석(pooled analysis)에 따르면 체질량지수와 연관되어 있는 뇌졸중 발병 위험의 75% 정도는 이런 전통적 위험인자들의 조합에 의해서 영향을 받으며 적정 체중을 유지하는 것이 전통적 위험인자들 외에 다른 조건이 필요함을 보여준다.21 그러나 체질량지수에 대한 행동요법이 혈관질환 발병에 미치는 영향을 평가하기에 충분하도록 설계한 유일한 무작위시험이다.20 Look AHEAD(예를 들면 초기 체중의 6%)에서 달성한 크지 않은 체중감량은 혈관질환의 발병을 감소시키지 못했고 현재로서는 좀 더 체중을 많이 감량하면 혈관질환의 발병 위험에 의한 영향을 주지 않으려고 추측하는 정도이다. 실제로 비만대사수술(bariatric surgery)의 대규모 비무작위대조분석(nonrandomized, controlled cohort study)는 뇌졸중 발병이 감소하는 것을 보고했다(보정 hazard ratio, 0.66; 95% confidence interval, 0.49–0.90).21 대사증후군은 체지방과 대사성상이 복합적으로 나타나는 것이다.22,23 아디포카인(adipokine, 지방조직이 분비하는 호르몬)의 혈장농도가 높아지면 허혈뇌졸중의 발생 가능성이 높아진다.23,24 또한 혈관주변지방조직은 심장동맥을 둘러싸고 전염증성(proinflammatory) 사이토카인을 분비하며 항산화제의 생성에 국소적으로 관여한다.24,25 Insulin Resistance Intervention After Stroke (IRIS) 시험은 인슐린민감제 치료(예를 들면 피오글리타존)가 당뇨는 아니지만 인슐린 저항성이 있는 뇌졸중 및 TIA 환자에서 심혈관 예측을 호전시키는지를 연구할 것이다.26

수면장애호흡(Sleep-Disturbing Breathing) 및 폐쇄수면무호흡

최근의 연구들은 수면의 질 저하와 주간졸린증이 혈관질환 발병과 관련이 있을 수 있음을 시사한다.27 난중증 및 TIA 환자들은

![Figure. Distribution of stroke belt (top) and overweight/obesity (bottom) in United States and China. Modified from US Centers for Disease Control and Prevention (Death 35+, 2000–2006). BMI indicates body mass index. Reprinted from Xu et al13 and Gao et al14 with permission of the publisher. Copyright © 2013, the American Heart Association, Inc. Copyright © 2008, Oxford University Press.](https://example.com/figure.png)
폐쇄수면무호흡(obstructive sleep apnea, OSA; 50%–70%)의 유병율이 높다.28 OSA는 뇌졸중 환자에서 진단이 잘 안되고 있을 것이다. 한 연구는 대부분의 환자들이 비만이나 주간졸림증 같은 OSA의 특징적인 임상양상을 가지고 있지 않는다는 사실을 밝혔다.29 OSA의 위험도가 높은 급성뇌졸중 환자에게 수면다원검사를 권유한다.30 뇌졸중 환자에게 수면다원검사를 한 최근의 연구에서 내피기능장애와 동맥경직(arterial stiffness)은 수면매호흡과 혈관증상과의 관계를 매개할 수 있다. 중등도 내지 심한 OSA, 주간 증상, 높은 혈압, 당뇨, 심방세동 등 전통적 위험인자들이 수면매호흡과 혈관증상과의 관계를 매개할 수 있다.30 몇 가지 진행중인 대조시험들이 지속기도압을 이용해서 심혈관계질환의 예방을 위한 효과를 연구하고 있다(clinical trial identifier NCT01812993, NCT02029183, and NCT01097967). OSA 이외에도 비무호흡수면장애(nonapnea sleep disorder)들이 뇌졸중 발병과 관련이 있을 수 있다. 대만의 전국 인구기반 연구는 불면증이 특히 젊은 성인에서 뇌졸중의 위험을 증가시키는 것을 보여주었다.32,33

만성염증질환

류마티스관절염 환자에서 볼 수 있는 만성염증은 죽상경화의 발생과 진행에 있어서 중요인자이다. 류마티스관절염은 한 장기(예를 들면 윤활막)에 국한된 염증지만, 전염증성 사이토카인은 체순환으로 분비되어서 산화스트레스, 인슐린저항성, 내피기능장애를 일으킨다.34 항류마티스제(메소트렉세이트, 종양괴사인자-α 차단제)를 이용하여 염증을 억제하면 CVD 발병을 감소시킬 수 있을 것이다.34 건선 및 관련된 질환, 물집피부병, 궤양성대장염, 크론병, 염증성관절염, 전신성자가면역질환, 전신성혈관염 등의 환자를 포함하는 대규모의 일차진료 데이터베이스를 이용한 최근의 연구(UK Clinical Practice Research Datalink)는 만성염증질환이 있을 경우, CVD의 발병이 증가함을 보여주었다.35 만성염증은 류마티스질환과는 별개로, 고지질혈증이 없고 C-반응단백질(염증의 지표)만 증가되어 있는 건강한 사람을 대상으로 한 Justification for the Use of Statins in Primary Prevention: An Intervention Trial Evaluating Rosuvastatin (JUPITER) 시험에서 로수바스타틴이 의미 있게 뇌졸중을 포함한 주요 심혈관질환의 발병을 감소시켰다.36 또한 최근의 연구에서는 만성염증질환과 죽상경화가 비슷한 병리학적 가짐을 공유하였고, 당뇨 죽상경화에서 소염제를 사용하려는 시도가 있었다.37 Cardiovascular Inflammation Reduction Trial (CIRT)은 저용량 메소트렉세이트가 안정적인 심장동맥질환에 있는 환자에서 효과가 있는지 구조적으로 진행 중이다.

만성콩팥병

소혈관질환(small vessel disease)이라는 비슷한 해부학적, 기능적 특징을 공유하고 있어서 콩팥과 뇌혈관질환에 공히 취약하기 때문에 CKD는 뇌졸중의 발병 가능성을 높이며 뇌뇌혈관질환 및 인지기능장애와 강한 연관이 있다.38 이런 현상은 추정혈소관능(estimated glomerular filtration rate)이 60 mL/min per 1.73 m² 미만인 경우 다양한 연구결과와 연구설계에서 뇌졸중 발병과 독립적으로 연관되어 있음을 밝혔다.39,40 낮은 추정혈소관능은 가진 환자에서 혈관질환을 예방하는 것을 임상적 인 목표로 삼아야 하는데39 추정혈소관능이 60 mL/min per 1.73 m² 미만인 대부분의 환자는 만기성질환으로 진행하지 못하고 심혈관질환으로 사망하기 때문이다.40 CKD는 급성뇌졸중 환자에서 사망과 나쁜 예후에 대한 강력하고 독립적인 예측인자이다.41 CKD가 있는 환자에서 전통적 심혈관위험인자의 유병율이 높다.42 또한 산화스트레스, 염증, 대사증후군 등은 콩팥기능저하와 연관되어 있는 CVD에 대한 위험인자라고 알려져 있으며 내피기능 저하는 CVD를 조장하는 중요한 요인일 것이다.43 Chronic Renal Insufficiency Cohort (CRIC) 연구는 최근에 희망한 것을 하지 않고 과체중(체질량지수, 25–30 kg/m²)이 규칙적으로 운동을 하는 것과 같은 생활 방식이 CKD의 진행을 억제하며 죽상경화질환의 발병도 억제함을 밝혔다.44 American Heart Association Advisory는 의료인이 예방 및 치료 전략의 일환으로 혈관질환에 CVD의 발병을 예방하기 위한 CKD 여부에 대한 검사를 할 것을 권고하고 있다.45

식이와 영양

영양부족과 과영양은 모두 뇌졸중을 조장할 수 있다. 비타민 (예를 들면 항산화비타민, 비타민D, 엽산), 칼슘, ω-3지방산 등을 보충해 주는 것은 뇌졸중의 발병을 감소시킬 수 있지만, 여러가지 음식과 음료가 뇌졸중의 발병에 영향을 줄 수 있다.46 이런 결과는 식품(예를 들면 생선) 섭취가 뇌졸중 발병에서 미치는 효과가 각 식품의 성분에 의한 것으로 보이는데, 식품의 성분이 복합적인 영향을 미치는 것으로 생각된다.47 관찰연구(REGARDS 연구), 임상시험 (PREDIMED[Prevention With Mediterranean Diet] 연구), 메타분석은 지중해식단(과일, 채소, 견과류, 전곡, 올리브유를 많이 섭취하고 생선을 적당히 섭취하며 붉은 고기를 적게 섭취)이 낮은 허혈뇌졸중 발병률과 연관이 있음을 보여주었다.48–50 전통일식 같은 다른 식단들도 뇌졸중의 위험을 낮추는 것으로 보이며 아시아인에게 좋은 출혈뇌졸중의 높은 발생률과 상관이 있는 것 같다.51 또한 건강 식단 섭취가 뇌졸중의 병태생리에 미치는 영향 강
하)에서 차지하는 역할에 대한 연구들이 속속 나오고 있고, 뇌졸중 및 합병증 예방에 대한 무작위시험(식이 섭취 또는 보충)이 필요하다.

정신사회적 스트레스
정신사회적 스트레스는 허혈뇌졸중이나 TIA를 유발하는 것 같고, 인구기반위험(the population-attributable risk)은 4.7%이다. 중년 및 노년 성인에 대한 인구기반도로연구(Multi-Ethnic Study of Atherosclerosis)와 노년 인구에 대한 인구기반도로연구(Chicago Health and Aging Project)에서 높은 수준의 심리적 스트레스는 뇌졸중 발생 증가와 연관이 있었고 이는 잘 알려진 전통적 위험인자로 설명할 수 없다. 불안, 공격성, 작업긴장도 등 다양한 정신사회적 스트레스가 뇌졸중 발생 증가와 연관이 있어서 나타나는 효과이나 극단적이고 급격한 감정폭발에 의한 것이다. 정신적 스트레스와 사회적 스트레스는 급성뇌졸중의 해도와도 연관되어 있을 수 있다. 동일본대지진(2011년)에 의해 발생한 쯔나미가 범람한 지역에서, 재난 이후 4주 동안 남성 노인에서 뇌경색의 발생이 2배 이상 증가했고 그 이후에는 재난 직전의 수준으로 감소했다.

우울증, 피로, A형 행동
우울증은 뇌졸중의 독립적 위험인자라고 알려져 있다. 그러나 우울증이 직접적으로 뇌졸중을 일으키기보다는 동반질환이나 과거의 무증상뇌혈화 변화와 관련이 있을 수 있다는 주장도 있다. 그렇다고 불구하고 최근에 나온 전형적 연구에 대한 메타분석 두 개는 우울증이 추후의 뇌졸중 발병과 관련이 있음을 보여주었다. 우울증은 신경내분비조절 원인으로, 심박 변동성, 혈소판응집, 전신염증, 건강에 나쁜 생활방식, 저조한 복약 순응도 등으로 인해 뇌졸중 발생에 관여가 있다. 우울증보다는 관절염, 당뇨병, 만성감염, 노화나 흡연, 대기오염, 치아질환 등에 의해 나타난 질환에 관련이 있다고 한다. 이런 발견은 개선의 여지가 있다는 것을 나타낸다. 홍미롭게도 치아예방(dental prophylaxis) 및 치주질환 치료를 받는 치주건강을 유지하는 것은 허혈뇌졸중 발생을 감소시켰다. 그러나 예방적 상호작용에 대한 최근의 무작위대조시험은 효과가 없는 것으로 나왔다. 마지막으로 에볼라바이러스, 중증급성호흡기증후군, 최근의 중동호흡기증후군코로나바이러스 같은 몇 가지 바이러스 병들이 최근에 주목을 받고 있으며 이는 특이한 위험인자로 밝혀졌다. 그리고 항생제에 대한 최근의 무작위시험은 효과가 없는 것으로 나왔다. 이러한 바이러스 병들이 세계적인 위협은 아니지만 뇌졸중 환자는 이런 질환의 발병 위험이 있는 것으로 알려져 있다.

추가 연구 필요성
비전통적 뇌졸중 위험인자에 대한 우리의 지식이 발전하고 있지만 전통적 위험인자와 비교하여 발표된 자료가 부족하고 이런 새로운 위험인자들을 조절했을 때의 효과를 정확한 것으로 한 임상시험이 부족하기에 이런 인자들의 임상적 용용은 불확실하다. 비전통적 위험인자와 질병 발병요인의 유병률과 예측력에 대하여 연구가 필요하다. Guiraud 등102는 12개의 가능성이 있는 축적요인에 대한 26개 연구를 체계적으로 리뷰하여 대부분의 연구가 알고 있음과 양성적 간결을 다루고 있고 다른 축적요인에 대해서는 연구가 안 되고 있다는 사실을 밝혔다. 흔히 첫 번째 뇌졸중과 같은 원인에 의해서 두 번째 뇌졸중이
생각한다. 기저의 뇌졸중 기전에 따라서 특정 위험인자의 상대적인 중요성이 달라질 수 있을 것이다. 메타분석을 포함한 기존 연구들은 뇌졸중의 원인에 따라서 위험인자가 상대적으로 중요한 차이가 있다는 사실을 발견했다. 따라서 뇌졸중의 원인을 탐색하여 위험인자가 조절하려는 노력이 필요하다. 전통적 또는 비전통적 위험인자들을 탐색할 때 조절하는 것은 중요하다. 대부분의 발표된 연구들은 노령이나 중년의 위험인자에 초점을 맞추었다. 최근의 한 연구는 청소년기에 뇌졸중을 일으켰던 인원이 장기적으로 뇌졸중 발병과 관련이 있다는 사실을 보여주면서 장기적인 뇌졸중 발병위험에 있어서 소아영역의 환경이 중요함을 시사하였다. 젊었을 때 위험인자를 평가하는 추가적인 연구가 필요하다. 비전통적인 위험인자(예를 들면 소아비만)와 축방요인(예를 들면 대기오염)을 조절하려면 사회적인 노력이 필요하고 전통적인 위험인자들을 조절하려면 기본적으로 진료소가 중심이 되어야 한다.

Framingham 뇌졸중 위험점수와 앞서 언급한 비전통적 위험인자 외에 유전적 위험평가를 이용해서 미래의 뇌졸중을 예측하는 능력을 향상시킬 가능성이 있다. 과거의 후보유전자관련연구나 candidate gene association study는 뇌졸중과 연관이 있는 유전자를 찾아내었다. 그러나 이런 연구결과들은 재현이 어려웠고 뇌졸중 아형을 고려하지 않았다. 최근의 전장유전체관련연구(genome-wide association study)는 특히 뇌졸중 아형을 고려할 때 더 신뢰성 있는 연구결과를 내고 있다. 허혈뇌졸중에 대한 전장유전체관련연구의 메타분석은 16q22 염색체에 위치한 ZFHX3 유전자와 심방세동 및 심장성색전뇌졸중과 유전자 및 관련이 있는 유전자를 찾아내었다. 그러나 이런 연구결과들은 청소년기의 뇌졸중과 관련이 있다는 사실을 보여주어서 장기적인 뇌졸중 발병위험에 있어서 소아영역의 환경이 중요함을 시사하였다. 젊었을 때 위험인자를 평가하는 추가적인 연구가 필요하다. 비전통적인 위험인자(예를 들면 소아비만)와 축방요인(예를 들면 대기오염)을 조절하려면 사회적인 노력이 필요하고 전통적인 위험인자들을 조절하려면 기본적으로 진료소가 중심이 되어야 한다.

결론

전통적 위험인자와 조절은 뇌졸중 예방의 초석이다. 이런 전략은 생활방식 개선(예를 들면 휴연을 감소) 및 효과적인 약물(혈압 및 고지혈증의 치료)에 중점을 두어야함으로써 환경적 효과를 내고 있으며 뇌졸중 발생이 극대에 확실히 감소하는 결과를 낼 것이다. 그러나 많은 국가에서 노령화하는 인구 구조와 비만의 증가, 대기오염 증가, 정신사회적 스트레스증가로 인해 일시적으로 뇌졸중 예방에 있어서 더 많은 관심을 쏟아야 할 필요가 있다. 이에 더 많은 관심을 쏟아야 할 필요가 있다. 비전통적 위험인자들은 뇌졸중 위험요인들 안에 포함될 수 있음지 검증하는 것을 고려해야 한다. 이런 인원들의 일부인가 조절하거나 회피한다면 뇌졸중의 개인적, 사회적 부담을 경감할 가능성이 있다.

Sources of Funding

This study was supported by the Korea Health Technology R&D Project, the Ministry of Health & Welfare (HI14C1624). Dr Kim has received a research grant from the Ministry for Health, Welfare and Family Affairs, Republic of Korea (HI14C1985).

Disclosures

None.

References

23. Brossius FC 3rd, Hostetter TH, Kelepouris E, Mitsnefes MM, Moore MA, et al; American Heart Association Kidney and Cardiovascular Disease Council; Council on High Blood Pressure Research; Council on Cardiovascular Disease in the Young; Council on Epidemiology and Prevention; Quality of Care and Outcomes Research Interdisciplinary Working Group. Detection of chronic kidney disease in patients with or at increased risk of cardiovascular disease: a science advisory from the American Heart Association Kidney And Cardiovascular Disease Council; the Councils on High
Blood Pressure Research, Cardiovascular Disease in the Young, and Epidemiology and Prevention; and the Quality of Care and Outcomes Research Interdisciplinary Working Group: developed in collaboration with the National Kidney Foundation. *Circulation.* 2006;114:1083–1087. doi: 10.1161/CIRCULATIONAHA.106.177321.

Key Words: chronic kidney disease • depression • inflammation • obesity • risk factors • sleep apnea syndrome • stroke