Stroke welcomes Letters to the Editor and will publish them, if suitable, as space permits. Letters must reference a Stroke published-ahead-of-print article or an article printed within the past 3 weeks. The maximum length is 750 words including no more than 5 references and 3 authors. Please submit letters typed double-spaced. Letters may be shortened or edited.


We thank Bos et al1 for their interest in our analysis of visual and computational methods of quantifying intracranial carotid artery (ICA) calcification.2 We agree that ICA calcification appears to be an important risk factor for stroke,3 rather than coronary calcification is a risk factor for myocardial infarction.

Our work was motivated by an interest in finding pragmatic and reliable methods for assessing ICA calcification in a wide range of settings. At present, computational measurement of ICA calcification is hindered by the proximity of the ICA to the bone of the pituitary fossa, which the software that we used was not able to distinguish from ICA calcification and required a lot of time-consuming human editing to obtain accurate ICA calcification values. Some large epidemiological studies may be fortunate to have substantial funding for image analysis time, but others may not, and therefore, we suggest that a rapid visual assessment can provide a reasonable alternative. Also, the visual score can be obtained in routine clinical practice by a radiologist or a stroke physician who understands the method, whereas the computational analysis method requires a trained analyst who can run the software (at least at present).

Bos et al1 suggest that computational methods are better than visual assessments. This may be true in some circumstances but not in all. Indeed, in our experience, the 2 approaches are complementary. In the case of visual and volumetric assessment of white-matter hyperintensities (WMH), one does not replace the other. WMH volumes obtained are dependent on the analysis program used, which may miss true lesions and include artifacts and other pathologies, such as ischemic strokes, that have to be edited out manually (a critique of image analysis methods that affect the accuracy of WMH volume measures is described elsewhere). Visual scores, on the other hand, may seem to provide a rather coarse score, but there is close correlation between visual and volume WMH measurement, and visual scores are not affected by other pathologies, do not require image registration or other analysis steps that may affect the apparent WMH volumes, can be performed on legacy data, and are extremely rapid to do.

On this basis, we suggest that the visual and volume measures of ICA calcification should also be seen as complementary, the former rapid and feasible in clinical practice and research, and the latter slower and more of a research application at present. Each has strengths and weaknesses that should be appreciated, so that the methods can be applied in situations where they are most appropriate. We hope that more studies of ICA calcification and stroke risk can now follow.

Disclosures

None.

Deepak Subedi, FRCR
Umme Sara Zishan, MBBS
Department of Clinical Radiology
Royal Infirmary of Edinburgh
Edinburgh, United Kingdom

Joanna Wardlaw, MD
Centre for Clinical Brain Sciences
University of Edinburgh
Edinburgh, United Kingdom

Response to Letter Regarding Article, "Intracranial Carotid Calcification on Cranial Computed Tomography: Visual Scoring Methods, Semiautomated Scores, and Volume Measurements in Patients With Stroke"
Deepak Subedi, Umme Sara Zishan and Joanna Wardlaw

Stroke. 2015;46:e255; originally published online October 27, 2015;
doi: 10.1161/STROKEAHA.115.011403
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2015 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/46/12/e255

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org/subscriptions/