What Is the Use of Hypothermia for Neuroprotection After Out-of-Hospital Cardiac Arrest?

Francis Kim, MD; Paco E. Bravo, MD; Graham Nichol, MD

Out-of-hospital cardiac arrest (OHCA) refers to the loss of cardiac mechanical activity with hemodynamic collapse in the out-of-hospital setting. If not treated rapidly, OHCA invariably results in death. Survival to hospital discharge after OHCA is low in many communities, ranging between 10.7% (95% confidence interval, 9.9%–11.5%) for adults treated for all rhythms and 31.7% (95% confidence interval, 28.2%–35.1%) for those resuscitated after bystander-witnessed ventricular fibrillation (VF).1 The most common cause of death among patients hospitalized after OHCA is neurological injury.2,3 In spite of these unmet challenges, the in-hospital mortality rate of treated patients has declined 11.8% in recent years, from 69.6% in 2001 to 57.8% in 2009.4 This improvement in outcomes is thought to be related in part to the advent of therapeutic hypothermia, as well as implementation of intensive care protocols for those successfully resuscitated but still comatose after OHCA.5

Guidelines on Cardiopulmonary Resuscitation (CPR) and Emergency Cardiovascular Care recommend that6: comatose (ie, lack of meaningful response to verbal commands) adult patients with restoration of spontaneous circulation (ROSC) after out-of-hospital VF cardiac arrest should be cooled to 32°C to 34°C (89.6°F to 93.2°F) for 12 to 24 hours (Class I, LOE B). Induced hypothermia also may be considered for comatose adult patients with ROSC after in-hospital cardiac arrest of any initial rhythm or after out-of-hospital cardiac arrest with an initial rhythm of pulseless electric activity or asystole (Class IIb, LOE B).

These evidence-based recommendations are being reevaluated in light of recent trials of IH in patients with OHCA. Until then, we offer contemporary evidence-based recommendations for use of IH in this population.

Rationale for Hypothermia

Reperfusion injury occurs in the brain7 and heart8 during and after restoration of blood flow. It includes release of proinflammatory then anti-inflammatory cytokines, which contribute to poor capillary perfusion, tissue ischemia, and microcirculatory dysfunction. Cardiac function decreases then improves during the initial 2 days. Vascular and intestinal permeability increase during the next 3 days. Patients may experience sepsis-like hemodynamic states,7 neurological injury, multiple organ dysfunction, and death. The extent of reperfusion injury is associated with the duration of ischemia, and the adequacy of resuscitation. In turn, long-term prognosis is correlated with the extent of reperfusion injury.

Induction of hypothermia during ischemia prolongs the tolerance of organs to ischemia. Hypothermia after reperfusion reduces production of deleterious glutamate, oxygen-free radicals and inflammatory molecules, cerebral oxygen demand, intracranial pressure, and the final extent of neurological injury.9 Thus, induced hypothermia (IH), sometimes called targeted temperature management, which consists of cooling the body to reduce neurological injury and multiorgan dysfunction, is applied to patients with OHCA. The 2010 Guidelines on Cardiopulmonary Resuscitation (CPR) and Emergency Cardiovascular Care recommend that6:

Early Cooling

In considering the optimal timing of mild hypothermia, several animal studies suggest that cooling earlier results in more protection than cooling later. In a mouse model, IH with cooling blankets during CPR was better than IH after restoration of spontaneous circulation (ROSC).10 In a dog model of VF arrest, mild hypothermia with cold normal saline infusion during CPR was associated with greater survival compared with IH after resuscitation.11 In another dog model, mild hypothermia during arrest significantly improved cerebral function as compared with normothermia, whereas IH 15 minutes after reperfusion did not.12 These animal studies suggest that intra-arrest cooling or cooling within 15 minutes after ROSC is associated with better neurological recovery.

The optimal timing of the initiation of mild hypothermia in humans remains an important question. In humans, IH started 4 to 8 hours after resuscitation, is associated with improved neurological outcome compared with normothermia.13,14 A challenge in testing IH earlier than this in humans is finding a simple and safe method that paramedics can apply in the field to patients with cardiac arrest. Invasive and noninvasive hospital-based methods may not be applicable for use in
the field. Invasive strategies using cooling catheters rapidly achieve the goal temperature, but are impractical for field application because they are placed into the inferior vena cava. External cooling techniques have the advantage of being less invasive; however, most of them, including cooling blankets or fluid pads depend on an external energy supply or external cooling unit, and are not practical for field use. Ice packs have been used; wide application of ice packs is limited because of relatively slow induction times to temperatures <34°C compared with other methods.

Infusion of Cold Fluid

The use of intravenous infusion of ice-cold fluids is appealing because it is portable and easy to administer in the field in patients resuscitated from OHCA, and was initially popularized by the group of Bernard et al in 2003. Rajek et al studied the use of 40 mL/kg of normal 4°C saline solution infused >30 minutes into 9 anesthetized volunteers who received vecuronium, and demonstrated a mean temperature decrease of 2.5°C. Similar results have been demonstrated in elective surgical volunteer patients; however, healthy volunteer surgical patients or young volunteers may not be representative of patients with OHCA. In all these studies, neuromuscular blockade was used to augment the effects of infusing cold fluid.

The use of early cooling using cold intravenous fluid has been recently addressed by our group, in the largest randomized trial of IH in patients with OHCA reported to date. In this study, 1359 adult patients successfully resuscitated from nontraumatic OHCA (583 with VF and 776 without VF) were randomized to prehospital cooling (n=688; 292 with VF and 396 without VF) versus standard care only (n=671; 291 with VF and 380 without VF) irrespective of the presenting rhythm. The study was conducted in emergency medical service (EMS) agencies and receiving hospitals in Seattle and King County, Washington. Prehospital cooling was initiated by EMS providers via rapid infusion of ≤2 L of 4°C normal saline after ROSC. All patients received standard care on hospital arrival with mild therapeutic hypothermia protocols involving surface and intravascular cooling devices for ≤24 hours with a goal temperature of <34°C.

Temperature at randomization was not significantly different between subgroups (≈36°C). The intervention group had decreased mean core temperature by 1.20°C in patients with VF (35.0°C versus 35.9°C; P<0.0001) and by 1.30°C in patients without VF (34.8°C versus 35.7°C; P<0.0001) by hospital arrival and reduced the time to achieve a temperature <34°C by >1 hour in patients with VF (4.2 versus 5.5 hours; P<0.01) and those without VF (3.0 versus 4.0 hours; P<0.01) compared with the control group (standard care alone). In the intervention group, the percentage of patients who achieved a core temperature <34°C at hospital arrival was 26% (as compared with 3% in the control group; P<0.0001) in patients with VF and 29% (versus 6% control; P<0.0001) in patients without VF. Despite these differences, survival and favorable neurological outcome at the time of hospital discharge were not significantly different in patients with (survival, 62.7% versus 64.3%; P=0.69) and without VF (survival, 19.2% versus 16.3%; P=0.30) in the intervention group compared with those in the standard care only. Similarly, the proportions of patients who either awakened spontaneously >12 hours after ROSC in 26% versus 21%; P=0.008), longer time from first EMS dispatch to hospital arrival (51±13 versus 49±14 minutes; P=0.006), significantly lower oxygenation (PaO₂, 189±135 versus 218±144 mmHg; P<0.001), more acidosis (pH 7.16±0.23 versus 7.20±0.29; P=0.005), increased pulmonary edema on first chest x-ray (41% versus 30%; P<0.001), and greater use of diuretics during the first 12 hours of hospitalization (18% versus 13%; P=0.009) compared with the control group. However, these differences present within the first 24 hours, resolved in the following days as demonstrated by similar rates of pulmonary edema on subsequent chest x-rays, duration of mechanical ventilation, need for reintubation, and hospital length of stay between groups. Importantly, mortality in the out-of-hospital setting (1.3% versus 1.6%; P=0.61) and at the emergency department (12.8% versus 12.7%; P=0.95) did not differ between groups.

Bernard et al reported similar findings in a smaller randomized study in Australia. The authors randomized 234 resuscitated patients from VF arrest to paramedic-initiated cooling with a rapid infusion of 2 L of ice-cold lactated Ringer solution versus standard hospital-based therapeutic hypothermia (33°C) using surface cooling techniques. The intervention resulted in a modest decrease in core temperature of 0.8°C (34.4±1.2°C versus 35.2±1.0°C; P=0.001) on hospital arrival compared with the control group, although, core temperature equalized just 60 minutes after hospital arrival between groups (34.7±1.1°C versus 34.7±0.9°C; P=0.7). The primary end point defined as patients discharged directly home or to a rehabilitation facility was not significantly different between the paramedic-cooled group (47.5%) and hospital-cooled group (52.6%; P=0.043). The reported incidence of pulmonary edema and recurrent cardiac arrest during transport was not significantly different between groups.

Taking these trials together, the available data does not support the use of EMS-initiated rapid infusion of cold crystalloids as a mean to achieve faster cooling rates after ROSC in patients with or without VF arrest. These are disappointing findings because laboratory-based studies have previously suggested a relationship between early onset of therapeutic hypothermia and favorable outcomes in various animal models of cardiac arrest. This lack of translation from bench-to-bedside has several potential explanations.

First, in animal models, the best outcomes have been observed when cooling is achieved intra-arrest, or immediately after ROSC. In 1 animal study, a delay of only 15 minutes in the initiation of therapeutic hypothermia was enough to mitigate some of the neuroprotective benefits observed in the immediate cooling group. This is an important methodological difference between animal and human studies, because therapeutic hypothermia after ROSC is currently achieved after several hours in humans (3 hours in patients without VF...
and 4.2 hours in VF-arrested patients in the Seattle trial intervention group).

Congruent with these human data is a study in 258 rats exposed to 10-minute asphyxial cardiac arrest then randomized to normothermia or cooling (33°C) at 30 minutes, 1, 4, and 8 hours after ROSC and maintained for either 24 or 48 hours.20 IH initiated at 0 minute (45%), 1 hour (36%), and 4 hours (36%) after ROSC had similar survival, which was significantly better than that in the 8-hour group (14%) and normothermia group (17%). The Seattle and King County trial and animal data both suggest that there is no difference in survival so long as IH is initiated within 4 hours of arrest.

Second, in the Seattle and King County trial described above, the prehospital use of rapid cold saline infusion was associated with more episodes of rearest en route, acidosis, and pulmonary edema on admission. Cardiac rearest has the potential of causing further anoxic brain injury, acidosis is a known predictor of adverse outcomes and rapid cold saline infusion, at least in 1 cardiac arrest animal model, was associated with reduced coronary artery perfusion pressure compared with postresuscitation surface cooling methods.21 These complications related to cold saline infusion did not affect early mortality in our study, but it is conceivable that they may have manifested because increased risk of death later during the hospitalization, thus, offsetting any potential benefit of achieving earlier hypothermia by rapid cold saline infusion.

Third, many factors contribute to outcomes after resuscitation. The quality and timing of bystander CPR, the performance and training of EMSSs, and care by emergency and intensive care units are all critical elements and direct determinants of survival and functional outcomes.22 The lack of survival benefit in our study must be interpreted in the context of the EMS and regional health system where the study was performed. We reported mortality rates of 35% for patients with VF, which are among the lowest in the United States. An important question remains whether the use of prehospital cooling might benefit patients in a less optimal EMS environment. For example, might prehospital cooling benefit patients who had a longer transit time before hospital arrival, or had longer EMS response times?

Potential Alternatives
Future outcome trials using faster, volume-sparing hypothermia methods during CPR or immediately after ROSC are clearly needed. As a preamble, Castrén et al23 reported the safety, feasibility, and cooling efficacy of the RhinoChill device (BeneChill, Inc, San Diego, CA) during active CPR (intra-arrest) in the Pre-ROSC IntraNasal Cooling Effectiveness study. RhinoChill is a transnasal evaporative cooling system that has been shown to improve the CPR success rate in a porcine model of cardiac arrest, explained by a higher increment in the coronary perfusion pressure compared with cooling with cold saline infusion.24 Moreover, transnasal evaporative cooling seems to rapidly induce preferential brain cooling as compared with the rest of the body, which is cooled at a slower rate, creating a significant brain–body temperature gradient.25

This small trial suggested that intra-arrest cooling with the RhinoChill device was feasible, relatively safe, and reduced the core temperatures by nearly 2 hours compared with hospital-based cooling systems. Larger randomized trials are ongoing to assess the effect of intra-arrest IH on clinically important outcomes. If these trials do not show benefit, the strategy of early, out-of-hospital cooling should be abandoned.

Hospital-Based Cooling
Initial clinical trials focused on hospital-based target core temperature of 32°C to 34°C, commonly referred to as mild therapeutic hypothermia, for an average of 12 to 24 hours.13,14 However, the hypothermia after cardiac arrest trial was criticized because the average temperature in the nonhypothermia control group remained >37°C, and some patients even developed fever between 8 and 36 hours after ROSC.14 This has raised several questions of whether the improved survival and neurological outcomes seen at least in the hypothermia after cardiac arrest study were partly because of the therapeutic effects of induced mild hypothermia or the avoidance of fever/hyperthermia after the first 24 hours post OHCA. This becomes relevant because the development of hyperthermia during the first 36 to 48 hours postarrest seems to be associated with unfavorable outcomes in comatose patients with OHCA.26,27

Therefore, investigators conducted the temperature management to a target of either 33°C or 36°C after OHCA target temperature management (TTM) trial.28 The investigators randomized a total of 939 patients with OHCA (=80% with VF) to hospital-initiated cooling to a target temperature of 33°C (n=473) or 36°C (n=466), which was achieved by ice-cold fluids, ice packs, and intravascular or surface devices and maintained for 28 hours, after which, gradual rewarming was begun, however, in unconscious patients temperature was maintained <37.5°C in both groups for 72 hours post OHCA using fever control measures.

Remarkably, the primary outcome of all-cause mortality (50% versus 48%; P=0.51) and secondary outcome of a composite of poor neurological function or death (54% versus 52%; P=0.78) through the end of the trial (180 days) were no different between the 33°C and 36°C group. The hazard ratio for death in multiple a priori subgroups, including age, time to ROSC, initial rhythm, and presence of shock at hospital admission, none of the point estimates showed a trend in the direction of a clinical benefit using 33°C as the target core temperature in the first 36 hours post OHCA resuscitation.

On the basis of these findings, the authors concluded that there was no evidence at this time to indicate that aiming for a body temperature of 33°C conferred any significant clinical benefits over a temperature of 36°C in unconscious patients admitted to the hospital after OHCA. One of the main hypotheses for this comparable clinical benefit seen with either hypothermia strategy has to do with the importance of avoiding the development of hyperthermia or fever during the active cooling intervention during the first 36 hours post cardiac arrest, and the subsequent days after the passive rewarming process.

Again, there are several plausible explanations for the lack of difference in survival or neurological outcome in the TTM trial. First, the majority of patients enrolled in the TTM had witnessed arrests, with bystander CPR initiated within a
median of 1 minute after the onset of arrest. As such, they may have had less ischemia and reperfusion injury, and, therefore, a better overall prognosis than the average patient treated for OHCA. This is corroborated by the observation that >75% of patients in either the control or intervention group had a pupillary light reflex response at the time of admission.40 Others have reported that ≈20% of patients resuscitated from OHCA have pupillary responses.29 The presence of a pupillary response is one of the strongest predictors of good neurologic outcome in the presence30 or absence29,31 of IH/TTM. It seems plausible that the lack of difference in survival between the 33°C group and the 36°C group in the TTM trial may, in part, have been because patients in either group had a good overall prognosis and insufficient neurological or cardiac injury to benefit from IH/TTM.

Second, the 33°C group had significantly more days receiving mechanical ventilation (median, 0.83 [0.67, 1.0] versus 0.76 [0.6, 10]; P=0.006) and were significantly less likely to have awoken before prognosis assessment (44% versus 52%; P=0.03) compared with the 36°C group. A strength of the TTM trial was that participating clinicians used a deferred, structured approach to prognosis assessment and withdrawal of care in enrolled subjects.29 Unfortunately, this approach did not account for the prolonged metabolism of drugs in patients with deeper hypothermia.32,33 It seems plausible that the increased duration of ventilation and increased likelihood of unconsciousness at the time of prognosis assessment in the 33°C group compared with the 36°C group in the TTM trial was because of prolonged metabolism of sedatives.

Third, the estimated time from ROSC to achievement of a target temperature <33°C was ≈720 minutes, in the TTM trial. This was long compared with previous trials (Table). This delay in reaching target temperature (may have) negated any clinical benefit.

Finally, propofol was commonly used as a sedative in the TTM trial (TTM Investigators, unpublished data, 2014). Cardioprotection from reperfusion injury was attenuated by propofol in a trial that of cardioprotection in patients undergoing coronary artery bypass grafting.34 As well, in a systematic review of randomized trials of patients (n=696) undergoing bypass grafting, propofol was associated with significantly less myocardial ischemia and injury compared with sevoflurane.35 It seems plausible that concurrent use of propofol may have attenuated the benefit of IH in the TTM trial.

Adoption of a target temperature range of 36°C may be associated with increased shivering as 36°C is close to the normal shivering threshold.36–38 Shivering markedly increases heat production.39 If endovascular methods of IH are used, skin counterwarming can be used to reduce the heat production and the shivering threshold.40,41 Limited trials have not demonstrated that one pharmacological method of reducing shivering is better than another in patients with cardiac arrest or normal volunteers.42,43,44 Medications commonly used to reduce shivering during IH include midazolam, fentanyl, dexmedetomidine, magnesium sulfate, meperidine, and buspirone.

Neuromuscular blocking agents (NMB) are sometimes used to reduce shivering. A systematic review of randomized trials in adults with acute respiratory distress syndrome (n=431) suggested that NMB reduce mortality as compared with no NMB.53 A single-center randomized trial of NMB (rocuronium) in patients resuscitated from cardiac arrest has completed enrollment but not reported results (clinicaltrials.gov identifier NCT01683006). Until there is compelling evidence for or against use of NMB in patients with cardiac arrest, selection of NMB type and dose is at provider discretion.

Randomized trials completed to date have evaluated IH without other concurrent interventions. IH may have incremental benefit when combined with emergency cardiopulmonary support to improve cardiac output,54 or hemofiltration to remove cytokines,55 or xenon to increase neuroprotection.56 These combination therapies remain investigational.

Conclusions

IH provides neuroprotection in animal models of cardiac arrest, but is of uncertain benefit in humans. Use of EMS-initiated rapid infusion of cold crystalloid as a means to achieve faster cooling rates after ROSC in patients with and without VF arrest did not improve survival. Whether intra arrest or volume-sparing cooling methods in the field are beneficial remain unclear. Initial trials of IH in patients hospitalized comatose after resuscitation from OHCA demonstrated benefit as compared with the control group. The lack of significant difference in survival or neurological outcome with temperature ranges of 33°C versus 36°C has increased uncertainty about which range and concurrent treatments are best.
Sources of Funding
This study was supported by RO1HL089554, National Heart Lung Blood Institute, Bethesda, MD (Dr. Kim and Nichol).

Disclosures
Dr. Nichol reports receiving research support from Philips Healthcare Inc, Andover, MA, Physio-Control Inc, Redmond, WA; and ZOLL Corporation, Chelmsford, MA; and serving as coprincipal investigator of the Velocity Pilot Study of Ultrafast Hypothermia in Patients with ST-segment-elevation myocardial infarction (Velomedix, Inc, Menlo Park, CA; waived personal compensation). The other authors report no conflicts.

References

51. Talpe P, Tayefeh F, Sessler DJ, Jeffrey R, Nousraledi M, Richardson C. Dexametomidine does not alter the sweating threshold, but comparably and linearly decreases the vasoconstriction and shivering thresholds. Anesthesiology. 1997;87:835–841.

Key Words: cardiac arrest • hypothermia • reperfusion injury
What Is the Use of Hypothermia for Neuroprotection After Out-of-Hospital Cardiac Arrest?
Francis Kim, Paco E. Bravo and Graham Nichol

Stroke. 2015;46:592-597; originally published online January 6, 2015;
doi: 10.1161/STROKEAHA.114.006975

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/46/2/592

Data Supplement (unedited) at:
http://stroke.ahajournals.org/content/suppl/2016/04/07/STROKEAHA.114.006975.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/
병원외 심장정지 이후의 신경보호를 위한 저체온법이 어떤 유용성이 있는가?

What Is the Use of Hypothermia for Neuroprotection After Out-of-Hospital Cardiac Arrest?

Francis Kim, MD; Paco E. Bravo, MD; Graham Nichol, MD

(Stroke. 2015;46:592-597.)

병원 밖에서 발생한 심장정지(out-of-hospital cardiac arrest, OHCA)는 병원 밖에서 심장의 기계적 활동이 없어지고 혈액학적 허탈이 오는 것이다. 빨리 치료하지 않으면 OHCA는 필연적으로 사망으로 이어진다. 여러 지역사회에OHCA 발생 후에 퇴원 시까지 생존할 확률은 낮아서 심박수 무관하게 치료 받은 환자의 경우 10.7% (95% CI, 9.9%-11.5%)이며 일반인이 목격한 심실세동(ventricular fibrillation, VF)으로 소생술을 받은 환자의 경우 31.7% (95% CI, 28.2%-35.1%)에 이른다.1 OHCA 이후 입원한 환자의 사망의 가장 흔한 원인은 신경학적 손상이다.2,3 이러한 해결되지 않은 문제에도 불구하고 치료받은 환자의 원내사망률은 2001년의 69.6%에서 2009년의 57.8%로, 또한 최근에는 11.8%로 감소하고 있다.4 OHCA 이후 성공적으로 소생시켰으나 아직 수술 가능한 환자에 대한 집중치료프로토콜 및 저체온치료의 도입이 부분적으로 예후의 호전과 관련이 있는 것으로 생각한다.4

저체온법의 원리

혈류가 돌아오는 동안 그리고 그 이후에 늦사망에 재관류 손상이 생긴다. 이는 전염증성(proinflammatory) 및 항염증 사이토카인이 분비되어 모세혈관단열(capillary perfusion) 약화, 조직 혈류, 미세혈관기능저하(microcirculatory dysfunction) 등을 일으키는 것을 포함한다. 첫 이틀 동안에는 심장 기능이 감소했다가 좋아진다. 이후 3일 동안 혈관 및 장의 투과성이 증가한 다. 환자는 죽음의 비슷한 혈액학적 상태에, 심장적 손상, 다발 기관기능이상(multiple organ dysfunction), 사망 등을 겪을 수 있다. 재관류 손상의 정도는 혈류의 기간 및 소생술의 적절성과 관련이 있다. 다음에는 장기간의 예후가 재관류 손상의 정도와 관련이 있다.5

혈류 중인 저체온은 혈류에 대한 장기의 대사가 키워진다. 재관류 이후 저체온법은 헤로인 글루타민산염(glutamate), 산소자유기(oxygen–free radical), 염증성 분자의 생성, 뇌산소 요구도, 두개내압, 신경학적 손상의 최종 정도 등을 감소시킨다.6 따라서 저체온 유도(induced hypothermia, IH)는 때로는 목표 체온관리(targeted temperature management)라고 불리는데 심실정지 후 생존율이 높아지고 산소용량이 증가하기 위해 체온은 낮추는 것으로서 OHCA 환자에게 적용한다. 2010 Guidelines on Cardiopulmonary Resuscitation (CPR) and Emergency Cardiovascular Care는 다음과 같이 권유한다7:

원외 VF 심장정지 이후 자연순환으로의 회복(restoration of spontaneous circulation, ROSC)이 온 혼수상태(예를 들면 구두 지시에 대한 의미 있는 반응이 없음)의 성인 환자는 33°C에서 34°C(89.6°F에서 93.2°F)로 12-24시간 냉각해야 한다(Class I, LOE B). 저체온 유도는 초기 심박과 무관하게 원외심장정지 이후 또는 pulseless electric activity 또는 무수축(asystole)의 초기 심박에 의한 원외심장정지 이후 ROSC가 온 혼수환자에서도 고려할 수 있다(Class Ib, LOE B).

이런 근거중심의 권고안은 OHCA가 있는 환자에서 IH의 효과를 본 최근의 임상시험의 관점에서 재평가하고 있다. 재평가가 나오기 전이므로 우리가 이런 인구집단에서 IH의 사용에 대한 근거 중심의 최신 권고안을 제공해 보겠다.

초기 냉각

경도의 저체온법의 적절한 시기를 고려할 때 몇몇 동물실험은 초기에 냉각하는 것이 나중에 냉각하는 것보다 더 보호를 잘 한다는 것을 보여주었다. 생쥐모델에서 CPR 동안 냉각요법(cooling blanket)을 이용해서 IH를 하는 것은 ROSC 이후에 IH를 하는 것보다 더 좋았다.9 VF 심장정지의 개 모델에서 CPR을 하는 동안 찬 생리식염수로 경도의 저체온법을 하는 것은 생존율이 더 높았다.10 다른 개 모델에서 심장정지 시에 경도의 저체온법을 하는 것은 장상 체온과 비교

From the Department of Medicine, Harborview Medical Center, University of Washington, Seattle.
Correspondence to Graham Nichol, MD, University of Washington-Harborview Center for Prehospital Emergency Care, PO Box 359727, 325 Ninth Ave, Seattle, WA 98104. E-mail nichol@uw.edu
© 2015 American Heart Association, Inc.
하하여 뇌기능을 의미 있게 호전시켰는데 재관류 15분 이후에 IH를 하는 것은 그렇지 못했다. 이런 동물실험들은 심정지 시에 냉각을 하거나 ROSC 발생 15분 이내에 냉각을 하는 것이 신경학적 회복이 더 좋은지를 시사한다.

사람에서 경도의 저체온법을 시행하는 적절한 시기는 중요한 의문점으로 남아있다. 사람에서 소생술 완료 4~8시간 후에 IH를 하는 것은 정상 상태보다 신경학적 예후를 향상시켰다. 사람에서 이것보다 더 일찍 시작하는 IH의 효과를 시사하기 위해서는 이동구조사가 현장에서 심정지 환자에게 적용할 수 있는 간단하고 안전한 방법을 찾아야 한다. 침습적이거나 비침습적이거나 병원기반의 방법은 현장에서 사용하기에 적합하지 않다. 냉각 도관(cooling catheter)을 이용하는 침습적 방법은 목표 체온에 빨리 도달하지만 하대정맥에 거치해야 하기에 현장에서 사용하기에는 비실용적이다. 외부냉각기법(external cooling technique)은 덜 침습적인 장점이 있다. 그러나 대부분의 방법은 외부의 전력공급장치나 외부의 전력공급장치에 필요한 장치, 외부의 전력공급장치나 외부의 전력공급장치에 가능한 경도의 저체온치료프로토콜을 가지고 병원에 도착한 모든 환자에게 표준적인 치료를 하였다.

무작위성 시험의 체온은 집단 간에 의미 있게 차이가 난지 않았다(약 36°C). 중재군은 병원 도착 전까지 VF가 있는 환자에서 평균 심부체온이 1.2°C 감소하였고(35.0°C 대 33.9°C; P < 0.001), VF가 없는 환자에서 1.3°C 감소하였으며(34.7°C 대 33.6°C; P < 0.001) 34°C 미만으로 체온을 유지하는데 있어 VF가 있는 환자(4.2 대 5.5시간; P < 0.01)와 VF가 없는 환자(3.0 대 4.0시간; P < 0.01)에서 대조군에서 비외상성 OHCA로 소생술을 성공적으로 완료한 1359명의 성인환자(VF가 있는 583명 및 VF가 없는 776명)를 병원 전단계의 냉각을 받는 중재군과 표준적 치료군(VF가 있는 291명 및 VF가 없는 380명)을 대조군에 심박과 무관하게 무작위할당하였다. 워싱턴주의 시애틀과 랜턴 카운티에 소재한 응급의료서비스(EMS) 기관 및 병원에서 이 연구를 진행하였다. EMS급료가 ROSC 이후 2 L 이하의 4°C 냉각식염수를 빠르게 주사하여 병원 도착지에서 냉각을 시작하였다. 34°C 미만으로 준비 체온을 가지고 최대 24시간 동안 표면 및 혈관내 냉각 장치를 포함하는 경도의 저체온치료프로토콜을 가지고 병원에 도착한 모든 환자에게 표준적인 치료를 하였다.

대조군과 비교할 때 중재군은 이송 중에 더 자주 심장지가 왔고(26% 대 21%; P = 0.008), EMS가 출동한 후 병원에 도착하기까지의 시간이 길었으며(49±14분 대 49±14분; P = 0.006), 산소포화가 더 낮았으며(PaO2, 189±135 대 218±144 mmHg; P < 0.001), 산소포화가 더 낮았으며(PaO2, 189±135 대 218±144 mmHg; P < 0.001) 34°C 미만으로 체온을 유지하는데 비외상성 OHCA로 소생술을 성공적으로 완료한 1359명의 성인환자(VF가 있는 583명 및 VF가 없는 776명)를 병원 전단계의 냉각을 받는 중재군과 표준적 치료군(33°C)을 받도록 무작위할당하였다. 이 중재술은 대조군과 비교하여 병원 도착 시에 심부체온을 0.8°C (34.4±1.2°C 대 35.2±1.0°C; P = 0.001) 정도 더 떨어뜨렸으나 병원에 도착하고 60분이 지난 후에는 두 군 간에 비슷해졌다(34.7±1.0°C 대 34.7±1.0°C; P = 0.7). 집이나 재활시설로 퇴원하는 환자로 정의한 일차 종말점은 응급구조사가 냉각한 집단(47.5%)과 병원에서 냉각한 집단(52.6% P = 0.043)에서 의미 있는 차이가 없었다.

주요한 것은 원외에서의 사망률(1.3% 대 1.6%; P = 0.61)과 응급실에서의 사망률(12.8% 대 12.7%; P = 0.95)이 두 군 간에 차이가 없었다.
송 중의 심정지 재발 보고는 양 근에서 의미 있는 차이가 없었다. 이에 대한 임상시험의 결과들을 종합적으로 보았을 때 VF 유무와 관계없이 ROSC 이후 냉각을 빨리 시작하기 위한 수단으로서 EMS가 찬정질액(crystalloid)을 빨리 주사하는 것이 유용하다고 뒷받침해 주는 증거는 없다. 과거에 다양한 심정지동물모델을 이용한 실험연구에서 체온저치료를 빨리 시작하는 것이 양호한 결과를 가져왔던 것을 고려할 때 이는 실망스러운 결과이다.10,12,20 이런 중개연구가 실제의 연구에 대해서는 몇 가지 설명이 가능하다.

첫째, 동물모델에서 최선의 결과는 심정지 중에 또는 ROSC 직후 냉각을 하였을 때 나왔다. 한 동물연구에서 15분간 찬체온치료를 늦추어도 즉시 냉각을 한 집단에서 관찰한 신경보호효과가 없어졌다.12 인체에서 ROSC 이후 찬체온치료의 도움이 거짓으로 보이기도 하였는데 48시간동안 찬체온(33°C)으로 목표체온을 감소시키는 실험이 아니었다.13,14 찬체온치료는 동물연구에서의 결과와 비슷하며 13,14 1시간, 1시간, 8시간에 찬체온(33°C)으로 IIIH를 시작하도록 모든 비슷한 생존률을 보였고 8시간 동안 찬체온(14%)이나 찬체온(17%)보다는 의미 있게 좋았다. 시약을 정상 체온으로 유지하면 모든 IIH를 심정지 후 4시간 이내에 시작하면 방법에는 차이가 없다는 것을 시사한다.

둘째, 전술한 시약에 및 칭가사스 시험에서 병원 전단계의 찬체온치료의 효과가 있음을 입증하였는데 찬체온치료는 심정지 동물모델에서 심장동맥관류압 저하를 잘 일으켰다.17 찬체온치료는 심장동맥관류압 저하를 잘 일으켰다.17 찬체온치료와 연관된 이런 합병증은 우리 연구에서 조기 사망률에 영향을 주지 않았으나 입원 후반기에 사망률이 증가하여서 찬체온치료에 의한 찬체온치료의 잠재적인 이익을 감소시켰을 가능성이 있다.

셋째, 여러 가지 요인들이 찬체온치료의 결과에 영향을 준다. 일반인에 의한 CPR의 질 및 시기, EMS의 성격 및 속련도, 응급실과 중환자실의 치료 및 전단의 정準적, 찬체온치료의 예후에 영향을 주는 여러 요인들이 있다.28,29 우리 연구에서 찬체온치료에 대한 이득이 없었던 것을 연구가 수행된 지역보건체계 및 EMS의 배경을 염두에 두고 해석해야 한다. 우리는 VF 환자에서 35%의 사망률을 보고하였는데 이는 비율에서 가장 낮은 수준이다. 실제로는 EMS 환경에서 병원 전단계의 찬체온치료가 환자에게 도움이 될 것인지 하는 문제에 대한 통계적 분석을 필요로 한다. 예를 들어 병원 전단계의 찬체온치료의 도움이 있던 간의 차이가 검증된 환자에게도 도움이 될 것인가?

가능한 대안

CPR 중재 또는 ROSC 적응 후 수액량을 적게 사용하면서 더 빠른 저체온에 대한 미래의 임상시험이 분명히 필요하다. 그 시약으로 Castren 등23은 Pre—ROSC IntraNasal Cooling Effectiveness 연구에서 CPR 도중에 RhinoChill 기구 (BeneChill, Inc, San Diego, CA) 사용하는 것의 안정성, 심장능성, 낭각의 효과 등에 대해서 보고하였다. RhinoChill은 코경유 증발냉각시스템(transnasal evaporative cooling system)으로 찬 심장수유사례의 확과 발고에 비해 찬정질액판류유약을 더 중기적으로 심정지재활로부터 CPR 성공률을 증가시켰다.24 또한, 찬체온증발방대는 더 느리게 냉각되는 다른 부위의 합병증 뉴를 더 빠르게 낭각시켜서 뇌와 몸 사이에 중요한 찬체온 차이를 조성한다.20

소규모 시험에서 심정지 중에 RhinoChill 기구를 이용한 낭각은 실험환경이 있고 비교적 안전하며 병원 기반의 낭각시스템과 비교해서 거의 2시간 정도 빠른 찬체온치료를 감소시켰다. 심정지 중의 IIIH가 억제적으로 중요한 결과에 미치는 영향을 평가하기 위한 대규모 무작위시험을 진행 중이다. 반면 이런 시험들이 이상 수명의 판단을 증명하지 못한다면 초기의 원외난각 전략은 폐기해야 할 것이다.

병원기반 낭각

초기의 임상시험은 병원기반으로 심부 찬체온 목표를 33°C에서 34°C로 설정하여 평균 12-24시간 동안 유지하였고 보통 정도의 저체온치료라고 불리었다.21,22 그러나 저체온치료를 하지 않은 대조군에서 평균 37°C를 넘었고, 어떤 환자들은 ROSC 8-36시간 후에 심장사태가 있기도 하여서 실형질 이후의 찬체온치료 시험은 비교적 안전한 효과를 보였다고 할 수 있었다.21 이것은 심정지 후 찬체온에서 생존과 신경학적 예후가 좋아진 것이 OHCA 이후 24시간 동안 저체온의 효과가 유도의 치료적 효과 때문인가 아니면 병원 기반의 낭각으로 인해 예후를 개선시키는지에 대해 몇 가지 궁금증을 야기하였다. OHCA로 혼수상태인 환자에서 발생한 예후가 심정지 이후 찬체온치료 후 36-48시간 동안의 고체온 발생과 관련이 있기에 대해 몇 가지 논의가 있어야 한다.26-28

따라서 연구진은 targeted temperature management (TTM) 시험에서 OHCA 이후 목표를 33°C 또는 36°C로 하는 찬체온시험이 되었다.29 연구진은 939명의 OHCA 환자 중 80%는 VF를 33°C (n=473) 또는 36°C(n=466)를 목표 체온으로 하는 병원기반의 낭각으로 무작위당해하였다. 이는 찬체온치료의 도움이 있던 매진한 연구에서 생존과 신경학적 예후가 좋아진 것이 OHCA 이후 24시간 동안의 고체온의 유도의 치료적 효과 때문이 아닌질 영향을 예방할 수 있는지에 대해 몇 가지 논의가 있어야 한다. OHCA로 혼수상태인 환자에서 발생한 예후가 심정지 이후 찬체온치료 후 36-48시간 동안의 고체온 발생과 관련이 있을 수 있다.26-28

따라서 연구진은 targeted temperature management (TTM) 시험에서 OHCA 이후 목표를 33°C 또는 36°C로 하는 찬체온시험이 되었다.29 연구진은 939명의 OHCA 환자 중 80%는 VF를 33°C (n=473) 또는 36°C(n=466)를 목표 체온으로 하는 병원기반의 낭각으로 무작위당해하였다. 이는 찬체온치료의 도움이 있던 매진한 연구에서 생존과 신경학적 예후가 좋아진 것이 OHCA 이후 24시간 동안의 고체온의 유도의 치료적 효과 때문이 아닌질 영향을 예방할 수 있는지에 대해 몇 가지 논의가 있어야 한다. OHCA로 혼수상태인 환자에서 발생한 예후가 심정지 이후 찬체온치료 후 36-48시간 동안의 고체온 발생과 관련이 있을 수 있다.26-28
은 임상시험로시(180일)까지 33°C군과 36°C군에서 서로 차이가 없었다. OHCA 소생술 이후 첫 36시간 동안 목표심부체온을 33°C로 유지하는 것은 나이, ROSC까지의 시간, 초기의 심박, 내원 시 속의 유무 등 여러 개의 아집단에서 사용의 HR을 보았을 때 어떤 것도 임상적으로 이득이 되는 방향으로의 경향을 보이지 못했다.

이런 결과를 바탕으로 저자들은 OHCA 이후 입원한 의심분명 환자에서 목표 체온을 33°C로 하는 것이 36°C보다 임상적 이득이 있다고 하였던 것을 보여주는 증가가 현재는 없다고 결론 내렸다. 두 가지 저온 전략에서 보이는 비슷한 임상적 이득에 대한 가설은 심장이 이후 첫 36시간 동안의 적극적 냉각중재 및 수동적 체온 상승 과정 후의 휴면 동안 고체온이나 열의 발생을 예방하는 것이 중요성을 간주할 수 있다.

다시 말하지만 TTM 시험에서 생존이나 신경학적 예후에서 차이가 없었을 뿐만 아니라 그렇게 할지 결정하는 것이 중요하다. 먼저 TTM에서 등록된 환자들의 대부분은 심장이 시기에 목표가 있었고 심장이 발생 후 중간 값이 1분 이내에 일반인이 CPR를 시작하였다. 그 자체로 환자들은 허혈 및 재관류 손상을 덜 받았고 따라서 TTM에 등록된 환자들의 대부분은 심장이 발생 후 중간 값 1분 이내에 일반인이 CPR을 시작하였다.

TTM 시험에서 프로포폴을 흔하게 진정제로 사용하려는 약물학적 방법이 존재한다는 것을 보여주지 못했다.29 IH/TTM를 하기30 하지 않았31,32 동통방의 존재는 양호한 신경학적 예후를 예측하는 가장 강력한 인자 중 하나이다. 33°C군과 36°C군에서 생존에 차이가 없었던 것은 TTM 시험에서 부분적으로 양 군의 환자들이 양호한 절반적인 예후를 나타내었다.33 IH/TTM으로 효과를 보기는 불충분한 신경학적 또는 심장손상을 가졌기 때문일 수 있다.

대체로, 36°C군과 비해 33°C군은 기계 호흡을 한 일수(중간값, 0.83 [0.67, 1.0] 대 0.76 [0.6, 10]; P=0.006)가 의미 있게 더 길었고 예후 평가를 하기 전에 개별하는 빈도가 더 적었다(44% 대 52%; P=0.03). TTM 시험의 장점은 참여하는 의사들이 등록된 환자들에게 예후를 평가하고 치료를 중단할 때 일정 기간 보류된 조직적인 접근을 했다는 점이다.36 볼레하이 이렇게 접근은 심도의 저온체육을 한 환자에게서 임상태세가 연장되는 것을 설명해 주지 못한다.37,38 TTM 시험에서 33°C군과 36°C군보다 기계 호흡의 기간이 더 길고 예후 평가 시에 의심정밀하게 바람이 증가한 것은 전방적 대사가 연장되어서 이슈가 상당히 있다.

세 번째로 TTM 시험에서 ROSC 이후 33°C 미만의 목표 체온에 도달할 때까지 걸린 시간의 추정치가 약 720분이었다. 이는 기존의 시험보다 길었다(Table, 목표 체온에 도달하는데 시간이 오래 걸린 것은 임상적인 이득을 상쇄하였기 때문이다.

마지막으로 TTM 시험에서 프로포폴을 흔하게 진정제로 사용하였(TTM Investigators, unpublished data, 2014). 심장동맥 우회로조성술을 받은 환자에서 심장보호의 효과를 본 임상시험에서 프로포폴은 재관류 손상에 대해 심장보호의 효과를 약화시켰다.34 엔조이 외래로 이식술을 받은 환자들(n=666)에 대한 무작위시험들에 대한 systematic review에서 프로포폴은 세보플루라 및(befeprinol)보다 의미 있게 더 적은 심근손상과 심습관성과 관련이 있었다.35 TTM 시험에서 프로포폴의 병용은 IH의 이득을 감소시켰을 가능성이 있다.

36°C는 정상적인 허혈 경계에서 가깝기에 36°C로 목표 체온을 맞추면 허혈이 증가할 것이다.36,37 허혈은 병합을 확실히 증가시키는 환경에 의한 범위의 방법이 TTM의 병용에 의하여 발생 및 허혈의 역사를 줄일 수 있다.38,39 소수의 임상시험들은 심장지지자나 정상 지원자에서 다른 방법보다 더 병합을 줄이는 약물적 방법이 존재한다는 것을 보여주지 못한다.40,41 IH 중에 병합을 감소시키기 위해 흔히 사용하는 약물은 미도졸람(m bordel), 엔토랄(fentanyl), 백스테모리즘(dexamethasomine), 황산마그네슘, 메페리딘(meperidine), 부스피론(buspirone) 등이 있다.

병합을 줄이기 위해 가장 신경근육차단제(neuromuscular blocking agent, NMB)를 사용한다. 안정 급성 호흡곤란 증후군 (acute respiratory distress syndrome)의 무작위시험에 대한 systematic review (n=439)에서 NMB 사용은 사용하지 않았을 때보다 사망률을 더 감소시킴을 보여주었다.52 심장이 이후 대사용을 한 환자에서 NMB (rocuronium)를 이용한 단일기간 무작위시험은 환자 등록을 끝냈으나 결과를 보고하지 않았다.

Table. Treatment Process and Outcome in Large Randomized Trials of Hospital-Based Hypothermia

<table>
<thead>
<tr>
<th>Population</th>
<th>Temperature Target, °C</th>
<th>Time From Onset of Arrest to Target, min</th>
<th>Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bernard et al36</td>
<td>Control (n=34)</td>
<td>Out-of-hospital VF</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>Intervention (n=43)</td>
<td>33°C</td>
<td>=270</td>
</tr>
<tr>
<td>HACA44</td>
<td>Control (n=138)</td>
<td>Witnessed out-of-hospital VF or pVT</td>
<td>n/a</td>
</tr>
<tr>
<td>Nielsen et al45</td>
<td>Control (n=466)</td>
<td>Out-of-hospital VF, PEA, or witnessed PEA</td>
<td>32–34°C</td>
</tr>
<tr>
<td></td>
<td>Intervention (n=473)</td>
<td>33°C</td>
<td>=720</td>
</tr>
</tbody>
</table>

HACA indicates hypothermia after cardiac arrest; n/a, not applicable; PEA; pulseless electrical activity; pVT, pulseless ventricular tachycardia; and VF, ventricular fibrillation.
결론
IH는 심장지 동물모델에서는 심경보효과가 있으나 인간에서는 효과가 불확실하다. VF가 있던 없던 ROSC 이후 빠르게 냉각을 시키기 위해 EMS가 장점점한 점을 빼고 추가하는 것은 생존율을 증가시킬 줄 알 수 있다. 심장지 중에 냉각을 하거나 수액량을 낮추는 냉각 방법이 현장에서 도움이 될지는 불분명하다. OHCA로 인해 소생을 한 뒤에 혼수상태로 입원한 환자에서 IH를 한 초기의 임상시험은 대조군에 비해서 이득을 보였다. 36°C의 체온이 36°C과 비교해서 생존이나 신경학적 예후에 있어서 의미 있는 차 이를 보이지 못한 것은 어느 수준의 체온이 최선이고 어떤 병합요법이 필요한지에 대해 불확실성을 증가시킨다.

Sources of Funding
This study was supported by RO1HL089554, National Heart Lung Blood Institute, Bethesda, MD (Drs Kim and Nichol).

Disclosures
Dr Nichol reports receiving research support from Philips Healthcare Inc, Andover, MA; Physio-Control Inc, Redmond, WA; and ZOLL Corporation, Chelmsford, MA; and serving as coprincipal investigator of the Velocity Pilot Study of Ultrafast Hypothermia in Patients with ST-segment–elevation myocardial infarction (Velomedix, Inc, Menlo Park, CA; waived personal compensation). The other authors report no conflicts.

References

51. Talke P, Tayefeh F, Sessler DI, Jeffrey R, Noursalehi M, Richardson C. Dexmedetomidine does not alter the sweating threshold, but comparably and linearly decreases the vasoconstriction and shivering thresholds. *Anesthesiology.* 1997;87:835–841.

Key Words: cardiac arrest ■ hypothermia ■ reperfusion injury