See related article, p 634.

Stroke and atrial fibrillation (AF) are both frequent diseases (with respective prevalence >2.5% and >1% of the adult population in developed countries) and have major medical and financial impact. The link between the 2 diseases has been long since identified; the presence of AF is independently associated with a raw 5-fold increased risk of stroke.1

Cardiologists have learned from the Atrial Fibrillation Follow-up Investigation of sinus Rhythm Management (AFFIRM) studies that conventional medical practice could not decrease mortality in AF.2 More specifically, the antiarrhythmic drugs are associated with increased mortality, and only warfarin (ie, preventing stroke) is associated with a positive impact on the mortality.2 It was also suggested that the benefit of maintaining sinus rhythm could have been counterbalanced by stopping warfarin in patients in sinus rhythm.3

Accordingly, updated guidelines have better emphasized the importance of preventing stroke in AF management.4–6 Revised stroke risk stratification tools are now routinely used by clinicians for the management of AF patients. And the practice has actually changed during the past years. Rationalized indication for anticoagulant prescription together with the availability of direct oral anticoagulant lets hope for a better risk-benefit balance in the prevention of embolic risk associated with AF.

However, to initiate appropriate treatment, the physicians must first detect the AF and both the primary and the secondary prevention of AF-related stroke remain challenging when AF episodes have not been diagnosed. Under detection of AF episodes frequently occurs when AF is sporadic (paroxysmal AF) or when asymptomatic (referred to as silent AF). Silent AF episodes have been reported in up to one third of AF patients.4

After cryptogenic ischemic stroke, the use of enhanced ECG monitoring techniques including implanted devices provides rates of newly detected AF up to >10% of patients.7–9 It is tempting to speculate that these AF episodes might be causative of ischemic stroke. Indeed, relatively short episodes of atrial arrhythmias, around a few minutes, are actually associated with an increased risk of thromboembolism.10,11

As of today, it is not yet clear what are the key ECG characteristics of atrial arrhythmias that might be associated with thrombus formation and stroke and therefore may warrant antithrombotic therapy. One of those missing key data is the duration of the arrhythmia episodes. In the current issue of Stroke, Arsava et al12 report the findings from a retrospective study conducted in a cohort of patients with brief episodes of atrial arrhythmias, as little as a few seconds, in an attempt to clarify whether they are at increased risk of ischemic stroke.

Because a prospective study appropriately designed to test this hypothesis would be long and costly, the raw source data in the article by Arsava et al12 are on one hand the clinical and imaging features in patients with ischemic strokes together with documented short episodes (<30 seconds) of AF on the other hand. According to the author’s hypothesis, if nonsustained AF were to be a cause of stroke, its prevalence should be higher among patients with cryptogenic strokes when compared with patients with other apparent causes of stroke.

The first difficulty comes with definition and detection of a so-called short or brief AF episode. Guidelines define AF as “any arrhythmia that has the ECG characteristics of AF and lasts sufficiently long for a 12-lead ECG to be recorded, or at least 30 seconds on a rhythm strip.”6,13 Assuming that brief AF episodes lasting <30 seconds are clinically relevant biomarkers, the sensitivity and the specificity of 2 ECG leads in ambulatory settings to detect short AF episodes are uncertain. Mandatory diagnostic ECG features of AF include irregular atrial electric activity and absence of P waves. From 2 surface ECG leads, the differential diagnosis between true AF, runs of atrial extrasystoles, and junctional arrhythmias might be difficult in particular during daily activities with medium to low quality signal. In addition, because AF auto-triggered Holter devices are only based on QRS detection and irregular RR intervals, validation of nonsustained AF episodes would have required manual review by trained cardiologists after a standardized adjudication process. Otherwise, the concept of Holter-based brief AF episode detection would be at least weak if not flawed.

Beyond these technical concerns, the interpretation of results is not obvious. In the Arsava cohort, patients in the nonsustained AF group were significantly older and had more often hypertension and coronary disease, lower left ventricular ejection fraction, and larger left atria when compared with patients without atrial arrhythmias. These medical conditions are known predictors for AF,14 and their presence increases the congestive heart failure, hypertension, age ≥75: 2, diabetes, stroke: 2, vascular disease, sex female (CHA2DS2-VASc) score. One would expect that such patients with a higher risk of AF together with a higher thromboembolic risk would have higher odds for embolic strokes. Unexpectedly, the proportion

See related article, p 634.
of different stroke subtypes was not different between patients with nonsustained AF or without AF or nonsustained AF. This would suggest either no role or even a protective effect of nonsustained AF episodes on the odds of presenting a cryptogenic stroke. It is probably more prudent not to draw any conclusion from these results.

What should we do now? We do know that AF is an under-identified cause of ischemic stroke and silent ischemic infarction.1,11,15 But, we definitely need to better understand the pathophysiological link between AF and ischemic stroke.

We need first to find out whether AF episode duration or AF burden10,16 is clinically relevant and then to determine the AF episode duration or burden associated with an increased risk of embolism from cardiac origin. As the proportion of the AF detection increases with the duration of the recording,13 the prospective surveillance of patients for long periods (months) will be needed both after an ischemic episode and in primary prevention perspective. The increasing simplicity of subcutaneous monitoring device together with enhanced follow-up tools will definitely facilitate long-term monitoring. Hopefully, recording specifications will also improve, but to date these subcutaneous devices detect AF episodes as Holter systems do (variability of RR intervals) with lower specificity when compared with implanted devices that directly record atrial electric activity.

Beyond these limits, these recordings will generate massive amounts of data to analyze. It will be crucial that different studies use similar (or at least comparable) definitions of arrhythmias, as well as arrhythmias detection and adjudication processes.

The translation of a better understanding of pathophysiological to evidence-based anticoagulation is yet another story. On the one hand, the high sensitivity of long-term recordings based on insertable cardiac monitors together with a relatively low specificity of embedded algorithms may induce detection of a significant proportion of clinically irrelevant episodes. Most studies to date have considered AF episodes lasting >5 minutes. It is probably wise not to further decrease the specificity by looking for shorter duration episodes of unknown clinical relevance. On the other hand, the added risk of stroke associated different AF duration episodes or AF burden are not necessarily the same in patients with different underlying risk for thromboembolic complications.

In addition, the lack of temporal relationship between subclinical AF and embolic events in the ASSERT study17 is intriguing. It raises the question of whether short-duration AF episodes (but longer than 6 minutes) are independent risk factors for stroke or just markers of a thromboembolic risk associated with other factors associated with AF (ie, aging, hypertension).

In other terms, we need long and costly prospective randomized study intended to evaluate the effect of long-term anticoagulation in patients with episodes of AF of different duration and burden and also different thromboembolic risk profile. Obviously, these studies will have to evaluate both the reduction of embolic stroke together with the risk of bleeding complications associated with anticoagulant therapy.

In the meantime, to avoid device implantation in large number of patients, it would be probably wise to look for and validate surrogate makers of the risk of AF and stroke based on clinical data14 and on shorter duration ECG recordings (ie, 24-hour or a couple of weeks). One can hypothesize that nonsustained episodes of fast ectopic atrial activity could serve as surrogate for less frequent AF episodes or for predictors of future AF episode occurrence. But this has yet to be demonstrated.

There is still a long way before we reach the level of knowledge of the relation between AF and stroke that is required for sound evidence-based management of our patients. Our common goal to further decrease the incidence of ischemic strokes associated with AF definitely deserves the best science based on the best available tools and optimized cooperation between neurologists and cardiologists.

Disclosures
None.

References


Key Words: Editorials • atrial fibrillation • electrocardiography • stroke
Stroke and Atrial Fibrillation: Where to Go From Here?
Fabrice Extramiana and Pierre Maison-Blanche

Stroke. 2015;46:605-607; originally published online January 29, 2015;
doi: 10.1161/STROKEAHA.114.007809
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2015 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://stroke.ahajournals.org/content/46/3/605

Data Supplement (unedited) at:
http://stroke.ahajournals.org/content/suppl/2016/04/10/STROKEAHA.114.007809.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published
in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office.
Once the online version of the published article for which permission is being requested is located, click
Request Permissions in the middle column of the Web page under Services. Further information about this
process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org/subscriptions/
Инсульт и фибрилляция предсердий (ФП) являются распространенными заболеваниями (в развитых странах среди взрослых лиц их распространенность составляет >2,5 и >1% соответственно) и имеют серьезное медицинское и финансовое значение. Связь между этими двумя заболеваниями уже давно хорошо известна; наличие ФП независимо ассоциировано с приближительно 5-кратным повышением риска развития инсульта [1].

По результатам исследования Atrial Fibrillation Follow-up Investigation of sinus Rhythm Management (AFFIRM) кардиологам стало известно, что проведение традиционного медикаментозного лечения не приводит к снижению смертности при ФП [2]. Более того, применение антиаритмических препаратов ассоциировано с повышением уровня смертности, и только использование варфарина (т.е. профилактика развития инсульта) ассоциировано с положительным воздействием на смертность [2]. Было также высказано предположение, что польза может нейтрализоваться прекращением применения варфарина у пациентов с синусовым ритмом [3].

Соответственно, в обновленных стандартах по лечению акцентировано внимание на важность профилактики развития инсульта при лечении ФП [4–6]. В настоящее время клиницисты при лечении пациентов с ФП используют пересмотренные инструменты стратификации риска развития инсульта. В последние годы, действительно, произошли существенные изменения в практике. Рационализированные показания к применению антикоагулянтных препаратов для лечения ФП [4–6]. В настоящее время клиницисты при лечении пациентов с ФП используют пересмотренные инструменты стратификации риска развития инсульта. В последние годы, действительно, произошли существенные изменения в практике.

Однако для назначения соответствующего лечения врачу необходимо определить ФП, поэтому важно, когда эпизоды ФП не диагностируются, первичная и вторичная профилактика развития инсульта, связанного с наличием ФП, остается сложной задачей. Низкая частота диагностики эпизодов ФП связана с наличием спорадической ФП (пароксизмальной ФП) или предвестника его течения (скрытая ФП). Эпизоды скрытой ФП регистрируют у трети пациентов с ФП [4].

При криптоафазном ишемическом инсульте (ИИ) использование усовершенствованных методов мониторинга ЭКГ в т.ч. имплантируемых устройств, привело к увеличению частоты выявления ФП у >10% пациентов [7–9]. Очень привлекательным предположением является объяснение причины развития ИИ этим эпизодами ФП. Действительно, относительно короткие эпизоды фибрилляции предсердий, в течение нескольких минут, связаны с повышенным риском развития тромбоэмболии [10, 11].

На сегодняшний день неизвестно, какие основные характеристики ЭКГ при фибрилляции предсердий ассоциированы с тромбообразованием и развитием инсульта, и, следовательно, могут быть показанием для назначения антитромботической терапии. Одним из таких ключевых факторов является продолжительность эпизодов фибрилляции предсердий. В этом номере Stroke E. M. Arsava и соавт. [12] описали ретроспективное исследование, проведенное среди пациентов с краткими эпизодами фибрилляции предсердий, продолжительностью от нескольких секунд, целью выяснения влияния этих эпизодов на повышение риска развития ИИ.

Первая трудность заключается в определении и выявлении т.н. коротких или кратких эпизодов ФП. В стандартах определение ФП звучит как «любое нарушение ритма с ЭКГ-характеристиками ФП и продолжительностью, достаточной для регистрации
с использованием 12-канальной ЭКГ, или, по-крайней мере, в течение 30 секунд на непрерывном фрагменте ЭКГ [5, 13]. Предполагая, что краткие эпизоды ФП продолжительностью <30 секунд являются клинически значимыми биомаркерами, чувствительность и специфичность 2 отведений ЭКГ в амбулаторных условиях в отношении обнаружения коротких эпизодов ФП являются неопределенными. К обязательным диагностическим признакам ФП на ЭКГ относятся нерегулярная электрическая активность предсердий и отсутствие P-волны. По 2 поверхностным отведениям ЭКГ дифференциальный диагноз между истинной ФП, пробежками предсердной экстрасистолии и атриовентрикулярной аритмиеи может вызывать затруднение, в частности во время повседневной деятельности со средним и низким качеством сигнала. Кроме того, поскольку устройства для мониторинга по Холтеру автоматически регистрируют эпизоды ФП только по выявлению QRS и нерегулярных интервалов RR, подтверждение наличия эпизодов неустойчивой ФП требует изучения результатов ЭКГ опытным кардиологом после стандартизированной обработки данных. В противном случае, концепция выявления кратких эпизодов ФП по результатам мониторирования по Холтеру будет слабой или ошибочной.

Помимо описанных технических проблем, интерпретация результатов не является очевидной. Среди пациентов исследования, проведенного Е.М. Arsa и соавт., лица с неустойчивой ФП были значительно старше, страдали артериальной гипертензией и ишемической болезнью сердца, у них чаще диagnostировали более низкую фракцию выброса левого желудочка и большой размер левого предсердия по сравнению с пациентами без предсердных аритмий. Эти медицинские факторы являются известными предикторами ФП [14], и их наличие приводит к увеличению оценки по шкале CHA2DS2-VASc (застойная сердечная недостаточность, артериальная гипертензия, возраст ≥75: 2 балла, сахарный диабет, инсульт: 2 балла, патология сосудов, женский пол: 1 балл). Было вполне ожидаемо, что у таких пациентов с высоким риском развития ФП и высоким риском тромбоэмболии высока вероятность развития эмболического инсульта. Поэтому отсутствие различий в доле вариантов инсульта между пациентами с неустойчивой ФП или без ФП было неожиданным открытием. Это позволило предположить отсутствие влияния или даже протекторное влияние эпизодов неустойчивой ФП на риск развития крипторгогенного инсульта. Вполне вероятно, что самым разумным решением будет не делать выводов по этим результатам. Так что же нам теперь известно? Мы знаем, что ФП является плохо диагностируемой причиной развития ИИ и бессимптомных ишемических инфарктов [11, 15]. Но, нам, безусловно, нужно лучше понять патофизиологическую связь между ФП и ИИ.

Сначала нам нужно выяснить клиническую значимость продолжительности эпизодов ФП или тяжести ФП [10, 16], а затем определить связь между этими факторами и повышением риска эмболии сердечного происхождения. Поскольку частота выявления ФП повышается при увеличении продолжительности регистрации ЭКГ [8, 9], потребуется проведение проспективного наблюдения за пациентами в течение длительного времени (месяцы) после ишемического эпизода и с точки зрения первичной профилактики. Упрощение подкожно имплантируемых устройств для мониторинга наряду с усовершенствованием методов наблюдения, безусловно, будет способствовать улучшению долгосрочного мониторинга. Следует надеяться также на улучшение специфичности регистрации ЭКГ, но на сегодняшний день эти подкожно имплантируемые устройства выявляют эпизоды ФП так же, как и системы для холтеровского мониторирования (по нерегулярности интервалов RR), с низкой специфичностью по сравнению с имплантированными устройствами, которые непосредственно регистрируют электрическую активность предсердий.

Следование, при использовании таких устройств появится огромное количество данных для анализа. Очень важно, чтобы в различных исследованиях использовали аналогичные (или, по крайней мере, сопоставимые) определения аритмий, а также методы выявления аритмий и обработки данных.

Другой стороной является трансляция лучшего понимания патофизиологической основы антикоагуляции в доказательную медицину.

С одной стороны, высокая чувствительность—длительность регистрации ЭКГ при использовании имплантируемых кардиомониторов с относительно низкой специфичностью встроенных алгоритмов может привести к обнаружению большого числа клинически значимых эпизодов. В большинстве исследований на сегодняшний день учитывают эпизод ФП продолжительностью >5 минут. Вероятное, что разумно не уменьшать специфичность путем выявления эпизодов с короткой продолжительностью и неизвестной клинической значимостью. С другой стороны, дополнительное повышение риска развития инсульта, связанное с различной продолжительностью эпизодов ФП или тяжестью ФП, не столь необходимо у пациентов с различным риском развития тромбоэмболических осложнений.

Кроме того, интригует отсутствие временной связи между субклинической ФП и эмболическими событиями в исследовании ASSERT [17]. Это поднимает вопрос о том, являются ли краткосрочные эпизоды ФП (но с продолжительностью 6 минут) независимыми факторами риска развития ФП или тяжести ФП связанное с различной продолжительностью эпизодов ФП (т.е. старение, артериальная гипертензия). Другими словами, мы должны провести долгосрочное и дорогостоящее проспективное рандомизированное исследование с целью оценки влияния длительного лечения антикоагулянтами у пациентов с эпизодами ФП различной продолжительности и тяжести, а также с различным профилем риска развития тромбоэмболии. Очевидно, что в таких исследованиях придется оценить снижение риска развития эмболического инсульта наряду с риском развития геморрагических
осложнений, связанных с проведением антикоагулянтной терапии.

В то же время, чтобы избежать имплантации устройств большому количеству пациентов, было бы вероятно, целесообразно выявить и оценить важность суррогатных маркеров риска развития ФП и инсульта на основании клинических данных [14] и результатов регистрации ЭКГ в течение более короткого периода (т.е. 24 часа или 2 недели). Можно предположить, что неустойчивые эпизоды быстрой эктопической активности предсердий могут служить суррогатными маркерами менее частых эпизодов ФП или предикторами появления эпизодов ФП в будущем. Но это еще нужно продемонстрировать.

Предстоит еще долгий путь, прежде чем мы достигнем определенного уровня знаний о связи между ФП и инсультом, необходимого для убедительного научно-обоснованного лечения пациентов. Наша общая цель, заключающаяся в дальнейшем снижении заболеваемости ИИ, связанным с ФП, безусловно, заслуживает лучших теоретических знаний, основанных на использовании доступных усовершенствованных методов диагностики, лечения и оптимизированного сотрудничества между неврологами и кардиологами.

ЛИТЕРАТУРА


