Art of Expertise in Stroke Telemedicine
Imaging and the Collaterome

David S. Liebeskind, MD

Expertise in stroke telemedicine leverages advanced technology with the art of medical decision-making garnered from clinical experience in acute stroke. The Pre-Hospital Acute Neurological Therapy and Optimization of Medical Care in Stroke (PHANTOM-S) investigators demonstrate the profound effect that specialized stroke prehospital triage may have on stroke care, much as stroke unit care changed the nature of stroke management many years ago.1 The group elegantly studied the role of a stroke ambulance, the Stroke Emergency Mobile (STEMO), equipped with a computed tomographic (CT) scanner, point-of-care laboratory testing, and specialized personnel, in the delivery of appropriate patients to stroke units based on this novel framework for prehospital care. They previously reported an increased rate of intravenous thrombolysis in patients with ischemic stroke and a reduced time to treatment using the STEMO.2,3 This previous groundbreaking work on prehospital thrombolysis awaits broader validation in analyses of long-term clinical outcomes and overall costs, yet such analyses focus on a relatively small fraction of potential patients triaged with telemedicine in the field. Perhaps more importantly than measuring time to thrombolysis of patients with ischemic stroke, in this recent article, they demonstrated the effect of such telemedicine expertise on patients with both ischemic and hemorrhagic stroke. STEMO lead to improved delivery of patients with ischemic stroke to hospitals with stroke units and patients with hemorrhagic stroke to hospitals with neurosurgery capabilities. Interestingly, they also demonstrated a trend to improved outcomes with higher rates of discharge to home after hospitalization. Their work underscores 3 key points or vital concepts in the future evolution of stroke care: the value of neurological expertise in managing various types of stroke that likely outweighs technological advancements; the integration of imaging as an extension of the clinical examination in real time; and understanding the collaterome or the endogenous neurovascular compensation that dramatically influences the course of patients from the earliest moments after stroke onset.4

The opinions expressed in this article are not necessarily those of the editors or of the American Heart Association.

From the Neurovascular Imaging Research Core, Department of Neurology, University of California at Los Angeles.

Correspondence to David S. Liebeskind, MD, Neurovascular Imaging Research Core, Department of Neurology, UCLA, Neuroscience Research Bldg, 635 Charles E Young Dr S, Suite 225, Los Angeles, CA 90095. E-mail davidliebeskind@yahoo.com

See related article, p 740.

DOI: 10.1161/STROKEAHA.114.008444.

Stroke, 2015;46:610-611.
DOI: 10.1161/STROKEAHA.114.008444.

Telestroke, or the use of telemedicine in stroke care, has been implemented with a diverse array of technology that has evolved in recent years. The specific technology, such as the STEMO ambulance, has been the main focus of clinical research, whereas the value of neurological expertise in acute stroke has been relatively neglected. The art of vascular neurology cannot be reduced to a simple protocol or checklist, especially given the recognized complexity and heterogeneity of acute stroke. Telestroke thrombolysis, in most cases, is powered solely by the assurance of such expertise for a potentially devastating disorder from a remote location at a moment’s notice. Despite the retrospective focus on stroke diagnoses, telestroke experts must be adept in managing other neurological emergencies or disorders and discerning stroke mimics. The changing nature of healthcare delivery and focus on long-term clinical outcomes reinforces the need to provide such expertise at the earliest stages after onset of the incredibly dynamic effects of acute stroke. Current technology now enables vascular neurologists to extend their expertise and help improve stroke patient outcomes around the world at any time. Is a mobile CT ambulance such as STEMO necessary to provide such expertise? The PHANTOM-S investigators astutely note that numerous factors beyond the technology contribute to such expertise.1 The art of stroke telemedicine expertise is rooted in experience and neurological training, not just about an added year in cerebrovascular medicine.5 Similarly, the tertiary/quaternary care value of a comprehensive stroke center or stroke unit emanates from such neurological expertise.

The innovation of mobile CT in the PHANTOM-S study insinuates that imaging is the dominant component, rather than a confirmatory diagnostic tool predicated on the clinical aspects of a case. Noncontrast CT findings in a prehospital stroke study, however, largely serve to corroborate intracranial hemorrhage or depict subtle early ischemic changes.6 Symptom constellation and neurological examination features drive the interpretation of these findings in real-time clinical context, where the majority of noncontrast CT studies are likely unremarkable. Stroke experts have become most proficient and nimble in translating imaging into logical decisions on stroke management. Future telestroke paradigms will likely build on even more sophisticated imaging interpretation for rapid therapeutic decisions. Although the imaging criteria for intravenous thrombolysis are extremely rudimentary, the selection criteria are far more complex for endovascular therapy. After proclamation of positive trial results for thrombectomy, imaging may be necessary to reveal persistent arterial occlusion or substantial tissue at risk on multimodal CT or MRI.7 Telestroke models may, therefore, require synchronous clinical and imaging expertise to direct transfers from a local hospital to interventional center. Delivering such expertise will be important not
only for those patients selected for transfer but also for all other patients with stroke who may require other neurological care.

Deciphering the complexity of critical pathophysiology such as the collaterome during acute stroke remains an art, literally defined as a skill acquired by experience, study, or observation. Mounting data confirm that the status of collateral circulation decisively shapes the time course and outcomes in ischemic stroke.\(^8\)\(^\text{-}^{11}\) Neurovascular compensation is also central to hemorrhage evolution in the brain. Infarct growth rate and the pace of hematoma expansion are key measures that differ across subjects because of variable compensation. The collaterome may determine those patients with stroke with either fast or slow lesion evolution in the brain. Currently, we flatten such complexity across all cases and assume that time to treatment is paramount. Time may be a critical measure, but how do we consider the time required to make a difficult decision? The prevailing focus on avoiding time delays in acute stroke has created a disincentive to intervene whether complex decisions have taken longer, even under expert eyes. We need to develop quality methods that avoid retrospective assumption of final diagnoses and that the only variable that matters is time to treatment. In sum, the science of decision making in stroke ignores case complexity and the value of expertise. This precedent is particularly important for stroke telemedicine as we are far from establishing proven selection algorithms for endovascular therapy, despite the enthusiasm engendered by recent news of positive interventional trials.

The PHANTOM-S study raises several important considerations for the art of expertise in stroke telemedicine. Stroke experts must use successive advances in technology, embrace imaging to refine clinical diagnoses, and understand the extensive influence of the collaterome. Other misconceptions should be unraveled because stroke is not so simple to obviate expertise and technology is useless without proper implementation.

Disclosures

None.

References

Key Words: Editorials ■ collaterome ■ expertise ■ stroke ■ telestroke
Art of Expertise in Stroke Telemedicine: Imaging and the Collaterome
David S. Liebeskind

Stroke. 2015;46:610-611; originally published online January 29, 2015;
doi: 10.1161/STROKEAHA.114.008444
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2015 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://stroke.ahajournals.org/content/46/3/610