Cerebrovascular and cardiovascular diseases are major causes of death and disability worldwide. Ischemic stroke is a frequent complication in cardiac disease and, vice versa, cardiac complications commonly cause early clinical worsening and death after stroke. Adverse cardiac events account for the second largest group of deaths during the acute phase after stroke and are important determinants of long-term survival.

Because of the close association between stroke and cardiac disease, current AHA/ASA guidelines for the early management of patients with acute ischemic stroke recommend assessment of cardiac biomarkers (preferably cardiac troponin [cTn]) in all patients presenting with acute ischemic stroke. Although the guidelines point out the potential prognostic significance of cTn, there are currently no recommendations on how to interpret cTn levels in the setting of ischemic stroke. Practice guidelines for interpretation of cTn generally include patients with stroke; specific recommendations, however, are scarce. Interpretation of cTn elevation in patients primarily presenting with ischemic stroke is complex because other conditions apart from acute thrombotic coronary artery disease (CAD) may also lead to the finding of an elevated cTn. What is more, clinical complaints associated with acute coronary syndromes may be atypical or masked by neurological deficits. Although early invasive coronary revascularization and potent antithrombotic therapy are lifesaving in patients with myocardial infarction (MI), caution is warranted in the context of an acute ischemic cerebral lesion.

Recently, high-sensitivity cTn assays were developed, which enable detection of small amounts of circulating cTn. However, the marked increase in sensitivity for myocardial injury is accompanied by a reduced specificity for diagnosis of acute CAD. Consequently, the above-mentioned practice guidelines for applying highly sensitive cTn assays refer to stroke as one of the multiple clinical conditions, in which cTn testing has created clinical uncertainty.

In this review, we summarize possible mechanisms of cTn elevation in ischemic stroke and provide stroke clinicians with tools for interpreting and applying the controversial high-sensitivity cTn assays.

Evolution of cTn Assays and Their Application in Patients With Stroke
It has long been recognized that acute cerebrovascular events may coincide with or trigger cardiac dysfunction and elevation of cardiac biomarkers. Already in the 1960s, creatine kinase was found to be transiently elevated in 56% of patients with cerebrovascular accidents, especially in patients with poor outcome. A large step forward was made in 1989 with the introduction of cTn in clinical practice. cTn soon became the preferred biomarker for diagnosing MI, and elevation above the 99th percentile of a normal reference population (with a coefficient of variation, <10%) became a mandatory feature of the universal definition of MI. Because conventional cTn assays lacked the desired precision, common decision limits for diagnosis of MI were assigned to the lowest level that achieved a 10% coefficient of variation. This resulted in relatively high cut-offs with high specificity for acute CAD. With the widespread use of conventional cTn assays in the emergency setting it became apparent that cTn may also be elevated above the respective decision limits in other clinical conditions, and not only in acute coronary syndromes. Consequently, several studies reported on elevation of cTn in patients with acute ischemic stroke. Frequencies of cTn elevation measured with the conventional assays ranged from 0% to 34%. The differences were because of the variety of available assays and cut-offs, differences in cohort characteristics and exclusion criteria.

High-Sensitivity cTn Assays
The main drawback of conventional cTn assays was their imprecision at the recommended 99th percentile. To improve analytic accuracy and to comply with diagnostic requirements of the universal definition of MI, highly sensitive cTn assays were recently introduced into clinical practice in Europe and...
Cardiac troponins (cTn) are myocardial proteins that are released into the circulation in response to myocardial damage. They are composed of troponin I, troponin T, and troponin C and are highly specific for myocardial injury.

Use of Cardiac Troponins in Ischemic Stroke

Scheitz et al

Asia. High-sensitivity assays allow for precise detection of cTn even at concentrations 10-fold lower than conventional assays. High-sensitivity assays further revolutionized triage of patients with chest pain at the emergency department because they allow for earlier risk stratification compared with conventional assays. Notwithstanding the advantage of improved sensitivity, the specificity for CAD (ie, myocardial necrosis because of coronary ischemia) is further reduced. Although first generation assays were not able to detect cTn in healthy subjects, population-based studies showed that when highly sensitive assays are applied, cTn is detectable (ie, measurable) in 25% to 66% and elevated (ie, above the 99th percentile upper reference limit [URL]) in 3% to 15% of apparently healthy individuals with no acute cardiac complaints.

Presence of measurable circulating cTn is strongly associated with advanced age and with extent of structural heart disease (ie, left ventricular function, left ventricular hypertrophy or mass), as well as with the burden of atherosclerosis. Hence, virtually all elderly patients and virtually all patients with stable coronary or stable congestive heart disease have measurable cTn. In cohorts of patients with ischemic stroke, 86% have measurable cTn and ≤6% have elevated cTn levels when cTn is measured with highly sensitive assays. As in the general population, higher cTn levels in patients with stroke are associated with older age, prevalence of chronic concomitant diseases, such as CAD, congestive heart failure (HF), atrial fibrillation, and chronic kidney disease, but they also constitute a marker for stroke severity.

Causes of cTn Elevation in Patients With Ischemic Stroke

Although cTn is highly specific for myocardial injury, it does not reveal the underlying mechanism of injury. This key consideration is essential for understanding and interpreting cTn in patients with acute ischemic stroke. It is important to realize that elevations in cTn do not necessarily signify coronary myocardial ischemia, and that there are potential causes of cTn elevations without underlying acute or chronic CAD. The vast majority of cTn is structurally bound within cardiac myofibrils, whereas 8% are located in a cytosolic pool. The latter may be released by altered cellular wall permeability secondary to myocardial stretch or mild ischemia. Hence, elevation of cTn serum concentrations can probably occur without necrosis and without ischemia, but it virtually always indicates acute or chronic myocardial damage. The rare exceptions are analytic false-positive results caused by hemoysis, heterophilic antibodies or autoantibodies, rheumatoid factor or occasional re-expression of isoforms in diseased skeletal muscle cells.

Acute or Chronic Myocardial Injury?

It is important to realize that in several nonacute and clinically stable conditions (eg, stable CAD, congestive HF, and renal insufficiency) cTn elevation above the URL is a common finding. One key criterion for distinguishing acute from chronic myocardial injury is to measure cTn serially. Patients with a dynamic pattern are more likely to have acute cardiomyocyte damage. In nonacute conditions, cTn usually remains relatively stable when measured serially over time (so-called smoldering pattern).

In patients with lower baseline levels (close to the 99th percentile), a rise or fall >50% is recommended for identifying acute elevation, whereas in patients with higher baseline cTn levels a rise or fall pattern of cTn >20% is suggested. In a study by Anders et al, 172 consecutive ischemic stroke patients with elevated cTn were serially measured with a high-sensitivity assay within a period of 3 hours. Sixty percent of patients with elevated cTn levels on admission showed a stable pattern of cTn levels (rise or fall <20%), indicating nonacute myocardial injury. Given the strong association between amount of measurable cTn with age and chronic comorbidities, this implies that the cause of elevated cTn in the majority of patients with ischemic stroke, especially in the elderly, is not acute ongoing myocardial injury. Rather, cTn levels express the overall sum or burden of clinically stable chronic disease (stable CAD, chronic kidney disease, stable congestive HF, and atrial fibrillation).

Causes of Acute Elevation of cTn in Acute Ischemic Stroke

As shown in Figure 1, the potential origin of acutely elevated cTn in patients with ischemic stroke may be separated into 2 major groups, such as (1) ischemic myocardial injury (ie, because of coronary ischemia) and (2) nonischemic (noncoronary) myocardial injury. These mechanisms are, of course, not mutually exclusive because both ischemic and nonischemic mechanisms may unmask CAD.

Myocardial Ischemia

The current universal definition of MI classifies 5 subtypes of MI. Type 1 MI represents spontaneous (classic) MI based on acute coronary plaque rupture with subsequent myocardial ischemia. Patients with stroke may be prone to type 1 MI because of shared risk factors. Wall motion abnormalities associated with type 1 MI are considered to be a high-risk source of cardiac embolism. Moreover, >25% of patients with ischemic stroke and with no known history of CAD show coronary stenosis in coronary angiography. Importantly, patients with stroke represent an elderly population with atypical clinical presentation or impaired ability to report symptoms of acute coronary syndromes. Consequently, the frequency of coincident type 1 MI in patients with ischemic stroke remains unclear. The TROponin ELEvation in Acute ischemic Stroke (TRELAS) study, which aims to assess the frequency of culprit coronary lesions in stroke patients with cTn elevation, will afford more insight into the frequency of concomitant type 1 MI and concomitant stable CAD.

Type 2 MI represents cardiac ischemia based on a mismatch between oxygen demand and supply. Common medical complications after stroke, such as tachyarrhythmia, hypertensive crisis, or respiratory failure with oxygen desaturation have been related to type 2 MI. A recent observational study showed that 26% of patients diagnosed with MI according to the universal definition of MI had type 2 MI. A cTn elevation in patients with stroke might, therefore, mirror ischemic myocardial injury ascribable to these medical complications.
Type 2 MI might be promoted by the presence of a fixed coronary stenosis because of concomitant CAD. It is probable that a high proportion of acutely elevated cTn in patients with ischemic stroke is caused by type 2 MI, although more research is needed to accurately define frequency and treatment of this subgroup. Sudden cardiac death because of MI is termed type 3 MI. Type 4 MI (procedure-related) and type 5 MI (related to coronary artery bypass grafting) will usually have been documented in medical charts and thus not likely to cause clinical uncertainty.

Neurogenic Heart Syndrome: When a Stroke Hits the Heart

One possible mechanism of acute cardiac injury in ischemic stroke, which pertains exclusively to patients with acute disease of the central nervous system is neurogenic myocardial damage. The magnitude of the effects of the central nervous system on cardiac function can be conceived in the context of cardiovascular events after severe emotional or physical stress. Already in 1942, Walter B. Cannon suggested that death because of a voodoo curse in ancient cultures with strong belief in external forces may be real and caused by a "persistent excessive activity of the sympathico-adrenal system." In cultures of the modern era, examples for this phenomenon include the 2-fold increase of ventricular arrhythmias in patients with implantable cardioverter–defibrillators after the terrorist attack on the World Trade Center or the increased incidence of sudden cardiac death after the tsunami catastrophe in Japan 2011. Acute alterations in the autonomic control of the heart with exaggerated catecholamine release are thought to be the pathophysiologic explanation. Figure 2 displays the cascade of events linking autonomic imbalance after stroke with cTn elevation. Acute lesions within the central autonomic network may result in acute disturbance of normal sympathetic and parasympathetic neural outflow to the heart. A consequence of increased sympathetic activity is excessive catecholamine release in cardiac sympathetic nerves, with subsequent (over)activation of calcium channels. This results in hypercontraction of sarcomeres, reduced muscle relaxation, and metabolic disturbance. The histopathologic finding in this context is called coagulative myocytolysis (also known as contraction band necrosis or myofibrillar degeneration). These lesions occur close to intracardiac nerves and are producible in animal models with application of stress hormones or catecholamine infusion.

The same histopathologic findings can be seen in patients with takotsubo cardiomyopathy (TTC, also known as stress cardiomyopathy). TTC is a common mimic of MI with acute left ventricular dysfunction. Typically, cTn is mildly elevated in patients with TTC, whereas catecholamine levels markedly exceed those found in patients with MI. TTC was also observed in patients with ischemic stroke, in particular in those with insular cortex lesions. The insula is a crucial player within the central autonomic network. Because of the blood supply via the middle cerebral artery, the insula is frequently affected in anterior circulation stroke. Experimental stimulation of the insula produced sympathetic (right-sided stimulation) or parasympathetic (left-sided stimulation) alterations of heart rate and blood pressure. Not of note, a voxel-based imaging study revealed an association between right insula cortex stroke and cTn elevation. Interestingly, patients with stroke affecting the insular cortex have higher catecholamine levels than those without. In addition, it has been demonstrated that stroke patients with cTn elevation have higher circulating catecholamine levels than those without.

In summary, autonomic imbalance with exaggerated sympathetic activity after stroke may lead to cardiac contraction band necrosis, and cardiac dysfunction with subsequent cTn release. Direct stroke-induced myocardial injury is thus likely to contribute to a relevant proportion of cTn elevation in patients with ischemic stroke. In addition to neurogenic mechanisms of cTn release, exaggerated catecholamine exposure may also lead to type 2 MI via coronary vasconstriction and tachyarrhythmia. Preexisting cardiac morbidities may exacerbate the deleterious effects of autonomic imbalance. From this...
perspective, acute brain injury could be viewed as a stress test for the heart.

Additional Causes of Acute Nonischemic Myocardial Injury
Further causes of nonischemic myocardial injury in patients with stroke are acutely impaired renal function, acute HF, severe infection, and pulmonary embolism. These conditions are common complications in patients with acute stroke, and it is important that they be excluded. The mechanisms and therapeutic implications of cTn elevation in these conditions have been described elsewhere.

Troponin Elevation in Stroke: “Troponinosis” or Prognostically Relevant?
cTn elevation in patients without apparent acute coronary syndromes has been regarded as “troponinosis” or “troponinemia.” In patients with stroke, however, there is evidence that irrespective of the underlying mechanism cTn contains prognostic information about short- and long-term functional outcome and survival. A recent retrospective study showed that patients within the highest quartile of cTn measured with a high-sensitivity assay on hospital admission had a 1.6-fold increased risk of all-cause mortality during a follow-up period of 1.5 years when adjusted for age, baseline stroke severity, and comorbidities. In a prospective study of 1016 consecutive patients with ischemic stroke measured serially with a high-sensitivity cTn assay, the rate of unfavorable functional outcome at discharge (modified Rankin Scale >1) increased significantly with higher peak cTn levels. The adjusted odds ratio for unfavorable outcome was 1.8 (95% confidence interval [CI], 1.3–2.8) in patients with moderate cTn elevation (1–2 times the URL) and 3.4 (95% CI, 2.2–5.4) in patients with highly elevated cTn (>2 times the URL). C-statistics for prediction of functional short-term outcome were improved with addition of cTn to age, stroke severity, and comorbidities, although the overall improvement was low (area under the curve, 0.85 versus 0.84; P=0.05). Of note, stroke patients with dynamic changes in cTn levels (>50%) within 24 hours showed a higher risk for in-hospital mortality (hazard ratio [HR], 2.3; 95% CI, 1.1–4.7) than patients with increased cTn levels who were stable over time. Further data are urgently needed to establish a clinically reliable prognostic threshold of cTn in the context of stroke for the prediction of unfavorable functional outcome or mortality.

Clinical Work-Up of Stroke Patients With Elevated cTn
A possible algorithm for classification of elevated cTn in patients with ischemic stroke is shown in Figure 3. Figures 4 through 6 illustrate 3 typical clinical scenarios, in which application of cTn in stroke patients without apparent chest pain may cause uncertainty.

General recommendations suggest that outpatient screening for structural or coronary heart disease (ie, echocardiography, exercise ECG, or coronary angiography) should be considered if cTn is elevated but stable over time (ie, nonacute). If there is evidence of heart disease, cardiovascular prevention measures should be intensified or reevaluated. This recommendation is based on the strong association between cTn levels and (subclinical) heart disease, future cardiovascular events and mortality. If there is evidence of acute ischemic myocardial injury (dynamic pattern), clinicians should promptly attempt to identify the most probable cause of cTn elevation. The pretest probability for MI increases with the presence of cardiovascular risk factors, ECG alterations suggestive of myocardial ischemia, typical chest discomfort, or dyspnea. Absolute cTn levels may help in identifying the most probable cause of myocardial damage. Patients with type 1 MI usually show higher cTn values than those with type 2 MI or TTC, and display more pronounced ECG alterations. Additional noninvasive cardiac diagnostics should be performed at a low threshold.
in patients with high absolute cTn levels or with dynamic change in cTn because echocardiography or cardiac magnetic resonance imaging or computed tomography may help to identify patients with unstable CAD or other acute cardiac dysfunctions caused by HF or stress cardiomyopathy. If there is evidence for type 1 MI, potent platelet inhibition and revascularization are indicated in principle. However, depending on the size of acute ischemic brain lesion, these aggressive treatments might be contraindicated in patients with acute ischemic stroke. This remains a clinical dilemma and demands careful clinical judgment. More data are required to provide clinicians with a diagnostic cut-off for diagnosis of MI in patients with stroke. A recent analysis of large population-based studies suggested that the 99th percentile of cTn is highly age-dependent and that application of a uniform cut-off across all age groups is likely to lead to overdiagnosis of MI in the elderly. If type 2 MI or acute nonischemic myocardial injury has been caused by disorders, such as tachyarrhythmia, hypertensive emergencies, oxygen desaturation in acute HF or decompensated obstructive pulmonary disease, or severe infections, the respective disorders should be treated accordingly.

The possibility of neurogenic heart syndrome (with and without TTC) should be kept in mind, especially in insular cortex stroke. Absolute levels of cTn are usually lower than would be the case in MI. Although the best treatment of neurogenic heart syndrome has not yet been determined, β-blockers, α-blockers, or angiotensin-converting enzyme inhibitors might be considered.

Future Perspectives: Possible Applications

High-sensitivity cTn assays allow for detection of small degrees of myocardial injury that may precede the clinical manifestation of heart disease. It is tempting to speculate about its potential use as a biomarker for predicting and monitoring cardiovascular and cerebrovascular diseases. It has been shown that risk of incident HF and mortality was associated with the pattern of cTn levels during a period of 2 to 3 years. Patients with decreasing levels (>50%) during 2 to 3 years showed reduced risks of incident HF (HR, 0.73; 95% CI, 0.54–0.97) and cardiovascular death (HR, 0.71; 95% CI, 0.52–0.97), whereas patients with increasing cTn levels over time were at increased risk of incident HF.
(HR, 1.61; 95% CI, 1.32–1.97) or death (HR, 1.65; 95% CI, 1.35–2.03). Interestingly, a longitudinal population-based study showed that elevated cTn at baseline not only predicted cardiovascular death within the 10-year follow-up period (HR, 7.4; 95% CI, 4.6–11.6) but to a lower degree also death from stroke (HR, 3.3; 95% CI, 1.3–8.7), and cancer (HR, 1.6; 95% CI, 1.1–2.4). Furthermore, cTn was independently associated with increased risk of incident stroke in the general population (HR, 1.13; 95% CI, 1.1–1.2; follow-up 20 years). In patients with atrial fibrillation included in the Apixaban for Reduction in Stroke and Other Thromboembolic Events in Atrial Fibrillation (ARISTOTLE) trial, annual rates of stroke or systemic embolism during follow-up of 2 years ranged from 0.9% in the lowest cTn quartile to 2.1% in the highest quartile (HR, 1.9; 95% CI, 1.4–2.8). Of note, patients with atrial fibrillation and persistent levels of detectable cTn at 3 months after randomization within the Randomized Evaluation of Long-Term Anticoagulation Therapy (RE-LY) trial had significantly higher risk of incident stroke compared with patients with transient elevations (2.0% versus 0.8%).

Elevation of cTn has also been linked to cognitive function in a recent community-based study. Subclinical myocardial injury as measured with highly sensitive cTn was associated with lower cognitive function at baseline. During follow-up for a median of 13 years, higher baseline cTn levels were also associated with incident hospitalization for dementia (HR, 2.7 for elevated versus undetectable cTn; 95% CI, 1.9–3.8), in particular vascular dementia. An explanation may be shared risk factors for small and large vessel disease that constitute a common pathway for simultaneous heart and brain damage. Moreover, heart disease may harm the brain via cardiac emboli or reduced cerebral perfusion in congestive HF. As described above, brain disease may, vice versa, cause neurogenic heart syndrome with myocardial injury.

Overall, the concept of cTn as a staging biomarker or biomarker for monitoring of treatment success is appealing but needs further validation.

Figure 4. Findings of neuroimaging and coronary angiography: stable cardiac troponin (cTn) levels over time because of chronic congestive heart failure. Imagine an 82-year-old woman with a history of hypertension presenting with acute middle cerebral artery stroke. Admission cTn is 46 ng/L (upper reference limit, 14 ng/L) and 48 ng/L 3 hours later (B). ECG shows negative T waves in V1–V3. Echocardiography displays reduced ejection fraction of 40%. Outpatient elective coronary angiography 3 weeks after stroke reveals stable coronary 1-vessel disease (C). Coronary angiography, arrow indicates stable 1-vessel coronary artery disease. This results in intensified secondary prevention measures (ie, lower cholesterol and blood pressure targets).

Figure 5. Findings of neuroimaging and coronary angiography: rising cardiac troponin (cTn) levels over time because of acute type 1 myocardial infarction (MI). Imagine a 71-year-old smoker with history of diabetes mellitus who presents with aphasia and right-sided hemiparesis after acute left middle cerebral artery stroke (A). Magnetic resonance imaging showing acute left middle cerebral artery infarction. Admission cTn is 183 ng/L (upper reference limit, 14 ng/L) and increases to 320 ng/L within 3 hours (B). ECG shows negative T waves in I, II, and aVF. Because echocardiography shows regional wall motion abnormalities, coronary angiography is performed and reveals acutely unstable coronary artery disease (type 1 MI) (C). Coronary angiography, arrow indicates unstable coronary lesion. The patient underwent percutaneous coronary intervention and is being treated with dual antiplatelet therapy. aVF indicates lead augmented vector foot.
Conclusions

With the use of highly sensitive cTn assays, the vast majority of patients with acute ischemic stroke show detectable (ie, measurable) circulating cTn, and approximately half of patients show cTn levels elevated above the URL. cTn serum concentrations in patients with stroke provide strong prognostic information about short- and long-term functional outcome and mortality. The extent of cTn release is highly dependent on patient age and burden of chronic concurrent comorbidities. Serial measurements should be performed to establish whether cTn is acutely or chronically elevated. The majority of patients with ischemic stroke have stable cTn levels over time because of clinically (silent) stable comorbidities. Given the prognostic relevance of cTn in various stable disease states, screening for structural or coronary heart disease is advisable in these patients. If present, cardiovascular prevention measures should be intensified or reevaluated. Underlying mechanisms of acute cTn elevation after stroke include type 1 or (probably more often) type 2 MI, but the contribution of nonischemic myocardial injury via neurogenic-mediated mechanisms should also be considered. Acute cTn elevations with a dynamic pattern of cTn levels over time warrant careful clinical observation (chest pain, ECG alterations, thorough screening for complications leading to demand ischemia, or nonischemic myocardial injury). Whether cTn can be used for prediction of stroke recurrence or cognitive decline needs further investigation.

Acknowledgments

We thank Catherine Aubel for editing the article for language and grammar.

Funding Sources

Dr Scheitz is a participant in the Charité Clinical Scientist Program funded by the Deutsches Zentrum für Herz kreislauforschung (DZHK), European Union (European Stroke Network, WakeUp, Counterstroke), Corona Foundation (Vascular Senescence). The other authors report no conflicts.

Disclosures

None.

References

10. Katus HA, Renuppi A, Looser S, Hallermeier K, Scheffold T, Kübler W. Enzyme linked immunosassay of cardiac troponin T for the...
Use of Cardiac Troponins in Ischemic Stroke

Key Words: cerebral infarction ▪ myocardial ischemia ▪ stroke ▪ takotsubo cardiomyopathy ▪ troponin ▪ troponin T
Application and Interpretation of High-Sensitivity Cardiac Troponin Assays in Patients With Acute Ischemic Stroke
Jan F. Scheitz, Christian H. Nolte, Ulrich Laufs and Matthias Endres

Stroke. 2015;46:1132-1140; originally published online March 3, 2015;
doi: 10.1161/STROKEAHA.114.007858

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://stroke.ahajournals.org/content/46/4/1132

Data Supplement (unedited) at:
http://stroke.ahajournals.org/content/suppl/2016/04/10/STROKEAHA.114.007858.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/
Применение и интерпретация результатов высокочувствительного анализа содержания сердечного тропонина у пациентов с острым ишемическим инсультом

Цереброваскулярные и сердечно-сосудистые заболевания являются основной причиной смерти и инвалидизации во всем мире. Ишемический инсульт (ИИ) является частым осложнением при заболеваниях сердца, и, наоборот, осложнения на сердце часто являются причиной раннего клинического ухудшения и развития летального исхода после инсульта [1]. Неблагоприятные кардиальные события составляют вторую по величине группу смертей в острый период инсульта и являются важными факторами, определяющими долгосрочную выживаемость [2].

Из-за тесной связи между инсультом и заболеваниями сердца современные стандарты АНА/ASA по лечению пациентов с острым ИИ в раннем периоде рекомендуют определять содержание сердечных биомаркеров (предпочтительно сердечного тропонина [cTn]) у всех пациентов с острым ИИ [3]. Стандарты указывают на потенциальную прогностическую значимость cTn, однако в настоящее время нет рекомендаций по интерпретации результатов анализа cTn при ИИ. Практические рекомендации по интерпретации результатов теста на содержание cTn, как правило, относятся к пациентам с инсультом в целом; тем не менее конкретных рекомендаций мало [4]. Интерпретация повышенного содержания cTn в первую очередь у пациентов с ИИ является сложной задачей, поскольку повышение уровня cTn может вызывать и другие состояния, кроме острого тромбоза коронарной артерии (ИБС) [4-6]. Более того, клинические жалобы, связанные с острым коронарным синдромом, могут быть непосредственными и имитировать неврологические симптомы. Несмотря на то что ранее индуцирующие коронарную реваскуляризацию и мощная антигипертензивная терапия являются жизненно важными методами лечения пациентов с инфарктом миокарда (ИМ), в контексте острого ишемического церебрального поражения оправдана некоторая осторожность.

Недавно были разработаны высокочувствительные методики определения cTn, позволяющие обнаруживать незначительное количество циркулирующего в крови cTn [7, 8]. Тем не менее значительное повышение чувствительности теста при повреждении миокарда сопровождается снижением специфичности для диагностики острого коронарного синдрома. Следовательно, вышеупомянутые практические рекомендации для применения высокочувствительных тестов на cTn относятся к инсульту как к одному из нескольких клинических состояний, при которых анализ на cTn вызывает клиническую неопределенность [4].

В этом обзоре представлены обобщенные данные о возможных механизмах повышения содержания cTn при ИИ и методах интерпретации и применения противоречивых высокочувствительных анализа на cTn для врачей-специалистов по лечению инсульта.

Эволюция тестов на cTn и их применение у пациентов с инсультом

Давно известно, что острые цереброваскулярные события могут совпадать или индуцировать развитие кардиальной дисфункции и повышение содержания сердечных биомаркеров. Уже в 1960-е гг. было установлено, что у 56% пациентов с нарушениями мозгового кровообращения происходит транзиторное повышение содержания креатинкиназы, особенно у пациентов с неблагоприятными исходами [9]. Большой шаг вперед был сделан в 1989 г. с внедрением тестов на cTn в клиническую практику [10]. Вскоре cTn стал удобным биомаркером для диагностики ИМ, и повышение его содержания выше 99-го процентиля нормальной эталонной выборки (с коэффициентом вариации <10%) стало обязательным условием для универсальной верификации ИМ [11]. Поскольку обычным тестам на cTn не хватало желаемой точности, то для диагностики ИМ было принято общее решение о пределах содержания cTn с минимальным уровнем, достигаемым при коэффициенте вариации 10%. Это привело к появлению относительно высоких пороговых значений с высокой специфичностью для острого коронарного синдрома. В связи с широким использованием обычных тестов на cTn в условиях оказания неотложной помощи стало очевидно, что повышение cTn выше соответствующих пороговых значений также происходит при других клинических состояниях, а не только при остром коронарном синдроме [4, 5]. Затем в некоторых исследованиях привели данные о повышении содержания cTn у пациентов с острым ИИ [12, 13]. Частота выявления повышенного
содержания cTn по результатам обычных тестов вариировалась от 0 до 34% [13, 14]. Различия были обусловлены использованием разнообразных доступных тестов и пороговых значений, различными в характеристиках выборок и критериях исключения [13, 14].

Высокочувствительные тесты на cTn
Основным недостатком обычных тестов на cTn была их неточность при рекомендованном 99-м процентиле. Для улучшения точности теста и соблюдения диагностических требований к универсальному определению ИМ, в клиническую практику в Европе и Азии недавно были внедрены высокочувствительные тесты на cTn. Высокочувствительные тесты позволяют оценить содержание cTn при его концентрации в 10 раз ниже, чем при проведении обычных тестов [15]. Высокочувствительные тесты в дальнейшем совершили революцию в сортировке пациентов с болью в грудной клетке в отделении неотложной помощи, поскольку они обеспечивают более раннюю стратификацию риска по сравнению с обычным тестом [7, 8]. Несмотря на преимущества в виде улучшения чувствительности, специфичности в отношении диагностики ИБС (т.е. некроза миокарда из-за коронарной ишемии) снизилась. Тесты первого поколения не позволяли обнаружить cTn у здоровых лиц, а популяционные исследования продемонстрировали, что при применении высокочувствительных тестов сTn выявляют (т.е., измеряют его содержание) в 25–66% случаев, а повышение его содержания (т.е. выше 99-го проценталя референтного предела [ВРП]) — в 3–15% практически здоровых лиц без характерных для острого коронарного синдрома жалоб [16–18]. Наличие измеримого содержания циркулирующего cTn четко ассоциировано с тромбозным возрастом и выраженностью структурных изменений сердца (т.е. функции левого желудочка, гипертрофии или массы левого желудочка), а также выраженностью атеросклероза [16, 17, 19]. Следовательно, практически у всех пожилых пациентов и практически у всех пациентов со стабильной стенокардией или стабильной застойной сердечной недостаточностью можно выявить cTn [20–22]. В выборке пациентов с ИИ у 86% пациентов можно выявить свободный cTn, а примерно в 60% случаев при применении высокочувствительных тестов выявляется повышенная концентрация cTn [23–27]. Как и в общей популяции, повышенное содержание cTn у пациентов с инсультом ассоциировано с тромбозным возрастом, распространенностью хронических сопутствующих заболеваний, таких как ИБС, застойная сердечная недостаточность (СН), фибрилляция предсердий, хроническая болезнь почек, но оно также является маркером тяжести инсульта [23, 27].

Причины повышения содержания cTn у пациентов с ишемическим инсультом
Несмотря на то что cTn весьма специфичен для миокарда, он не раскрывает основной механизм развития повреждения. Это ключевое соображение имеет большое значение для понимания и интерпретации результатов теста на cTn у пациентов с острым ИИ. Важно понимать, что повышение содержания cTn не обязательно означает развитие коронарной ишемии миокарда, и что существуют потенциальные причины повышения содержания cTn помимо острого коронарного синдрома или хронической ИБС. Подавляющее большинство cTn структурно связано с миофиллами сердца, в то время как ~8% находятся в цитозольном пуле [28]. Цитозольный пул может высвобождаться при снижении проницаемости клеточной стенки из-за растяжения миокарда или легкой ишемии [29]. Следовательно, повышение концентрации cTn в сыворотке крови, вероятно, может происходить без некроза и без ишемии, но практически всегда указывает на развитие острого или хронического повреждения миокарда [29]. К редким исключениям относятся локалоположительные результаты теста, связанные с гемолизом, наличием гетерофильных антител или аутоантител, ревматоидного фактора или периодической повторной экспрессией изоформ в поврежденных клетках скелетных мышц [30].

Острое или хроническое повреждение миокарда?
Важно понимать, что при некоторых неострых и клинически стабильных состояниях (например, стабильной стенокардии, застойной СН и почечная недостаточность), часто обнаруживают повышение уровня cTn выше ВРП [5, 21, 22, 31]. Одним из ключевых критериев для дифференциальной диагностики острого и хронического повреждения миокарда является измерение содержания cTn в динамике [4, 15]. У пациентов с повышением уровня тропонина в динамике более вероятно наличие острого повреждения кардиомиоцитов. При неострых заболеваниях содержание cTn по результатам повторных анализов, как правило, остается относительно стабильным (т.н. тлеющий характер изменений) [4]. У пациентов с более низким исходным содержанием cTn (рядом с 99-м процентилем), повышение или снижение его концентрации более чем на 50% в динамике является критерием острого состояния, в то время как у пациентов с более высоким исходным уровнем cTn критериям острого заболевания является повышение или снижение его концентрации более чем на 20% [4, 32]. В исследовании В. Anders и соавт. [24] 172 пациентам с ИИ и повышенным содержанием cTn в течение 3 часов оценивали концентрацию cTn с помощью высокочувствительного теста. У 60% пациентов с повышенным содержанием cTn при поступлении выявляли стабильность концентрации cTn (увеличение или снижение не более чем на 20%), что указывает на неострое повреждение миокарда. Учитывая наличие тестовой связи между количеством поддающегося измерению cTn с возрастом и наличием сопутствующих хронических заболеваний, это означает, что причиной повышения концентрации cTn у большинства пациентов с ИИ, особенно у пожилых лиц, не является развитие острого повреждения миокарда. Скорее всего, уровень cTn отражает общую степень выраженности клинически стабильного хронического заболевания (стабильная стенокардия, хроническая болезнь почек, стабильная застойная СН и фибрилляция предсердий).
Причины резкого повышения уровня cTn при остром ишемическом инсульте

Как показано на рис. 1, потенциальные причины резкого повышения содержания cTn у пациентов с ишемическим инсультом можно разделить на 2 основные группы: (1) ишемическое повреждение миокарда (т.е., из-за коронарной ишемии) и (2) неишемическое (nekоронарное) повреждение миокарда. Они, конечно, не являются взаимоисключающими, поскольку при ИБС присутствуют и ишемические, и неишемические механизмы повреждения.

Ишемия миокарда

Согласно современному универсальному определению существует 5 подтипов ИМ [33]. Тип 1 представляет собой спонтанный (классический) ИМ в результате острого разрыва бляшки коронарной артерии с последующим развитием ишемии миокарда. Пациенты с инсультом могут быть предрасположены к развитию ИМ типа 1 из-за общности факторов риска. Нарушения движения стенки сердца, ассоциированные с ИМ типа 1, являются причиной повышения риска развития кардиомиопатии [34]. Кроме того, при проведении коронарной ангиографии более чем у 25% пациентов с ИИ и без известного аномалии ИБС выявляются стеноз коронарной артерии [35]. Важно отметить, что пациенты с инсультом являются пожилыми людьми с атипичной клинической картиной ИМ или нарушением способности сообщать о развитии симптомов острого коронарного синдрома. Следовательно, частота сопутствующего ИМ типа 1 у пациентов с ИИ остается неизвестной. Исследование TROponin Elevation in Acute ischemic Stroke (TRELAS), целью которого являлась оценка частоты встречаемости острого коронарного синдрома у пациентов с инсультом и повышенным уровнем cTn, дало более глубокое представление о частоте встречаемости сопутствующего ИМ типа 1 и сопутствующей стабильной стенокардии [36].

ИМ 2-го типа выражается собой ишемию миокарда, вызванную несоответствием между потребностью миокарда в кислороде и его поступлением с током крови. Распространенные осложнения после инсульта, такие как тахиаритмия, гипертонический криз или дыхательная недостаточность, могут быть связаны с развитием ИМ 2-го типа [1, 37, 38]. В последнем обсервационном исследовании показано, что у 26% пациентов в инсультом в соответствии с универсальным определением ИМ был диагностирован 2-й тип ИМ [38]. По этой причине, увеличение содержания cTn при ИМ типа 2 может являться частью клинического проявления ИМ в инсультом.

Рисунок 1. Возможные механизмы внезапного повышения содержания тропонина у пациентов с ишемическим инсультом. Нарушение уровня тропонина (с повышением или снижением концентрации в динамике) может возникать по причине ишемического или неишемического повреждения миокарда (ПМ). Следует отметить, что эти механизмы не являются взаимоисключающими. Как показано стрелками, нейрогенные механизмы могут провоцировать развитие ишемии, связанной с несоответствием потребности/поступления O₂ или внезапной сердечной смерти.
жания cTn у пациентов с инсультом может отражать наличие ишемического повреждения миокарда в качестве осложнения. ИМ 2-го типа может развиваться из-за наличия стабильного коронарного стеноза при сопутствующей ИБС. Вполне вероятно, что большинство случаев резкого повышения содержания cTn у пациентов с ИИ связано с развитием ИМ 2-го типа, поэтому необходимо проведение дальнейших исследований для точного определения частоты развития ИМ и эффективных методов лечения в этой подгруппе пациентов. Внезапная сердечная смерть из-за ИМ называется ИМ 3-го типа [33]. Развитие 4-го типа ИМ (связанный с проявлением вмешательств) и 5 типа ИМ (связанный с проведением аортокоронарного шунтирования), как правило, регистрируют в историях болезни, и, следовательно, они не могут быть причинной клинической неопределенности.

Нейрогенный сердечный синдром: когда инсульт бьет по сердцу

К одному из возможных механизмов развития острого повреждения сердца при ИИ, характерным только для пациентов с острым поражением центральной нервной системы, является нейрогенное повреждение миокарда. Магнитуду воздействия центральной нервной системы на функцию сердца можно ощутить в контексте развития сердечно-сосудистых событий после тяжелого эмоционального или физического стресса. Уже в 1942 г. из-за проклятия вну в древних культурах с сильной верой в мистические силы вполне могла быть реальны событием, связанным с постоянной чрезмерной активностью симпатико-адренальной системы [39]. В культурах современной эпохи примером этого феномена является двукратное увеличение количества желудочных аритмий у пациентов с имплантированными кардиовертерами-дефибрилляторами после террористической атаки на Всемирный торговый центр или увеличение заболеваемости внезапной сердечной смертью в Японии после цунами в 2011 г. [40, 41]. Патофизиологическим объяснением этого феномена может быть внезапное нарушение контроля функции сердца со стороны вегетативной нервной системы с избыточным высвобождением катехоламинов [42]. На рис. 2 показан академий событий, связанных сегретивным дисбаланс после инсульта с повышением содержания cTn. Развитие острых поражений в пределах центральных отделов вегетативной нервной системы может привести к внезапному нарушению нормальной передачи импульсов симпатической и парасимпатической нервной системы к сердцу. Следствием повышенной активности симпатической нервной системы является чрезмерное высвобождение катехоламинов в сердечных симпатических нервах, с последующей (избыточной) активацией кальциевых каналов. Это приводит к избыточному сокращению саркомеров, уменьшению времени мышечной релаксации и нарушению обмена веществ. Гистопатологически открытым в этом контексте является т.н. коагуляционный миоцитолиз (также известный как некроз полосы сокращения или миофibriлярная дегенерация) [43]. Такие изменения происходят в непосредственной близости от внутрисердечных нервов и их легко воспроизвести в моделях у животных с применением гормонов стресса или инфузии катехоламинов [42].

Те же гистопатологические результаты можно наблюдать у пациентов с кардиомиопатией таксофобо (КМПП, также известной как стрессовая кардиомиопатия) [44,45]. КМПП является распространенной масовой ИМ с острой дисфункцией левого желудочка [44]. Как правило, у пациентов с КМПП смещено повышенное содержание cTn, в то время как уровень катехоламинов заметно выше, чем у пациентов с ИМ [45]. КМПП также встречалась у пациентов с ИИ, в частности у пациентов с поражениями в области островка [46, 47]. Островок является ключевым структурным единицей центральной вегетативной нервной системы. Из-за этого, что кровоснабжение островка осуществляется из средней мозговой артерии, эта область часто страдает при развитии инсульта в коротким бассейне. Экспериментальная стимуляция области островка приводит к симпатическому (праствоорстному стимуляции) или парасимпатическому (левосторонняя стимуляция) изменением сердечного рита и уровня артериального давления [48]. Следует отметить, что визуализационные исследования на основе повседневного анализа продемонстрировали наличие связи между локализацией инсульта в коре островка и повышением уровня cTn [49]. Интересно, что у пациентов с инсультом, затрагивавшим кору островка, уровень катехоламинов был выше, чем при сохранении костей островка интактной [50]. Кроме того, было показано, что у пациентов с инсультом и повышенным содержанием cTn уровень циркулирующих катехоламинов был выше, чем при нормальном содержании тропонина [51]. В заключение, вегетативный дисбаланс с избыточной симпатической активностью после инсульта может привести к некрозу сердечных миофibrилл и сердечной дисфункции с последующим высвобождением cTn. Таким образом, непосредственное, индуцированное инсультом повреждение миокарда, скорее всего, является причиной повышения уровня cTn у некоторых пациентов с ИИ. В дополнение к нейрогенным механизмам высвобождения cTn воздействие избыточного количества катехоламинов также может быть причиной развития ИМ 2-го типа вследствие коронарной вазоконстрикции и такахаритии. Наличие заболеваний сердца может усугубить негативный эффект вегетативного дисбаланса. С этой точки зрения, остroe повреждение головного мозга можно рассматривать в качестве стресс-теста для сердца.

Дополнительные причины развития острого неишемического повреждения миокарда

К другим причинам развития неишемического повреждения миокарда у пациентов с инсультом является остroe нарушение функции почек, острая СН, тяжелые инфекции и тромбоэмболия легочной артерии [4]. Вышеописанные состояния являются распространенными осложнениями у пациентов с острым инсультом, и при проведении обследования важно их исклю-
чить [1]. Механизмы повышения содержания cTn при этих состояниях и значение для выбора правильной тактики лечения были описаны ранее [4, 5, 22].

Повышение уровня тропонина при инсульте: «тропониноз» или прогностическая значимость?

Повышение содержания cTn у пациентов без очевидного остrego коронарного синдрома расценивали как «тропониноз» или «тропонинемию» [52]. Однако существуют доказательства, что независимо от исходного механизма, у пациентов с инсультом уровень cTn имеет прогностическую значимость относительно ближайших и отдаленных функциональных исходов и выживаемости [13, 14, 27, 53, 54]. В недавно проведенном ретроспективном исследовании показали, что у пациентов с уровнем cTn в высшей квартиле, согласно результатам высокочувствительных тестов при поступлении, после внесения поправок на возраст, исходную тяжесть инсульта и наличие сопутствующих заболеваний был в 1,6 раза повышен риск развития летального исхода от всех причин в период наблюдения продолжительностью 1,5 года [53]. В проспективном исследовании с участием 1016 пациентов с ИИ при проведении высокочувствительных тестов на cTn в динамике выявили, что частота развития неблагоприятного функционального исхода при выписке (оценка по модифицированной шкале Рэнкина > 1 балла) при выраженном повышении содержания cTn значительно увеличивалась [27]. Скорректированное отношение шансов для развития неблагоприятного исхода составило 1,8 (95% доверительный интервал [ДИ] от 1,3 до 2,8) у пациентов с умеренным повышением уровня cTn (в 1–2 раза выше ВРП) и 3,4 (95% ДИ от 2,2 до 5,4) у пациентов с выраженным повышением содержания cTn (более чем в 2 раза выше ВРП). Произошло улучшение с-статистики для прогнозирования краткосрочного функционального исхода при добавлении показателя уровня cTn к возрасту, тяжести инсульта и наличию сопутствующих заболеваний, хотя в целом улучшение было незначительным (площадь под кривой 0,85 vs 0,84; p=0,08). Следует отметить, что в группе пациентов с инсультом и увеличением содержания cTn в динамике (полученных 30%) в течение 24 часов был повышен риск внутрибольничной летальности (отношение рисков OR=2,3; 95% ДИ от 1,1 до 4,7), по сравнению с пациентами с повышенным, но стабильным содержанием cTn [27]. Срочно необходимы дополнительные данные для определения клинически надежного прогностического порогового значения cTn в контексте инсульта для прогнозирования развития неблагоприятных функциональных исходов или смерти.

Клиническое обследование пациентов с инсультом и повышенным уровнем cTn

Возможный алгоритм классификации повышенного содержания cTn у пациентов с ИИ показан на рис. 3. На рисунках 4–6 продемонстрированы три типичные клинические ситуации, в которых применение данных об уровне cTn у пациентов с инсультом без жалоб на боль в грудной клетке может быть причиной неопределенности.

Рисунок 2. Нейрогенный кардиальный синдром. Описанное синдром выявленный тропонина, вызаваемое дисбалансом вегетативной нервной системы. Изменение активности парасимпатической и симпатической систем может непосредственно привести к некрозу миофibrил миокарда при наличии и без наличия клинического фенотипа кардиомиопатии такоцубо (КМПТ). С другой стороны, выявление тропонина может быть определено развитием ишемии, связанной с несоответствием потребности/поступления O₂ ЛНС – парасимпатическая система. ЛНС – симпатическая система.
Изменение содержания сТн в динамике на более чем 20%.

Постоянное повышение содержания сТн

Известное структурное поражение или ИБС, хроническая болезнь почек?

Да

Нет

Повторная оценка тяжести заболевания и лечение с учетом значимости прогностического маркера

Поражение центрального отдела вегетативной системы (кора островка)? Маркеры дисбаланса вегетативной системы (ВСР)?

Да

Нет

Проведение ЭКГ с нагрузкой, ЭхоКГ или другой визуализации сердца

Возможно, нейрогенный кардиальный синдром

Да

Нет

Проведение ЭхоКГ (определение ФВ, КМПТ), Длительный кардиомониторинг (атриальная аритмия?), назначение бета-блокаторов

Лечение соответствующего заболевания

Не выражено при ИМ, чем при наличии некоронарных причин [37]
В стандартах по лечению рекомендуют проводить амбулаторный скрининг на предмет выявления структурных изменений сердца или ишемической болезни сердца (т.е. экокардиографию, электрокардиографию – ЭКГ с нагрузкой или коронарную ангиографию) при поштучном содержании сTn, но сохранении его стабильного уровня в динамике (т.е., неострого повреждения) [4, 52]. При выявлении заболевания сердца мероприятия профилактики сердечно-сосудистых заболеваний следует активизировать или переоценить. Эта рекомендация основана на четкой ассоциации между уровнем сTн и (субклиническим) поражением сердца, риском развития в будущем сердечно-сосудистых неблагоприятных событий и летального исхода [16, 17, 56].

При наличии признаков острого ишемического повреждения миокарда (динамический характер изменений), клиницисты должны незамедлительно определить наиболее вероятную причину повышения уровня сTн [4, 52]. Подозрение на развитие ИМ до проведения анализа возрастает при наличии факто-

![Diagram](image1.png)

Рисунок 4. Результаты нейровизуализации и коронарной ангиографии: стабильное содержание сердечного тропонина (cTн) в динамике из-за наличия застойной сердечной недостаточности. Изображение головного мозга 49-летней женщины с артериальной гипертензией, поступившей по поводу инсульта в бассейне средней мозговой артерии (A, На МРТ признаки ишемического инсульта в бассейне левой средней мозговой артерии). При клиническом обследовании выявились умеренные отеки головен и единичные храчи в легких. Содержание сTн составило 46 нг/л при поступлении (верхний референтный предел 14 нг/л) и 48 нг/л через 3 часа (B, Динамика изменения содержания высокочувствительного сTн [hs-cTн] по результатам тестов при поступлении, через 3 и 24 часа, пунктирной линией обозначена 99-я процентиль, составляющая 14 нг/л). На ЭКГ выявились отрицательные зубцы T в V1–V3 отведениях. При проведении ЭхоКГ обнаружили снижение фракции выброса до 40%. По результатам селективной коронарографии, выполненной в амбулаторных условиях через 3 месяца после инсульта, выявились наличие стабильного поражения 1 коронарной артерии (B, Коронарография, стрелкой показано стабильное поражение 1 коронарной артерии). Это привело к интенсификации мероприятий вторичной профилактики (т.е., назначение терапии, направленной на снижение содержания холестерина и уровня артериального давления до целевых значений).
ров риска развития сердечно-сосудистых заболеваний и характерных для ишемии миокарда изменений на ЭКГ, типичного дискомфорта в грудной клетке или одышки [4]. Определение абсолютного содержания cTn может помочь в выявлении наиболее вероятной причины развития повреждения миокарда [57]. У пациентов с ИМ 1-го типа уровень cTn традиционно выше, чем у ИМ 2-го типа или КМПП и сопровождается более выраженным признаками не - 14 я пунктирной часа результатам сTn [hs-cTn] составило (л и/о л) патологических тяжести без степени места в бассейне средней в ЧСС составила в бассейне мозговой артерии правой в островка При ишемическом островка правосторонним за летней развития женщины мозга динамике 6. Рисунок!

dавления кризкий снижение кризкий кислорода снижение парциального криз давления нарушениями, гипертоническими вызваны миокарда повреждение неишемическое типа ИМ или Если у острых [55]. Если ИМ 2-го типа или остров неишемическое повреждение миокарда были вызваны такими нарушениями, как тахикардия, гипертонический криз, снижение парциального давления кислорода в крови при острой декомпенсированной CH, обструктивная болезнь легких или тяжелые инфекции, следует проводить адекватное лечение соответствующих заболеваний.

Следует помнить о возможности развития неиерогенного сердечного синдрома (c и без КМПП), особенно при инсульте с поражением области остротика. Абсолютное содержание cTn в таких случаях, как правило, ниже, чем при ИМ [37, 45, 57]. Данных о наиболее эффективном лечении неиерогенного сердечного синдрома пока нет, но можно применять β-адреноблокаторы, α-адреноблокаторы или ингибиторы ангиотензинпревращающего фермента [44].

Будущие перспективы: возможные точки применения

Высочувствительные тесты на cTn позволяют обнаружить незначительное повреждение миокарда, предшествующее появлению клинических признаков патологии сердца. Заманчиво предположить возможность использования тропонина в качестве биомаркера для прогнозирования и мониторинга сердечно-сосудистых и цереброваскулярных заболеваний. Было показано, что риск развития CH и летального исхода был ассоциирован с характером изменения содержания cTn в динамике в течение 2–3 лет. У пациентов со снижением содержания cTn (более чем на 50%) в течение 2–3 лет снижался риск развития CH (OP=0,73; 95% ДИ от 0,54 до 0,97) и летального исхода от сердечно-сосудистых заболеваний (OP=0,71; 95% ДИ от 0,52 до 0,97), в то время как пациенты с повышенным уровнем cTn в динамике, были подвержены повышенному риску развития CH (OP=1,61; 95% ДИ от 1,32 до 1,97) или летального исхода (OP=1,65; 95% ДИ от 1,35 до 2,03) [18]. Интересно, что в продольном популяционном исследовании продемонстрировали, что исходно повышенное содержание

Рисунок 6. Результаты нейровизуализации и коронарной ангиографии: содержание сердечного тропонина (cTn) незначительно повысились в динамике из-за развития кардиомиопатии такому же. Изображения головного мозга 76-летняя женщины с правосторонним ишемическим инсультом в коре островка (А. На МРТ выявлена область островичного повреждения в бассейне правой средней мозговой артерии с поражением острова). При постепенном ЧСС в покое составила 98 сокращений в минуту. Умерли место признаки сердечной недостаточности легкой степени тяжести (одышка и отеки голеней), без патологических изменения на ЭКГ. Исходное содержание сTn составило 78 нг/л, и через 3 часа оно повысилось до 110 нг/л (Б. Динамика изменения содержания высокочувствительного сTn [hs-cTn] по результатам анализа при постепенном, через 3 и 24 часа, пунктирной линией обозначено 99-я процентиль – 14 нг/л). Наблюдалось усугубление одышки. На ЭхоКГ выявили глобальное нарушение движения стенки сердца со снижением фракций выброса. При проведении коронарографии не обнаружили признаков поражения коронарных артерий (В. Вентрикулограмма при коронарной ангиографии, стрелкой показано шарообразное расширение верхушки сердца). Пациентке назначили бета-блокаторы и эхографический кардиомониторинг.
cTn было предиктором не только смерти от сердечно-сосудистых причин в течение 10-летнего периода наблюдения (ОР=7,4; 95% ДИ от 4,6 до 11,6), но и смерти от инсульта, хотя и в меньшей степени (ОР=3,3; 95% ДИ от 1,3 до 8,7) и от рака (ОР=1,6; 95% ДИ от 1,1 до 2,4) [56]. Кроме того, уровень cTn был независимо связан с повышенным риском развития инсульта в общей популяции (ОР=1,13; 95% ДИ от 1,1 до 1,2; наблюдение — течение 20 лет) [58]. У пациентов с фибрилляцией предсердий, включенных в испытание Apixaban for Reduction in Stroke and Other Thromboembolic Events in Atrial Fibrillation (ARISTOTLE), частота развития инсульта или системной эмболии в течение 2 лет наблюдений варьировалась от 0,9% при cTn в нижней квартиле до 2,1% в верхней квартиле (ОР=1,9; 95% ДИ от 1,4 до 2,8) [59]. Следует отметить, что у пациентов с фибрилляцией предсердий и стабильным состоянием обнаруживаемый cTn через 3 месяца после рандомизации в рамках испытания Randomized Evaluation of Long-Term Anticoagulation Therapy (RE-LY) был значительно выше риск развития инсульта по сравнению с пациентами с травматическим повреждением сердца (2,0% vs 0,8%) [60].

По данным последнего популяционного исследования, повышение содержания cTn также было ассоциировано с когнитивной дисфункцией [61]. Наличие субклинического повреждения миокарда, по результатам высокочувствительных тестов на cTn, было ассоциировано с исходной когнитивной дисфункцией. За период наблюдения с медленной продолжительностью 13 лет, более высокое исходное содержание cTn также было ассоциировано с госпитализацией по поводу деменции (ОР=2,7 для повышения по сравнению с необнаруживаемым cTn; 95% ДИ от 1,9 до 3,8), в частности сосудистой деменции. Частично этот факт можно объяснить общими факторами риска для болезни мелких сосудов и патологии крупных сосудов, составляющими общий патофизиологический путь для одновременного развития повреждений сердца и головного мозга. Кроме того, наличие заболевания сердца может быть причиной поражения головного мозга посредством развития кардиоэмболии или снижения перфузии головного мозга при застойной СН. Как описано выше, поражения головного мозга могут, наоборот, привести к развитию нейрогенного сердечного синдрома с повреждением миокарда [62].

ВЫВОДЫ

При использовании высокочувствительных тестов на cTn, у подавляющего большинства пациентов с острым ИИ можно оценить, измерить содержание циркулирующего cTn, и примерно у половины этих пациентов уровень cTn превышает ВРП. Концентрация cTn в сыворотке крови у пациентов с инсультом позволяет получить надежную прогностическую информацию о ближайших и отдаленных функциональных исходах и риске развития летального исхода. Интенсивность вы свобождения cTn напрямую зависит от возраста пациента и тяжести сопутствующих хронических заболеваний. Для определения характера повышения содержания cTn, острого или хронического, необходимо проведение анализов в динамике. У большинства пациентов с ИИ содержание cTn в динамике не изменяется в связи с наличием клинически стабильных (бессимптомных) сопутствующих заболеваний. Учитывающая прогностическую значимость cTn при различных стабильных хронических заболеваниях, рекомендуется проведение скрининга на предмет выявления структурных изменений или ИБС у таких пациентов. При их выявлении следует активизировать или переоценивать мероприятия профилактики сердечно-сосудистых заболеваний. К основным механизмам резкого повышения содержания cTn после инсульта относится развитие ИМ 1-го типа или (вероятно, более часто) 2-го типа, но также следует учитывать и возможность развития неишемического повреждения миокарда с помощью нейрогенно-опосредованных механизмов. При резком повышении уровня cTn с ростом концентрации тропонина в динамике, необходимо тщательное клиническое наблюдение (оценка боли в груди, изменений ЭКГ, тщательный скрининг на предмет выявления осложнений, приводящих к развитию ишемии из-за повышения потребности миокарда в кислороде, или неишемического повреждения миокарда). Возможность использования cTn для прогнозирования развития повторного инсульта или когнитивных нарушений требует дальнейшего изучения.

ЛИТЕРАТУРА

