

Imaging in StrokeNet: Realizing the Potential of Big Data

David S. Liebeskind, MD; Gregory W. Albers, MD; Karen Crawford, MLIS; Colin P. Derdeyn, MD; Mark S. George, MD; Yuko Y. Palesch, PhD; Arthur W. Toga, PhD; Steven Warach, MD; Wenle Zhao, PhD; Thomas G. Brott, MD; Ralph L. Sacco, MD, MS; Pooya Khatri, MD, MSc; Jeffrey L. Saver, MD; Steven C. Cramer, MD; Steven L. Wolf, PhD; Joseph P. Broderick, MD; Max Wintermark, MD

Imaging of stroke and neurovascular disorders has profoundly enhanced clinical practice and related research during the past 40 years since the introduction of computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography enabled mapping of the brain. Various imaging techniques have been developed to study stroke pathophysiology and inform medical decision-making in prevention, prehospital care, acute monitoring of revascularization, during the subacute ICU course, and recovery settings. The technology to acquire such imaging with sophisticated scanners, software for rapid postprocessing, analysis, computer vision methods, and telemedicine platforms to instantly beam such information around the world now warrant reconsideration of the potential of stroke imaging in the era of big data.

These dramatic changes in neuroimaging and the vast potential to catapult stroke care depend on large-scale, multi-institutional research initiatives to establish their role. These initiatives would require that the current infrastructure and philosophy of translational research must be modernized to incorporate such advances. In this position paper, we describe the historical context, conceptual framework, current issues, logical analyses for strategic planning, and the proposed aims of future stroke imaging initiatives to advance data science with the recently established National Institutes of Health (NIH) StrokeNet. The StrokeNet consists of 25 regional stroke center hubs, each associated with a group of spoke hospitals that are capable of conducting stroke research. The dedicated infrastructure, archival process, and centralized core laboratory function to provide a foundation for stroke imaging studies that fully realize the potential of big data.

Historical Context

During the past decade, we have witnessed a convergence of 3 simultaneous evolutions in biomedical research related to stroke and neurovascular disorders. Stroke imaging, large-scale development of stroke research networks, and the modernization of medicine and neuroscience with large data sets are now capable of intersecting with related, yet potentially divergent, trajectories.

Stroke and Neurovascular Imaging

The approval of intravenous tissue-type plasminogen activator for thrombolysis prompted the use of noncontrast CT to
primarily rule out hemorrhage before treatment because early ischemic changes were generally considered inconsequential. The development of noninvasive angiography, perfusion imaging with CT and MRI techniques, and parenchymal MRI sequences such as diffusion-weighted imaging subsequently provided clinicians with enhanced ability to rapidly diagnose and treat acute stroke. The use of these multimodal CT and MRI protocols rapidly increased, augmenting our knowledge within a few short years on stroke pathophysiology. In the early 2000s, stroke trials started to embed such imaging as screening tools and secondary outcome measures for novel drugs and then devices. Even while stroke trials struggled to establish new treatments, advanced image analyses often yielded new insight. For example, the Diffusion and Perfusion Imaging Evaluation for Understanding Stroke Evolution (DEFUSE) trialists demonstrated that specific patterns of evolving ischemic injury could be used to predict subsequent clinical outcomes after revascularization.

Several trials using imaging as a screening/selection criterion provided mixed, positive, and negative results. Some concluded that imaging has failed us and that the imaging-based trials did not demonstrate the need for such costly diagnostic tests. The lack of central coordinated and standardized collection of the image data from these different trials limited pooled analysis of these data, which represents a huge opportunity loss considering the significant funding invested to perform imaging in these trials. Because of their large sample sizes, such pooled analyses could have significantly contributed to the field of stroke by potentially explaining what worked in the positive trials and what did not work in the negative trials. The Stroke Imaging Research/Virtual International Stroke Trials Archive Collaboration has established the use of an image repository, but this effort has been limited by the reluctance to share and the nonstandardized mechanisms for image data submission.

StrokeNet

The organization of stroke research networks more than a decade ago with the establishment of 7 Specialized Programs of Translational Research in Acute Stroke centers provided the momentum to systematically study several of the most critical translational research questions in acute stroke. Imaging played a central role in several of these phase II studies. The relatively small size of these translational studies, however, limited conclusions on the impact of imaging. As Specialized Programs of Translational Research in Acute Stroke ended, the NIH StrokeNet replaced the Specialized Programs of Translational Research in Acute Stroke program to expand the geographical reach to 25 regional centers to cultivate larger stroke trials intended for novel therapies and biomarkers related not only to acute stroke but also toward recovery and prevention. Imaging was implicitly considered, yet a mechanism does not currently exist to support the role of imaging beyond data capture for individual trials. The Imaging Work Group was established to advise the StrokeNet regarding the use of imaging in new proposals for the network. During these early stages of the NIH StrokeNet, several proposed studies and related discussions have underscored the need for a dedicated imaging infrastructure, related funding, and active data collection that extends beyond novel imaging techniques to leverage the routine imaging techniques acquired in participants enrolled in NIH-funded stroke trials.

Big Data

At the same time, big data have emerged at the forefront of biomedical research in refining precision medicine, studying the human brain and maximizing the use of imaging across various neurological disorders. The Alzheimer Disease Neuroimaging Initiative demonstrated the potential of large-scale imaging analyses to study longitudinal changes in brain disorders, using many routine MRI techniques. Against this backdrop, the NIH established imaging registries in many neurological disorders far less common than stroke, funded the Human Connectome Project, emphasized the impact of Big Data 2 Knowledge funding opportunities, and then celebrated the Brain Research Through Advancing Innovative Neurotechnologies initiative as one of the most important biomedical research accomplishments that will use imaging to revolutionize the study of neuroscience, bolstered by specific hypotheses and goals. This overwhelming constellation of research activity has yet to address imaging of stroke and related cerebrovascular disorders. Several years ago, comments were solicited on data sharing for imaging in neurological and psychiatric disorders, and most recently, the NIH has established a formal policy for sharing of genomic data. The Cancer Genome Atlas has a glioma imaging arm that was funded by National Cancer Institute. National Institute of Neurological Disorders and Stroke is funding the Federal Interagency Traumatic Brain Injury Research repository for traumatic brain injury data including imaging. Data sharing for stroke imaging remains uncoordinated, even within NIH-funded studies. The NIH Common Data Elements (CDE) Project uses content standards that enable clinical investigators to systematically collect, analyze, and share data across the research community. The CDE Project includes numerous imaging variables, yet these parameters are not necessarily required or are source image data sets collected. Furthermore, the infrastructure has never been established to support the maintenance of image data sets beyond the conclusion of a trial. Despite these limitations, stroke survivors and individuals at risk now store such vital imaging studies of their brain and vasculature on their portable devices or in the Internet cloud through Health Insurance Portability and Accountability Act (HIPAA)-secure mechanisms.

Conceptual Framework

Certain concepts related to stroke imaging have been erroneously perpetuated, leading to confusion and threatening future progress.

Stroke imaging serves a triple role as diagnostic tool, potential guide to best therapeutic approach and an outcome biomarker in individuals with cerebrovascular disease, from those at risk for brain ischemia or hemorrhage to those who have suffered an acute event. The vast information provided as a snapshot of the vessels, perfusion, and lesions in the brain may be used beyond its use to answer a go/no-go decision
about treatment. The multiple dimensions and serial imaging may discern critical variables such as collateral circulation and expected clinical outcomes over extended time periods. Stroke trials often focus solely on the investigational treatment without considering individual baseline pathophysiology that may impact therapeutic response. There is now a concrete opportunity to establish precision medicine in stroke or individualized approaches by leveraging the big data contained within imaging studies. For instance, variable degrees of collateral status in proximal middle cerebral artery occlusion may radically influence the response to endovascular therapy for acute ischemic stroke. Imaging also provides insights into the neural state after stroke that cannot be gleaned from bedside examination. For example, an image-based measure of corticospinal tract injury predicts motor recovery better than total infarct volume or baseline behavior. Imaging provides extensive data about these interactions between novel treatments and baseline pathophysiology. Such variability in baseline imaging is an important consideration in medical decision-making and selection for clinical trials, yet imaging is often blamed as solely a cause of added delay and cost. Feasibility of standardized image acquisition is often cited as an impediment but can be easily implemented even across different proprietary equipment. Anonymization and transmission of image data are easily achieved nowadays. Furthermore, serial imaging is routinely acquired in clinical practice yet rarely funded in stroke trials. In addition to comparing subjects or groups of participants, focusing on the relevant measures of individual patients serving as internal controls for the longitudinal impact of alternative treatments over time may usefully expand the concept of controls in stroke trials. Finally, the use of big data in stroke imaging cannot be realized by solely mandating local collection of imaging variables or by massive storage in a repository, as data flow and the continuous, systematic, standardized, and timely extraction of CDE imaging variables is essential.

Current Issues

Since the implementation of the StrokeNet Imaging Work Group, several examples have underscored the need for a concerted focus on imaging beyond the current mechanisms and infrastructure available. For studies that do not have a primary imaging hypothesis, the question often arises as to whether image data should be centrally collected, processed, and stored. The need for data collection, development, and utilization of case report forms is often questioned, despite the fact that imaging variables are an integral part of the National Institute of Neurological Disorders and Stroke CDEs. Unlike other CDEs that focus on clinical variables or other measures, the imaging CDEs are often removed because of the apparent complexity of implementing proper expertise, cost, and infrastructure for imaging review. Even when imaging variables may be considered for inclusion, the collection of source image files is seen as overly complex. There exists an arbitrary distinction between study-related imaging and routinely acquired imaging that is principally defined by the funding source for the imaging study. From this perspective, imaging is handled unlike any other types of data because it would be incongruous to refrain from collecting other data elements that are obtained as a part of the clinical routine. Why should routinely acquired imaging studies with extensive detail on stroke pathophysiology be removed from data collection in a person enrolled in an NIH-funded trial? The broad array of imaging studies acquired per routine clinical practice should be used to better inform trials on the value of serial imaging and to validate specific hypotheses. Variables such as final infarct volume would be readily compared across trials. Similarly, why should serial Alberta Stroke Program Early CT Scores only be collected when designated in a trial case report form? In the current format, only the designated imaging variables are listed and collected in the case report form, locked into the final data set, and the image files discarded, thereby preventing any further investigation, reliability testing, or subsequent validation. Acquisition and storage of source image data will allow for more precise standardized processing of known derived measures, as well as rederivation of new measurements defined in the future. Techniques such as anonymization ensure that this can be done in a HIPAA-compliant manner.

The subsidiary role of imaging relative to therapeutic interventions fosters the conclusion that imaging is irrelevant if primary analyses of the investigational treatment are shown to be positive or negative. Paradoxically, the potential impact of novel therapies is often best understood with imaging surveillance. Routine imaging studies are not often included in case report form because they are not study related and also because they are seen as too rudimentary; yet, sophisticated imaging approaches are viewed as costly or impractical. Most commonly, the post hoc analyses of routinely acquired imaging reveal fundamental insight about the underlying stroke subtype or disorder. For example, retrospective analyses of routine imaging in Warfarin-Aspirin Symptomatic Intracranial Disease have demonstrated that the trial designated imaging variable of interest, percentage stenosis, is less informative than collateral grade collected in post hoc analyses.

The pace or timeframe of such imaging evaluations should also mirror the approach to other forms of data in a clinical trial. The imaging may be used to inform adaptive trial design and markedly reduce costs because of smaller sample sizes, more refined effect estimates and help in the design of better proof-of-concept phase 2b trials with imaging biomarkers as influential selection criteria and outcomes. Such an approach becomes reasonable when one considers recent endovascular therapy studies that used various imaging paradigms to achieve positive results with only a fraction of the expected sample sizes.

The insightful information on pathophysiology derived from imaging has fueled a plethora of proposed ancillary imaging studies and subgroup analyses that represent a significant contribution to the stroke literature. Most recently, ancillary imaging has been embedded in the StrokeNet charge to evaluate novel biomarkers yet the focus remains on novel therapeutics, and there has yet to be an imaging biomarker ancillary study. Imaging biomarkers remain most closely aligned with routine practice, and they may identify those individuals most at risk for disease progression or modification with informed interventions. Even the choice of end points in a stroke trial may be altered because recurrent stroke may be less important than subsequent cognitive decline. These challenges are only
amplified when StrokeNet trials address not only acute stroke but also recovery and prevention.

The digital nature of image data should be leveraged to maximize the information that can be extracted from National Institute of Neurological Disorders and Stroke–sponsored clinical trials, and the amount of knowledge that can be developed out of these trials. Historical examples include the use of stored images from the National Institute of Neurological Disorders and Stroke Tissue-Type Plasminogen Activator (NINDS-tPA) trials and Prolyse in Acute Cerebral Thromboembolism (PROACT)-II where noncontrast CT and angiography provided subsequent further insight.18,19 Considering the number of patients and funds invested in these trials (especially those that involve imaging), maximal resource use depends on imaging in perpetuity that focuses both on investigational treatments and the underlying pathophysiology. This approach would make subsequent ancillary studies feasible at a much lower cost considering that the image data have already been collected and are easily accessible, similarly to The Cancer Genome Atlas glioma and Federal Interagency Traumatic Brain Injury Research Traumatic Brain Injury initiatives. Also, this strategy would create a valuable educational resource for subsequent generations of scientists. The success of this approach is illustrated by how the centralized, expert Thrombolysis in Cerebral Infarction scoring in endovascular studies led to the subsequent implementation of local Thrombolysis in Cerebral Infarction scoring as a measure of quality for comprehensive stroke center certification.

Strategic Imaging Plans

Strategic planning for topics such as stroke imaging are often best informed by logical analyses and formal evaluation with introspective approaches such as strengths-weaknesses-opportunities-threats analyses that allow structured planning. This planning method can identify both internal and external factors that are favorable and unfavorable for future development of stroke imaging in clinical research paradigms. Table 1 reveals the key elements of strengths-weaknesses-opportunities-threats analyses related to imaging of stroke and neurovascular disorders. Only the most salient elements are outlined to facilitate strategic approaches to the current impasse described above. In brief, key strengths of stroke imaging hinge on the exquisite ability to depict dynamic neurovascular pathophysiology in vivo. In contrast, weaknesses often cited include limited availability or deployment, cost, and the 1-dimensional nature of imaging outcome measures. Exciting opportunities exist for the application of stroke imaging in clinical research although existing threats to the use of stroke imaging must be considered.

Constructive strategic planning for stroke imaging can link these strengths, weaknesses, opportunities, and threats in the form of threats-opportunities-weaknesses-threats analyses that map out the most logical avenues to approach next steps in the field. Although such pairings are critically dependent on the previous strengths-weaknesses-opportunities-threats factors proposed, the threats-opportunities-weaknesses-threats analyses for imaging of stroke and neurovascular disorders (Table 2) provide a framework to address current issues delineated above and means to maximally realize the potential of stroke imaging.

Vision to Implement Stroke Imaging as Big Data

These strategic planning tools that outline both the current nature of stroke imaging approaches and a constructive path to efficiently overcome potential limitations underscore the need to focus on 3 specific aspects of data science relevant to imaging in StrokeNet. There is an overt need to establish a concerted infrastructure specifically devoted to stroke and neurovascular imaging data, an active archival process where data flows in real-time, and establishment of a centralized core laboratory that creates and maintains a resource for future data mining in education and research.

Infrastructure for Imaging Brains in Stroke

Dedicated infrastructure and support should be established to integrate trial and non–study-related stroke imaging data with the clinical, genomic, and other potential biomarkers. Such

Table 1. Strengths-Weaknesses-Opportunities-Threats Analyses of Current Stroke and Neurovascular Imaging

<table>
<thead>
<tr>
<th>Favorable</th>
<th>Unfavorable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal</td>
<td></td>
</tr>
<tr>
<td>Strengths: Noninvasive imaging of cerebral vessels and perfusion providing insight into stroke pathophysiology</td>
<td>Weaknesses: Perceived complexity of imaging</td>
</tr>
<tr>
<td>Standardized imaging protocols</td>
<td>Potential delay caused by imaging</td>
</tr>
<tr>
<td>Improved technology; rapid, becoming more simple to use</td>
<td>Cost of imaging</td>
</tr>
<tr>
<td>HIPAA-secure cloud technology</td>
<td></td>
</tr>
<tr>
<td>External</td>
<td></td>
</tr>
<tr>
<td>Opportunities: Need for biomarkers</td>
<td>Threats: Contradictory results of image-guide acute stroke trials, with no central or standardized data collection and no pooled analysis</td>
</tr>
<tr>
<td>Imaging may inform medical decision making for stroke prevention, treatment selection and monitoring, rehabilitation tools already exist for widespread image acquisition, transmission, and processing</td>
<td>No dedicated imaging RFA and no significant, dedicated funding for imaging infrastructure in StrokeNet</td>
</tr>
<tr>
<td>StrokeNet initiative</td>
<td>No plans/funding for permanent repository of images beyond trials in StrokeNet</td>
</tr>
<tr>
<td>Stroke imaging CDEs</td>
<td>Large computing or memory needs</td>
</tr>
<tr>
<td>Clinical practice often includes serial imaging</td>
<td></td>
</tr>
<tr>
<td>Imaging may reduce costs through allowing smaller sample sizes</td>
<td></td>
</tr>
<tr>
<td>Imaging may inform adaptive trial design</td>
<td></td>
</tr>
</tbody>
</table>

CDE indicates Common Data Elements; HIPAA, Health Insurance Portability and Accountability Act; and RFA, request for application.
momentum would harmonize the stroke field with other areas of neuroscience, where imaging has been at the forefront of big data initiatives. Although the tools are already available to collect large-scale image data sets across vast networks, currently there is no mechanism to support the individuals involved in image processing, expertise of centralized review and integration with other components of clinical trial design across various phases of stroke from prevention to acute treatment and recovery. The nature of stroke imaging techniques, post-processing, and resultant data are distinct from other neurological disorders, justifying the need for this novel initiative in StrokeNet. Routinely acquired image data should be included in central imaging data sets, along with the study-specific imaging. For instance, participant consent should include the collection and analysis of noncontrast CT scans, MRI scans, and other routine clinical imaging studies to extract established imaging variables defined by the CDE. Novel imaging techniques would continue to be funded by the specific trials. Much like other forms of source data, imaging data sets can always be verified and may persist indefinitely because of their digital nature. Such infrastructure would ensure that imaging remains a vital biomarker in many stroke trials and addresses the unmet need of innumerable ancillary imaging studies that would otherwise go unfunded. This infrastructure would prompt implementation of a formal stroke imaging data sharing policy, in line with policies for other research areas and types of biomarkers. Funding and authorship roles would entice investigators to participate in this initiative. The rudimentary imaging techniques or tools and the expertise already exist; yet, omission of this much-needed infrastructure and disregard of this impetus to develop more sophisticated analytical methods would relinquish the extensive value of imaging as big data.

Table 2. Threats-Opportunities-Weaknesses-Strengths Analyses for Constructive Strategic Planning on the Future of Stroke and Neurovascular Imaging

<table>
<thead>
<tr>
<th>Opportunities</th>
<th>Threats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strengths</td>
<td>S-T strategies: centralized core:</td>
</tr>
<tr>
<td>S-O strategies: infrastructure:</td>
<td></td>
</tr>
<tr>
<td>Central collection of imaging data</td>
<td></td>
</tr>
<tr>
<td>Imaging data sharing</td>
<td></td>
</tr>
<tr>
<td>Weaknesses</td>
<td>W-T strategies: archiving process:</td>
</tr>
<tr>
<td>W-O strategies: Opportunity cost of not investing in stroke imaging central collection and analysis</td>
<td></td>
</tr>
<tr>
<td>Permanent repository of imaging data beyond life of trials</td>
<td></td>
</tr>
<tr>
<td>Continuous, systematic, standardized, and timely extraction of stroke imaging CDEs</td>
<td></td>
</tr>
</tbody>
</table>

CDE indicates Common Data Elements.

Active Archiving: The Data Must Flow

Collection of imaging data sets in stroke trials is only the initial step because extraction of imaging variables based on central reviewer expertise and automated processing is the critical element in a process where the data must flow in real time. Archive storage of source imaging and the systematic collection of the imaging CDE in sync with participant enrollment in a clinical trial is imperative. Prospective, blinded imaging analyses in parallel with subject recruitment allows for adaptive trial design, leveraging the imaging data rather than waiting years for locking of data sets, imaging analysis, and resultant subgroup analyses that require yet another clinical trial. Ultrafast transfer of data to a central server can also allow study investigators to view imaging at their study sites before patient enrollment, potentially avoiding enrollment of patients who do not meet imaging-related inclusion criteria.

Safety, efficacy, and pivotal biomarker correlates are enabled in this model of parallel imaging trial designs. Furthermore, such an approach allows integration of patient-level data across trials to focus on underlying pathophysiology in addition to the investigational treatment. For instance, trial selection criteria may attempt to reduce heterogeneity in stroke mechanisms; yet, concurrent trials may pool imaging data to focus on certain causes of stroke such as large artery intracranial atherosclerosis or alternatively, small vessel disease. Understanding such neurovascular disorders with routinely archived data variables would likely disclose pivotal imaging biomarkers such as white matter hyperintensities, silent brain infarcts, or cortical volumes and novel treatment opportunities rather than awaiting the next candidate therapy to emerge along the trial pipeline years later. The Standards for Reporting Vascular Changes on Neuroimaging initiative persuasively underscores the need to harvest detailed yet standardized neuroimaging characteristics. Differentiating particular features of small vessel disease, as in the formative work of Standards for Reporting Vascular Changes on Neuroimaging, may modernize the clinical management of this incredibly common disorder. There are increasing data that neuroimaging measures have value as stratifying variables in the context of stroke recovery where specific measures of brain injury or function markedly enhance the ability to classify subjects at baseline according to their likelihood of having a robust response to a proposed therapy. Nested or embedded imaging analyses could disclose critical findings on the interaction of specific therapies with baseline pathophysiology. For instance, the relative benefit of endovascular therapy based on collateral status could be integrated into the analysis plan and examined by the data safety monitoring board during, rather than after trial completion. Such added value or imaging insurance would enhance the investment of each NIH-funded trial in StrokeNet, without the need to prespecify all of the myriad mechanisms that could be studied with imaging. The recent flurry of positive endovascular stroke therapy trials based on recruitment of only a fraction of the projected sample sizes provides a great example of how stroke imaging may revolutionize research progress and reduces ultimate costs. Continuous support, however, is necessary to sustain the expertise and flow of data, including data collection, processing, storage, reprocessing, and innovative statistical analyses to realize the full potential, as solely collecting imaging in data repositories does not achieve such goals.
Imaging in Perpetuity: Centralized Core as Unique Resource

Both central and local imaging readings are critical. Central expertise is essential in establishing novel parameters and systematic data collection, whereas local readings are most informative on ultimate generalizability. Establishment of this imaging architecture in a stroke trial network and the active archival process by expert reviewers adds layers or dimensions of potential data exploration and creates a unique resource for all aspects of stroke pathophysiology. Image data sets and extracted variables may be used indefinitely if support is established. Such a centralized core laboratory may enhance education in imaging expertise by facilitating comparisons between local and central reviewers, as well as among a large spectrum of central reviewers from distinct backgrounds. Inter-rater reliability and ultimate generalizability of various image parameters or approaches could be explored in the form of pilot studies and subsequently extended, rather than each trial electing to start from scratch. The use of local imaging readings could be enhanced by such an educational resource and novel imaging measures or parameters could also be piloted. Permeability imaging on older perfusion data sets and recognition of the spot sign in acute intracerebral hemorrhage could be tested in data accumulated years in the past. Multiple associations between imaging markers of underlying mechanisms could also be discerned without the need to conduct dedicated observational trials. Similarly, this resource or imaging data library could facilitate preliminary analyses and pilot testing of new postprocessing or for future therapeutic research endeavors much as feasibility is currently tested in the Greater Cincinnati/Northern Kentucky Stroke Study. The burgeoning field of neuroinformatics may disclose opportunities for cutting-edge techniques such as advanced computational modeling, machine learning, and computer vision to delineate hidden and potentially influential patterns in this imaging data library. This will undoubtedly spawn nascent algorithms and software methods that emphasize the need for transdisciplinary efforts at the intersection of computational and mathematical sciences. Image data sharing would become a reality for future generations.

Undoubtedly, the extensive characteristics and complexity of efficiently integrating stroke imaging into an ideal data resource for clinical stroke research is a daunting task and alternative approaches likely exist. The envisioned multifaceted approach, however, overcomes many of the current limitations that threaten the potential yield of imaging as a critical data resource for understanding and treating various phases of stroke. This practical and logically outlined roadmap offers potential advantages and does not supplant imaging development or other observational imaging studies. Multiple imaging modalities may be incorporated in acute stroke, recovery, and prevention, including the use of serial imaging outcomes at a fraction of the potential cost. The tools now exist to overcome the current limitations in translating the potential of stroke imaging data in StrokeNet; yet, the dedicated architecture for centralized and expert data flow, preservation, and integration must be established. These tangible products may leverage and maximize the use of neuroimaging data in stroke therapy studies and enhance the long-term scientific investment of these NIH-funded trials.

Conclusions

A remarkable opportunity now exists to leverage the potential of stroke and neurovascular imaging within StrokeNet, establishing dedicated architecture of imaging experts, inaugurating an active process of data flow and CDE variable extraction and creation of a centralized core laboratory as a unique resource to fuel educational objectives and future research.

Acknowledgments

We extend our gratitude for the efforts of the National Institutes of Health StrokeNet Investigators.

Sources of Funding

This work has been funded by National Institutes of Health-National Institute of Neurological Disorders and Stroke awards U01NS087748, K24NS072272, R01NS077706, and R13NS089280.

Disclosures

Dr. Liebeskind is a consultant to Stryker (modest), Coviden (modest) and employed by the University of California (UC), which holds a patent on retriever devices for stroke. Dr. Albers is a consultant to IschemiaView, Coviden, Lundbeck and has equity interest in iSchemaView. Dr. Derdeyn is a consultant to Microvention, Inc (modest), Silk Road, and Penumbra (modest) and has an ownership interest in Pulse Therapeutics (modest). Dr. Palesch is a data safety monitoring board member for Biogen Inc (modest) and Braintree Gate (modest). Dr. Sacco is a consultant to Boehringer-Ingelheim. Dr. Khatri received research support from Genentech (significant), Penumbra (significant) and is a data safety monitoring board member for Biogen Inc (modest). Dr. Saver is a consultant to Coviden, Stryker, BrainsGate, Pfizer, St. Jude Medical; served as an unpaid site investigator for Lundbeck trials and unpaid consultant to Genentech for PRIEMS; and employed by the University of California (UC), which holds a patent on retriever devices for stroke. Dr. Cramer has an ownership interest (personal/ren) and is a consultant for Roche (modest), RAND Corp (modest), Dart Neuroscience (significant). Dr. Broderick received research support from Genentech (modest) and is a consultant for Pfizer (modest). Wintemark received research grants from National Institutes of Health (modest) U01NS086872-01, U01NS087748-01, and R01NS062820-A2.

References

Key Words: collateral circulation ■ diagnostic imaging ■ stroke
Imaging in StrokeNet: Realizing the Potential of Big Data

Stroke. 2015;46:2000-2006; originally published online June 4, 2015; doi: 10.1161/STROKEAHA.115.009479

Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2015 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/46/7/2000

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Stroke* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Stroke* is online at:
http://stroke.ahajournals.org//subscriptions/