Blend Sign on Computed Tomography
Novel and Reliable Predictor for Early Hematoma Growth in Patients With Intracerebral Hemorrhage

Qi Li, MD, PhD; Gang Zhang, MD; Yuan-Jun Huang, MD; Mei-Xue Dong, MD; Fa-Jin Lv, MD, PhD; Xiao Wei, MSc; Jian-Jun Chen, MD; Li-Juan Zhang, MD; Xin-Yue Qin, MD, PhD; Peng Xie, MD

Background and Purpose—Early hematoma growth is not uncommon in patients with intracerebral hemorrhage and is an independent predictor of poor functional outcome. The purpose of our study was to report and validate the use of our newly identified computed tomographic (CT) blend sign in predicting early hematoma growth.

Methods—Patients with intracerebral hemorrhage who underwent baseline CT scan within 6 hours after onset of symptoms were included. The follow-up CT scan was performed within 24 hours after the baseline CT scan. Significant hematoma growth was defined as an increase in hematoma volume of >33% or an absolute increase of hematoma volume of >12.5 mL. The blend sign on admission nonenhanced CT was defined as blending of hypoattenuating area and hyperattenuating region with a well-defined margin. Univariate and multivariable logistic regression analyses were performed to assess the relationship between the presence of the blend sign on nonenhanced admission CT and early hematoma growth.

Results—A total of 172 patients were included in our study. Blend sign was observed in 29 of 172 (16.9%) patients with intracerebral hemorrhage on baseline nonenhanced CT scan. Of the 61 patients with hematoma growth, 24 (39.3%) had blend sign on admission CT scan. Interobserver agreement for identifying blend sign was excellent between the 2 readers (κ=0.957). The multivariate logistic regression analysis demonstrated that the time to baseline CT scan, initial hematoma volume, and presence of blend sign on baseline CT scan to be independent predictors of early hematoma growth. The sensitivity, specificity, positive and negative predictive values of blend sign for predicting hematoma growth were 39.3%, 95.5%, 82.7%, and 74.1%, respectively.

Conclusions—The CT blend sign could be easily identified on regular nonenhanced CT and is highly specific for predicting hematoma growth. (Stroke. 2015;46:2119–2123. DOI: 10.1161/STROKEAHA.115.009185.)

Key Words: cerebral hemorrhage □ computed tomography □ diagnostic imaging □ hematoma □ stroke

Intracerebral hemorrhage (ICH) is a devastating neurological disorder that accounts for ≈10% to 30% of all strokes.1 It is the least treatable form of stroke and is associated with high morbidity and mortality. Initial ICH volume and hematoma location are strong predictors of 30-day mortality and functional outcome.2,3 However, the volume and location of the hematoma is unmodifiable predictors on presentation. Early hematoma growth is a modifiable factor that is highly predictive of neurological deterioration in patients with ICH.

Hematoma growth, which is defined as hematoma growth >33% or 12.5 mL on follow computed tomographic (CT) scan, is frequently observed in patients with spontaneous ICH.4 Hematoma growth has been reported in ≈30% of patients presenting within 6 hours of symptom onset and is an independent predictor of poor functional outcome.5-7

Recently, imaging marker for hematoma growth has been identified on computed tomographic angiography (CTA). It is well documented that the presence of enhancing foci of contrast extravasation or the CTA spot sign may predict hematoma growth and is associated with poor functional outcome.8,9 Although the CTA spot sign is a promising imaging predictor of hematoma growth, the recognition of the spot sign requires early CTA examination, which is relatively expensive and not readily available in all clinical settings. Identification of novel imaging predictors of hematoma growth is crucial for early therapeutic intervention.

The noncontrast CT scan is the standard first line imaging method of choice for patients with ICH. It is fast, affordable, and widely available. In our study, we have identified a novel blend sign on admission nonenhanced CT that could be used to predict early hematoma growth in patients with ICH. The aim of our study was to investigate the clinical use of our newly identified CT blend sign in predicting early hematoma growth in patients with ICH.

Received February 20, 2015; final revision received May 21, 2015; accepted May 21, 2015.
From the Departments of Neurology (Q.L., G.Z., Y.J.H, M.X.D., J.J.C., X.Y.Q., P.X.) and Radiology (F.J.L., L.J.Z.), The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; and Department of Medical Technology, Chongqing Medical and Pharmaceutical College, Chongqing, China (X.W.).
Correspondence to Peng Xie, MD or Gang Zhang, MD, Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Rd, Chongqing, China. E-mail peng_xie@yahoo.com or drgangzhang@126.com
© 2015 American Heart Association, Inc.

Stroke is available at http://stroke.ahajournals.org DOI: 10.1161/STROKEAHA.115.009185
Materials and Methods

Patients
Institutional Review Board approval was obtained. Patients aged ≥18 years with spontaneous ICH who underwent baseline and follow-up CT scan in our institution between May 2011 and January 2015 were retrospectively included into our study. ICH was confirmed on nonenhanced CT scan showing parenchymal bleeding. Patients were excluded from our study if surgery was performed before the follow-up CT scan. Patients were also excluded from the study if they had head trauma, brain tumor, or secondary ICH from hemorrhagic transformation of brain infarction. Patients were excluded from the study if they have undergone surgical evacuation of hematoma before the follow-up CT scan. We have excluded patients receiving anticoagulants therapy before onset of ICH. The patients were diagnosed by baseline CT within 6 hours after onset of symptoms and follow-up CT scans were performed at 24 hours after the initial CT scan. The demographic information and the time to baseline and follow-up CT scans were recorded for each participant.

Imaging Analysis
The admission and follow-up CT scans were performed using standard clinical parameters with axial 5-mm section thickness. The images were obtained and stored for further evaluation. The location of the hematoma was assessed and documented. The hemorrhage locations were classified as basal ganglia, thalamus, lobe, brain stem, and cerebellum. On the basis of the criteria used in several large clinical studies of ICH, we have defined hematoma growth as an increase in hematoma volume of >33% or >12.5 mL at follow-up CT scan. Two experienced reviewers, who were blinded to the clinical information of the patients, independently evaluated the presence of the blend sign. Discrepancies about the occurrence of blend sign were settled by joint discussion of the 2 readers. The hematoma blend sign was defined as (1) blending of relatively hypoattenuating area with adjacent hyperattenuating region within a hematoma; (2) there is a well-defined margin between the hypoattenuating area and adjacent hyperattenuating region that is easily recognized by the naked eye; (3) the hematoma should have at least a 18 Hounsfield unit difference between the 2 density regions; (4) the relatively hypoattenuating area was not encapsulated by the hyperattenuating region. The hematoma has to meet the 4 criteria mentioned above to be defined as blend sign. The hypoattenuating area may vary in shape and size, but it should have a clearly defined border and is easily recognized by the naked eye. The imaging features of typical blend sign and blend sign mimics are illustrated in Figure 1.

Statistical Analysis
All statistical analyses were performed by using a commercially available software package (SPSS, Version 19.0). Categorical data are presented as proportions and continuous variables were presented as mean±SDs. The demographic, clinical, and radiological characteristics were compared between patients with hematoma growth and those without expansion by using Fisher exact test, and student t test as appropriate. A P<0.05 was considered statistically significant. Independent association of the CT blend sign and significant hematoma growth was evaluated by using multivariable logistic regression. The receiver–operator analysis was performed to assess the value of blend sign in predicting hematoma growth. The interobserver reliability of the blend sign was assessed by calculation of κ values. The κ values were categorized as follows: κ<0.21 to 0.4, 0.41 to 0.6, 0.61 to 0.8, and 0.81 to 1 indicate low, moderate, substantial, and excellent agreement between observers. A κ=1 indicates total agreement between observers.

Results
Baseline Characteristics
A total of 172 patients were included in our study. There were 117 men and 55 women. The mean age of the patients was 61±12 years (age range, 31–87 years). Significant hematoma growth was observed in 61 patients (35%) with ICH. The average baseline hematoma volume was 17.1 mL. The average time to baseline CT scan was 2.3 hours from the onset of symptoms. The baseline hematoma was located in basal ganglia (59.3%), thalamus (25%), cerebral lobes (10.5%), brain stem (2.9%), and cerebellum (2.3%). The baseline clinical characteristics of patients with and without significant hematoma growth were listed in Table 1. There were no statistically significant differences in age, sex, hypertension, diabetes mellitus, dyslipidemia, smoking, and alcohol drinking.

Prevalence and Interobserver Agreement of Blend Sign
Blend sign was observed in 29 of 172 (16.9%) patients with ICH on baseline nonenhanced CT scan. Of the 61 patients with hematoma growth, 24 (39.3%) had blend sign on admission CT scan. Interobserver agreement for identifying blend sign was excellent between the 2 readers (κ=0.957). Discrepancies were observed in 2 patients between the 2 readers. The sensitivity, specificity, positive and negative predictive values of blend sign for predicting hematoma growth were 39.3%, 95.5%, 82.7%, and 74.1%, respectively. The receiver–operator analysis was performed and confirmed the value of blend sign.
in predicting hematoma growth (area under the curve=0.674; P<0.001; Figure 2).

The baseline clinical and radiological variables of patients with and without CT blend sign were compared and listed in Table 2. The age, sex, history of hypertension, diabetes mellitus, smoking history, and alcohol consumption were similar between patients with CT blend sign and those without the blend sign (P>0.05). The baseline hematoma volume of patients with blend sign was significantly larger compared with those without the sign (P<0.01).

Univariate logistic regression analysis was performed to assess the association between various clinical and radiological parameters and early hematoma growth. In the univariate logistic analysis, the time to baseline CT scan, initial hematoma volume, and the presence of blend sign on admission CT scan were associated with early hematoma growth (Table 3). The variables that were significant in the univariate logistic regression were retained in the multivariate logit model. The multivariate logistic regression analysis demonstrated that the time to baseline CT scan, initial hematoma volume, and presence of blend sign on baseline CT scan to be independent predictors of early hematoma growth (Table 4).

Discussion

The dynamic hematoma growth is not uncommon in patients with ICH. In previous studies, absolute early hematoma growth has been observed in >70% of patients with ICH several hours after ictus. Significant hematoma growth, which was defined as hematoma growth >33% or 12.5 mL has been reported in approximately one third of ICH patients. Because early hematoma growth is associated with poor functional outcome, identification of potential predictors for hematoma growth is crucial for early diagnosis and management.

In our study, we have identified a novel and easy-to-use imaging marker for predicting hematoma growth. Blend sign was found in 16.9% of our patient cohort and showed excellent

Table 1. Comparison of Baseline Demographic, Clinical, and Radiological Characteristics Between Patients With and Without Hematoma Growth

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Expander (n=61)</th>
<th>Nonexpander (n=111)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age, yr (SD)</td>
<td>62.1 (11.6)</td>
<td>59.5 (12.2)</td>
<td>0.164</td>
</tr>
<tr>
<td>Sex, male (%)</td>
<td>46 (75.4%)</td>
<td>71 (64%)</td>
<td>0.171</td>
</tr>
<tr>
<td>Alcohol consumption (%)</td>
<td>28 (45.9%)</td>
<td>51 (45.9%)</td>
<td>0.996</td>
</tr>
<tr>
<td>Smoking (%)</td>
<td>32 (52.5%)</td>
<td>46 (41.4%)</td>
<td>0.167</td>
</tr>
<tr>
<td>Hypertension (%)</td>
<td>43 (70.5%)</td>
<td>73 (65.8%)</td>
<td>0.527</td>
</tr>
<tr>
<td>Diabetes mellitus (%)</td>
<td>9 (14.8%)</td>
<td>14 (12.6%)</td>
<td>0.815</td>
</tr>
<tr>
<td>Time to baseline CT (SD)</td>
<td>1.67 (1.17)</td>
<td>2.76 (1.72)</td>
<td><0.001</td>
</tr>
<tr>
<td>Baseline hematoma volume (SD)</td>
<td>24.31 (20.68)</td>
<td>13.12 (8.08)</td>
<td><0.001</td>
</tr>
<tr>
<td>Blend sign on baseline CT (%)</td>
<td>24 (39.3%)</td>
<td>5 (4.5%)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Table 2. Comparison of Baseline Demographic, Clinical, and Radiological Characteristics Between Patients With and Without CT Blend Sign

<table>
<thead>
<tr>
<th>Variables</th>
<th>Blend Sign Positive (n=29)</th>
<th>Blend Sign Negative (n=143)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age, yr (SD)</td>
<td>60.21 (12.5)</td>
<td>60.45 (11.9)</td>
<td>0.925</td>
</tr>
<tr>
<td>Sex, male (%)</td>
<td>24 (82.8%)</td>
<td>93 (65.1%)</td>
<td>0.08</td>
</tr>
<tr>
<td>Alcohol consumption (%)</td>
<td>16 (55.2%)</td>
<td>63 (44.1%)</td>
<td>0.311</td>
</tr>
<tr>
<td>Smoking (%)</td>
<td>16 (55.2%)</td>
<td>62 (43.4%)</td>
<td>0.307</td>
</tr>
<tr>
<td>Hypertension (%)</td>
<td>17 (58.6%)</td>
<td>99 (69.2%)</td>
<td>0.283</td>
</tr>
<tr>
<td>Diabetes mellitus (%)</td>
<td>6 (20.7%)</td>
<td>17 (11.9%)</td>
<td>0.231</td>
</tr>
<tr>
<td>Time to baseline CT (SD)</td>
<td>2.34 (1.58)</td>
<td>2.39 (1.66)</td>
<td>0.897</td>
</tr>
<tr>
<td>Baseline hematoma volume (SD)</td>
<td>29.78 (22.28)</td>
<td>14.52 (11.35)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Table 3. Univariate Analysis of Predictors for Early Hematoma Growth

<table>
<thead>
<tr>
<th>Variable</th>
<th>Odds Ratio</th>
<th>95% Confidence Interval</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>1.02</td>
<td>0.99–1.05</td>
<td>0.164</td>
</tr>
<tr>
<td>Sex</td>
<td>0.58</td>
<td>0.29–1.17</td>
<td>0.126</td>
</tr>
<tr>
<td>Current smoking</td>
<td>0.64</td>
<td>0.34–1.20</td>
<td>0.166</td>
</tr>
<tr>
<td>Alcohol consumption</td>
<td>1.01</td>
<td>0.54–1.88</td>
<td>0.992</td>
</tr>
<tr>
<td>Hypertension</td>
<td>0.8</td>
<td>0.41–1.58</td>
<td>0.527</td>
</tr>
<tr>
<td>Systolic blood pressure</td>
<td>1.01</td>
<td>0.99–1.02</td>
<td>0.153</td>
</tr>
<tr>
<td>Diastolic blood pressure</td>
<td>1.01</td>
<td>0.98–1.03</td>
<td>0.415</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>0.83</td>
<td>0.34–2.06</td>
<td>0.693</td>
</tr>
<tr>
<td>Intraventricular hemorrhage</td>
<td>0.79</td>
<td>0.40–1.55</td>
<td>0.48</td>
</tr>
<tr>
<td>Time to baseline CT</td>
<td>0.61</td>
<td>0.47–0.78</td>
<td><0.001</td>
</tr>
<tr>
<td>Baseline ICH volume</td>
<td>1.06</td>
<td>1.03–1.09</td>
<td><0.001</td>
</tr>
<tr>
<td>Blend sign on baseline CT</td>
<td>13.75</td>
<td>4.89–38.66</td>
<td><0.001</td>
</tr>
</tbody>
</table>

ICH indicates intracerebral hemorrhage; and CT, computed tomography.
The novel CT blend sign may reflect blood of different age. The CT attenuation of blood is dependent on the time course of the bleeding. \(^1\) The density of hematoma is affected by the individual components of the hematoma. The hemoglobin is the most important factor determining CT attenuation of the hematoma. Other components of the hematoma may have minimal impact on the attenuation values in the CT scan. \(^2\) The CT appearance of hematoma becomes hyperattenuating as the blood becomes clotted. \(^3\) An actively bleeding epidural hematoma may seem relatively hypoattenuating at nonenhanced CT than hematoma with clot retraction. We propose that the blend sign occurs because of liquid blood secondary to the presence of active bleeding. In our study, we have tried to use a quantitative definition of the blend sign, but failed to find an optimal Hounsfield unit range for each region. However, an 18 Hounsfield unit difference between the 2 density regions may help identifying mixed-density hematomas that are at high risk for early hematoma growth. The blood of different age may mix together resulting in heterogeneous appearance of the blend sign. This might explain that CT blend sign may be used as predictor for hematoma growth.

In recent years, novel imaging predictors have been developed for early hematoma growth. The presence of contrast extravasation on CTA source images has been identified as a promising imaging predictor for hematoma growth. The CTA spot sign are usually multiple, round foci that present at the margin of hematoma. Recently, the reliability of the sign as an independent predictor for hematoma growth and has been validated in several prospective studies. \(^5\)\(^,\)\(^6\)\(^,\)\(^22\) According to the Predicting Haematoma Growth and Outcome in Intracerebral Haemorrhage Using Contrast Bolus CT (PREDICT) study, the sensitivity, specificity, positive and negative predictive value of the CTA spot sign for predicting hematoma growth were 51\%, 85\%, 61\%, and 78\%, respectively. \(^2\) In our study, the reported sensitivity, specificity, positive and negative predictive values of blend sign for predicting hematoma growth were 39.9\%, 95.5\%, 82.7\% and 74.1\%, respectively. Although the reported sensitivity of the CT blend sign is lower than the CTA spot sign, the CT blend sign is highly specific for predicting hematoma growth. There are several limitations in the study. A limitation of our study is that only patients with 2 scans in the initial 6 hours of admission were studied which may lead to potential selection bias. We did not include an analysis of the CTA spot sign because early CTA examination was not routinely performed in our institution in patients with ICH. Future studies that incorporate CTA spot sign are needed to further clarify the association between CTA spot sign and the CT blend sign in patients with ICH.

In conclusion, our study has reported a novel and easy to use CT blend sign that predicts early hematoma growth in patients with ICH. The CT blend sign could be easily identified on regular nonenhanced CT and is highly specific for predicting hematoma growth. The CT blend sign may be used as an alternative method in institutions for prediction of hematoma growth where immediate CTA examination is not available.

Sources of Funding
This study was supported by a grant from the National Natural Science Foundation of China (grant no. 81200899).

Disclosures
None.

References

Table 4. Multivariate Analysis of Predictors for Early Hematoma Growth

<table>
<thead>
<tr>
<th>Variable</th>
<th>Odds Ratio</th>
<th>95% Confidence Interval</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to baseline CT</td>
<td>0.46</td>
<td>0.32–0.66</td>
<td><0.001</td>
</tr>
<tr>
<td>Baseline hematoma volume</td>
<td>1.06</td>
<td>1.02–1.09</td>
<td><0.001</td>
</tr>
<tr>
<td>Blend sign on baseline CT</td>
<td>20.23</td>
<td>5.13–79.77</td>
<td><0.001</td>
</tr>
</tbody>
</table>

CT indicates computed tomography.

Blend Sign on Computed Tomography: Novel and Reliable Predictor for Early Hematoma Growth in Patients With Intracerebral Hemorrhage
Qi Li, Gang Zhang, Yuan-Jun Huang, Mei-Xue Dong, Fa-Jin Lv, Xiao Wei, Jian-Jun Chen, Li-Juan Zhang, Xin-Yue Qin and Peng Xie

Stroke. 2015;46:2119-2123; originally published online June 18, 2015;
doi: 10.1161/STROKEAHA.115.009185
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2015 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/46/8/2119

Data Supplement (unedited) at:
http://stroke.ahajournals.org/content/suppl/2016/04/04/STROKEAHA.115.009185.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/
コンピューター断層撮影で認められた脳内出血の混合徴候
脳内出血患者における早期の血腫増大の検出に対する新たな信頼性のある予測因子

Blend Sign on Computed Tomography
Novel and Reliable Predictor for Early Hematoma Growth in Patients With Intracerebral Hemorrhage

Qi Li, MD, PhD; Gang Zhang, MD; Yuan-Jun Huang, MD, et al.

Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.

背景および目的：脳内出血患者では早期の血腫増大が希なく、機能転帰不良の独立予測因子である。本研究では、我々が新たに特定したコンピューター断層撮影（CT）画像の混合徴候（blend sign）を用いた早期の血腫増大的予測について報告し、検証することを目的とした。

方法：脳内出血発症後6時間以内に入院時のCT検査を施行した脳内出血患者を本研究の対象とした。追跡調査のCT検査は入院時のCT検査から24時間以内に施行した。血腫体積の増加が＞33％、もしくは血腫の絶対的増加量が＞12.5 mLであった場合を有意な血腫増大と定義した。入院時の非造影CT画像の混合徴候は、低吸収域と高吸収域が明確な境界線で接している場合と定義した。レギュレーショニングおよび多変量ロジスティック回帰分析を実施し、入院時の非造影CTの混合徴候の存在と早期の血腫増大の関連を評価した。

結果：本研究には脳内出血患者172例を含めた。入院時の非造影CT検査では、脳内出血患者172例中29例（16.9％）に混合徴候が認められた。血腫増大が認められた61例中24例（39.3％）で入院時のCT画像に混合徴候が認められた。混合徴候の識別に関する2名の評価者間の一致率は良好であった（κ=0.957）。多変量ロジスティック回帰分析により、入院時のCT検査までの時間、最初の血腫体積、および入院時のCT画像に混合徴候が認められたことが早期の血腫増大の独立予測因子であることが明らかになった。血腫増大を予測する混合徴候の存在については39.3％、特異度は95.5％、陽性的比率は82.7％、陰性的比率は74.1％であった。

結論：CT画像の混合徴候は通常の非造影CT検査で簡単に識別できる、血腫増大の予測の特異度が高い。

Stroke 2015; 46: 2119-2123. DOI: 10.1161/STROKEAHA.115.009185.