Influence of Device Choice on the Effect of Intra-Arterial Treatment for Acute Ischemic Stroke in MR CLEAN (Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute Ischemic Stroke in the Netherlands)

Diederik W. Dippel, MD, PhD; Charles B. Majoie, MD, PhD; Yvo B. Roos, MD, PhD; Aad van der Lugt, MD, PhD; Robert J. van Oostenbrugge, MD, PhD; Wim H. van Zwan, MD, PhD; Hester F. Lingsma, MSc, PhD; Peter J. Koudstaal, MD, PhD; Kilian M. Treurniet, MD; Lucie A. van den Berg, MD; Debbie Beumer, MD; Puck S. Fransen, MD; Olvert A. Berkhemer, MD; for the MR CLEAN Investigators*

Background and Purpose—Intra-arterial treatment by means of retrievable stents has been proven safe and effective. In MR CLEAN (Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute Ischemic Stroke in the Netherlands), the choice of the type of thrombectomy device was left to the discretion of the interventionist. The aim of this study was to explore the differences in functional outcome, neurological recovery, reperfusion, extent of infarction, and adverse events according to stent type and make.

Methods—The primary outcome was functional outcome at 90 days, assessed with the modified Rankin Scale (mRS). Neuroimaging outcomes included occlusion on computed tomographic angiography at 24 hours, infarct volume at 5 to 7 days, and modified thrombolysis in cerebral infarction scores. Safety outcomes included death within 90 days and any symptomatic intracerebral hemorrhage. We analyzed possible interactions between stent type and treatment with multiple regression models. Treatment effects were adjusted for patient age, stroke severity, and collateral score.

Results—Of the 500 patients included in the trial, 233 were allocated to intervention. Of these, 124 (53%) were first treated with Trevo (adjusted common odds ratio for shift on the mRS [acOR, 1.98; 95% confidence interval, 1.30–2.92]), 31 (13%) with Solitaire (acOR, 1.90; 95% confidence interval, 0.97–3.73), 40 (17%) with other retrievable stents or mechanical devices (acOR, 0.96; 95% confidence interval, 0.51–3.93), and 38 (16%) could not be treated. There was no interaction between device and treatment effect on functional outcome and all other secondary and safety outcomes.

Conclusions—We found no evidence for a differential effect of thrombectomy for acute ischemic stroke by type of stent.

(Stroke. 2016;47:2574-2581. DOI: 10.1161/STROKEAHA.116.013929.)

Key Words: cerebral hemorrhage ■ infarction ■ odds ratio ■ reperfusion ■ stroke

Intra-arterial treatment has been proven safe and effective for a wide range of patients with acute ischemic stroke caused by intracranial large vessel occlusion.1–6 In the MR CLEAN trial (Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute Ischemic Stroke in the Netherlands), there were no restrictions to the choice of arterial treatment modality or device, apart from the requirement that the device should be Food and Drug Administration or Conformité Européenne approved and allowed in the trial by the steering committee, on the basis of proven safety and efficaciousness in cases series.1,7 The vast majority of patients were treated with retrievable stents. This setting provides a unique opportunity to compare treatment effects reached with the most commonly used retrievable stents.

Stents differ in size, shape, and physical properties, such as radial force, ease of deployment, friction, and radio-opacity. The

Received April 29, 2016; final revision received July 21, 2016; accepted July 26, 2016.

From the Departments of Neurology (D.W.D., P.J.K., P.S.F., O.A.B.), Radiology (A.v.d.L.), and Public Health (H.F.L.), Erasmus MC University Medical Center Rotterdam, The Netherlands; Departments of Radiology (C.B.M., K.M.T., P.S.F., O.A.B.) and Neurology (Y.B.R., L.A.v.d.B.), Academic Medical Center, Amsterdam, The Netherlands; and Departments of Neurology (R.J.v.O., D.B.) and Radiology (W.H.v.Z., O.A.B.), Maastricht University Medical Center, The Netherlands.

*A list of all MR CLEAN investigators is given in the Appendix.

Guest Editor for this article was Seemant Chaturvedi, MD.

The online-only Data Supplement is available with this article at http://stroke.ahajournals.org/lookup/suppl/doi:10.1161/STROKEAHA.116.013929/-/DC1.

Correspondence to Diederik W. Dippel, MD, PhD, Ee 2242, Department of Neurology, Erasmus MC University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands. E-mail d.dippel@erasmusmc.nl

© 2016 American Heart Association, Inc.

Stroke is available at http://stroke.ahajournals.org DOI: 10.1161/STROKEAHA.116.013929

2574
extent to which these properties are important in clinical practice and whether they lead to better clinical outcomes is unknown. Experience with different stent types has led researchers and interventionists express the opinion that one type of stent may cause more damage to the vessel wall than the other. The apparently smaller treatment effect and rate of revascularization in MR CLEAN have been attributed to the type of stent used in this trial, instead of other factors, such as broader inclusion criteria.8

The aim of this post hoc study is to explore the differences in functional outcome, neurological recovery, extent of infarction, and adverse events according to treatment type and modality within the framework of the MR CLEAN trial.

Methods
Study Design and Participants
Patient eligibility and methods of MR CLEAN have been reported previously. In short, MR CLEAN was a randomized clinical trial of intra-arterial treatment versus no intra-arterial treatment in patients with a proximal intracranial arterial occlusion in the anterior circulation demonstrated on vessel imaging and treatable within 6 hours after symptom onset. In almost all treated patients, retrievable stents were used as a first approach.

Treatment Modalities
Intra-arterial treatment was categorized by the first treatment modality used. This could be (1) Trevo retrievable stent, (2) Solitaire retrievable stent, (3) other types of stent or mechanical devices or intra-arterial thrombolytics, and (4) no treatment or mechanical device. Treatment modalities or stent types used in <10% of patients were lumped into group 3. The fourth group consisted of patients who either recovered or had no (treatable) occlusion after reaching the angiosuite, or deteriorated neurologically before treatment.

Patients
All 500 patients from the trial were included in the primary analysis. We report demographics and baseline characteristics, including comorbidity, stroke severity, and baseline neuroimaging by treatment modality.

Outcomes
The primary outcome was functional outcome at 90 days, assessed with the dichotomized mRS (0–2 versus 3–6), NIHSS score at 24 hours, and infarct volume at 5 to 7 days on noncontrast computed tomography,9 and modified thrombolysis in cerebral infarction (mTICI) score in patients who underwent intra-arterial treatment. Safety outcomes included death within 1 week, 1 month, and 90 days, any parenchymal hematoma ECASS (European Cooperative Acute Stroke Study) type 2, and any symptomatic intracerebral hemorrhage. We also report procedural adverse events, including vessel perforation, subarachnoid hemorrhage, and dissection. Logistics parameters included (1) time from onset to reperfusion or end of procedure, (2) time from door to reperfusion or end of procedure, (3) duration of procedure, and (4) number of attempts per device.

Statistical Analysis
The primary analysis consisted of assessment of interaction between device and treatment effect by introducing a categorical variable indicating stent type, other mechanical or no treatment in a multivariable ordinal regression model, with a multiplicative effect on the treatment variable. Next, secondary outcomes were tested with regression models against treatment modality in a similar way.

Results
Treatment Modalities
Of all 233 patient allocated to intervention, 38 (16%) could not be treated, 124 (53%) were first treated with the Trevo device, 31 (13%) with the Solitaire device, and 40 (17%) with other retrievable stents or mechanical devices, or with intra-arterial thrombolytics. These other treatment modalities included aspiration or clot disruption with the guidewire (3/40, 7.5%), CAPTURE device (1/40, 2.5%), CATCH device (11/40, 27.5%), Lazarus device (1/40, 2.5%), MERCI device (2/40, 5.0%), Penumbra 3D device (1/40, 2.5%), REVIVE device (19/40, 47.5%), and unspecified retrievable stents (2/40, 5%). In 24 patients (10.3%), a second treatment modality was used. This happened in 11 of 124 patients treated with Trevo (8.9%), in 1 of 30 patients treated with Solitaire (3.2%), and in 12 of 40 (30%) patients treated with other devices (P<0.001).

Baseline Characteristics
Of the 500 patients included in the trial, 233 were allocated to intervention. Baseline characteristics were distributed evenly over subgroups defined by treatment modality (Table 1). Moderate to good collaterals were seen more often in patients treated with the Trevo device (83/124, 67%), but this was not statistically significant in comparison with all other treatment subgroups (68/109, 62%, P=0.53) or with the Solitaire subgroup (17/31, 55%, P=0.19). Time to groin was 25 to 30 minutes longer in the Solitaire compared with the Trevo or other treatment modalities, but the difference was not statistically significant. General anesthesia was used more often in Trevo-treated patients than those treated with the Solitaire (P=0.10).

Effect on the Primary Outcome by Treatment Modality
The overall effect of intervention on the primary outcome was positive; the common odds ratio (cOR) was 1.66 (95% confidence interval [CI], 1.21–2.28); after adjustment for age, NIHSS, and collateral score, the adjusted common odds ratio (acOR) was 1.74 (95% CI, 1.26–2.41). In the group of 124 (53%) patients who were first treated with Trevo, the acOR was 1.98 (95% CI, 1.30–2.92) and among the 31 (13%) patients who were treated with Solitaire, the acOR was 1.90 (95% CI, 0.97–3.73; Table 2). In the 40 (17%) patients treated with other retrievable stents or mechanical devices, the acOR was 0.96 (95% CI, 0.51–1.93). There was no statistically significant interaction between device and effect on the primary outcome (Solitaire P=0.42, other devices P=0.06). The distribution of primary outcomes was similar for Trevo and Solitaire (Figure 1).
Effect on the Secondary Outcomes

The proportions of patients with favorable scores on the Barthel Index at 90 days, the NIHSS scores at 24 hours and 5 to 7 days, were similar for each treatment modality (Table I in the online-only Data Supplement). Of the neuroimaging outcomes, infarct volume and absence of occlusion on CTA were similarly distributed, again without interaction. The proportion of patients with mTICI score 2b/3 was lower for patients treated with other mechanical devices than for patients treated with Solitaire or Trevo, but the difference was
not significant (Figure 2). Treatment effects for clinical and neuroimaging outcomes were similar for Trevo and Solitaire and seemed worse for other devices, but there was no statistically significant interaction (Table 2), except for persistence of occlusion on CTA, which was seen less often after treatment with Trevo (p<0.01) and Solitaire devices (p<0.03). Finally, no interaction was seen between stent type and general anesthesia or center on outcome (data not shown).

Safety Outcomes
Rates of any symptomatic intracerebral hemorrhage did not vary significantly by device type and in comparison with controls. The rate of deaths within 7 days and 3 months was increased for patients treated with other devices (11/40, 27.5% to 16/40, 40.0%), and this was statistically significant (Table 3). No statistically significant differences in occurrence of parenchymal hematoma types 1 and 2 and of new infarct in different territory were noted.

Timing and Work Flow
We estimated time to successful reperfusion, which was defined as mTICI 2b/3. We noted no differences in time from start of the treatment to reperfusion between patients treated with Trevo and those treated with Solitaire (−2 minutes,
Discussion

We explored functional outcome, neurological recovery, reperfusion, extent of infarction, and adverse events according to stent type and make, within the framework of the MR CLEAN trial. Our study suggests that the 2 most commonly used stents, Trevo and Solitaire, perform equally well. We observed no statistically or clinically significant differences in effect on functional outcome, neurological recovery, recanalization, final infarct volume, or adverse events. Effectiveness and safety should, therefore, not be an argument in the choice of these devices.

Other Studies

The large majority of other randomized trials of stent thrombectomy have predominantly used one particular device. We found one other study that directly compared the performance of different stent types. However, it included only 33 patients, and therefore lacked precision. A recent systematic review of revascularization and functional outcomes by stent type also found no significant differences between studies using Trevo and studies using Solitaire. Studies that used only one type

Table 3. Safety Parameters by Treatment Modality

<table>
<thead>
<tr>
<th>Clinical events</th>
<th>Control, n=267 (%)</th>
<th>Trevo, n=124 (%)</th>
<th>Solitaire, n=31 (%)</th>
<th>Other, n=40 (%)</th>
<th>None, n=38 (%)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptomatic intracerebral hemorrhage</td>
<td>17 (6.4)</td>
<td>9 (7.3)</td>
<td>3 (9.7)</td>
<td>3 (7.5)</td>
<td>3 (7.9)</td>
<td>0.90</td>
</tr>
<tr>
<td>Death within 7 d</td>
<td>27 (10.1)</td>
<td>12 (9.7)</td>
<td>5 (16.1)</td>
<td>11 (27.5)</td>
<td>5 (13.2)</td>
<td>0.04</td>
</tr>
<tr>
<td>Death within 1 mo</td>
<td>49 (18.4)</td>
<td>18 (14.5)</td>
<td>7 (22.6)</td>
<td>13 (32.5)</td>
<td>6 (15.8)</td>
<td>0.15</td>
</tr>
<tr>
<td>Death within 90 d</td>
<td>59 (22.1)</td>
<td>19 (15.3)</td>
<td>7 (22.6)</td>
<td>16 (40.0)</td>
<td>7 (18.4)</td>
<td>0.03</td>
</tr>
<tr>
<td>Radiological findings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subarachnoid hemorrhage</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>2 (5.0)</td>
<td>0 (0)</td>
<td>0.02</td>
</tr>
<tr>
<td>Parenchymal hemorrhage type 1</td>
<td>15 (5.9)</td>
<td>15 (12.4)</td>
<td>4 (12.9)</td>
<td>1 (2.5)</td>
<td>0 (0)</td>
<td>1.0</td>
</tr>
<tr>
<td>Parenchymal hemorrhage type 2</td>
<td>21 (8.2)</td>
<td>11 (9.1)</td>
<td>1 (3.2)</td>
<td>2 (5.0)</td>
<td>4 (10.5)</td>
<td>0.79</td>
</tr>
<tr>
<td>New infarct in different territory</td>
<td>13 (4.9)</td>
<td>15 (12.1)</td>
<td>2 (6.5)</td>
<td>5 (12.5)</td>
<td>1 (2.6)</td>
<td>0.14</td>
</tr>
<tr>
<td>Procedural events (DSA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vasospasm</td>
<td>…</td>
<td>49 (39.5)</td>
<td>10 (32.3)</td>
<td>14 (35.0)</td>
<td>…</td>
<td>0.75</td>
</tr>
<tr>
<td>Vessel perforation</td>
<td>…</td>
<td>0 (0)</td>
<td>1 (3.2)</td>
<td>1 (2.5)</td>
<td>…</td>
<td>0.13</td>
</tr>
<tr>
<td>New clot in different vascular territory</td>
<td>…</td>
<td>17 (13.7)*</td>
<td>1 (3.2)</td>
<td>2 (5.0)</td>
<td>…</td>
<td>0.14</td>
</tr>
</tbody>
</table>

*In 3 cases, the embolism occurred before the attempted mechanical thrombectomy, and in 2, it could be attributed to the second device that was used in the procedure.

Figure 2. Modified thrombolysis in cerebral infarction (mTICI) distribution for Trevo, Solitaire, and other devices in MR CLEAN (Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute Ischemic Stroke in the Netherlands). Other devices comprise stent-retrievers, MERCI, aspiration devices, guidewire manipulation, and other thrombectomy devices.
of device were included in the review. No within study comparisons and no adjustments for prognostic factors could be made.15

Previously, comparisons have been made of retrievable stents with the first generation devices.16–18 The observation that both the Solitaire and the Trevo outperformed the first generation devices, corroborates our findings.17,18

Limitations

The MR CLEAN trial was not designed for the purpose of comparing device types. The baseline characteristics and prognostic factors were well balanced between the 2 most commonly used stent types; this suggests that systematic bias is negligible. The findings in the category other devices are difficult to interpret. The experience of the interventionists with these relatively new devices was probably limited; moreover, confounding by indication may have played a role. From these data, it cannot be readily concluded that other devices are inferior to the 2 most commonly used retrievable stents. Our study does not provide a definite answer to the question “is any device for thrombectomy better than another one?” , because (1) our study was not powered to analyze the differences in outcome according to device type, (2) the comparison was not randomized, and (3) the data stem from a trial setting and not from the real world. In our opinion, however, MR CLEAN was a trial that approached the real world as close as possible, whereas real-world data often do not provide a clear-cut comparison that is easy to interpret.

Overall Conclusions

In this randomized clinical trial of endovascular thrombectomy versus usual care for patients with acute ischemic stroke caused by proximal intracranial occlusion, we found no evidence for a differential treatment effect by stent type or make.

Appendix: The MR CLEAN Investigators

Executive Committee: Diederik W.J. Dippel, Department of Neurology, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Aad van der Lugt, Department of Radiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Charles B.L.M. Majoie, Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands; Yvo B.W.E.M. Roos, Department of Neurology, Academic Medical Center, Amsterdam, The Netherlands; Paul J. Nederkoorn, Department of Neurology, Academic Medical Center, Amsterdam, The Netherlands; Marieke J.H. Wemer, Department of Neurology, Leiden University Medical Center, The Netherlands; Marianne A.A. van Walderveen, Department of Radiology, Leiden University Medical Center, The Netherlands; Robert J. van Oostenbrugge, Department of Neurology, Maastricht University Medical Center and Cardiovascular Research Institute Maastricht (CARIM), The Netherlands; Wim H. van Zwam, Department of Radiology, Maastricht University Medical Center and Cardiovascular Research Institute Maastricht (CARIM), The Netherlands; Julie Staals, Department of Neurology, Maastricht University Medical Center and Cardiovascular Research Institute Maastricht (CARIM), The Netherlands; Jeanette Hofmeijer, Department of Neurology, Rijnstate Hospital, Arnhem, The Netherlands; Jacques A. van Oostayen, Department of Radiology, Rijnstate Hospital, Arnhem, The Netherlands; Geert J. Lycklama à Nijeholt, Department of Radiology, MC Haaglanden, the Hague, The Netherlands; Jelis Boiten, Department of Neurology, MC Haaglanden, the Hague, The Netherlands; Diederik W.J. Dippel, Department of Neurology, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Patrick A. Brouwer, Department of Radiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Bart J. Emmer, Department of Radiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Sebastiaan F. de Brujin, Department of Neurology, HAGA Hospital, the Hague, The Netherlands; Lukas C. Walderveen, Department of Radiology, Leiden University Medical Center, the Hague, The Netherlands; L. Jaap Kappelle, Department of Neurology, University Medical Center Utrecht, Utrecht, The Netherlands; Rob H. Lo, Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands; Ewoud J. van Dijk, Department of Neurology, Radboud University Medical Center, Nijmegen, The Netherlands; Joost de Vries, Department of Neurosurgery, Radboud University Medical Center, Nijmegen, The Netherlands; Paul L.M. de Kort, Department of Neurology, Sint Elisabeth Hospital, Tilburg, The Netherlands; Jan S.P. van den Berg, Department of Neurology, Isala Klinieken, Zwolle, The Netherlands; Boudewijn A.A.M. van Hasselt, Department of Radiology, Isala Klinieken, Zwolle, The Netherlands; Leo A.M. Aerden, Department of Neurology, Reinder de Graaf Gasthuis, Delft, The Netherlands; René J. Dallingga, Department of Radiology, Reinder de Graaf Gasthuis, Delft, The Netherlands; Marieke C. Visser, Department of Neurology, VU Medical Center, Amsterdam, The Netherlands; Joseph C.J. Bot, Department of Radiology, VU Medical Center, Amsterdam, The Netherlands; Patrick C. Vroomen, Department of Neurology, University Medical Center Groningen, The Netherlands; Omid Eslicht, Department of Radiology, University Medical Center Groningen, The Netherlands; Tobien H.C.M.L. Schreuder, Department of Neurology, Atrium Medical Center, Heerlen, The Netherlands; Roel J.J. Heijboer, Department of Radiology, Atrium Medical Center, Heerlen, The Netherlands; Koos Keizer, Department of Neurology, Catharina Hospital, Eindhoven, The Netherlands; Alexander V. Tielbeek, Department of Radiology, Catharina Hospital, Eindhoven, The Netherlands; Heleen M. den Hertog, Department of Neurology, Medical Spectrum Twente, Enschede, The Netherlands; Dick G. Gerrits, Department of Radiology, Medical Spectrum Twente, Enschede, The Netherlands; Renske M. van den Berg-Vos, Department of Neurology, Sint Lucas Andreas Hospital, Amsterdam, The Netherlands; Giorgos B. Karas, Department of Radiology, Sint Lucas Andreas Hospital, Amsterdam, The Netherlands. Imaging Assessment Committee: Charles B.L.M. Majoie (Chair), Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands; Wim H. van Zwam, Department of Radiology, Maastricht University Medical Center and Cardiovascular Research Institute Maastricht (CARIM), The Netherlands; Aad van der Lugt, Department of Radiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Geert J. Lycklama à Nijeholt, Department of Radiology, MC Haaglanden, the Hague, The Netherlands; Marianne A.A. van Walderveen, Department of Radiology, Leiden University Medical Center, The Netherlands; Joseph C.J. Bot, Department of Radiology,
Sources of Funding

MR CLEAN trial (Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute Ischemic Stroke in the Netherlands) was partly funded by the Dutch Heart Foundation and by unrestricted grants from AngioCare BV, Medtronic/Covidien/EV3, MEDAC GmbH/LAMEPRO, Penumbra Inc, Stryker, and Top Medical/Concentric.

Disclosures

Erasmus MC received funds from Stryker and Bracco Imaging for consultations by Dr Dippel. The Academic Medical Center received funds from Stryker for consultations by Drs Majoie, Roos, and Berkhemer. The Maastricht University Medical Center received funds from Stryker for consultations by Drs Majoie, Roos, and Berkhemer. The Maastricht University Medical Center received funds from Stryker for consultations by Dr van Zwam.

References

Influence of Device Choice on the Effect of Intra-Arterial Treatment for Acute Ischemic Stroke in MR CLEAN (Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute Ischemic Stroke in the Netherlands)

Diederik W. Dippel, Charles B. Majoie, Yvo B. Roos, Aad van der Lugt, Robert J. van Oostenbrugge, Wim H. van Zwan, Hester F. Lingsma, Peter J. Koudstaal, Kilian M. Treurniet, Lucie A. van den Berg, Debbie Beumer, Puck S. Fransen, Olvert A. Berkhemer and for the MR CLEAN Investigators

Stroke. 2016;47:2574-2581; originally published online September 6, 2016;
doi: 10.1161/STROKEAHA.116.013929

Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2016 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/47/10/2574

Data Supplement (unedited) at:
http://stroke.ahajournals.org/content/suppl/2016/09/15/STROKEAHA.116.013929.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Stroke* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Stroke* is online at:
http://stroke.ahajournals.org//subscriptions/
Table I: Secondary outcomes by treatment modality

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Control (N=267)</th>
<th>Trevo (N=124)</th>
<th>Solitaire (N=31)</th>
<th>Other (N=40)</th>
<th>None (N=38)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modified Rankin Scale 0 to 2</td>
<td>51 (19.1%)</td>
<td>42 (33.9%)</td>
<td>10 (32.3%)</td>
<td>11 (27.5%)</td>
<td>13 (34.2%)</td>
</tr>
<tr>
<td>Barthel index 19 to 20</td>
<td>73 (30.2%)</td>
<td>52 (45.2%)</td>
<td>14 (48.3%)</td>
<td>16 (43.2%)</td>
<td>17 (50.0%)</td>
</tr>
<tr>
<td>NIHSS score at 24 hrs</td>
<td>16.1 (7.5)</td>
<td>13.4 (8.6)</td>
<td>12.8 (8.3)</td>
<td>15.4 (8.4)</td>
<td>12.2 (10.1)</td>
</tr>
<tr>
<td>NIHSS score at 5-7 days</td>
<td>13.0 (7.9)</td>
<td>9.9 (8.4)</td>
<td>8.6 (6.5)</td>
<td>10.7 (7.9)</td>
<td>10.1 (9.5)</td>
</tr>
<tr>
<td>Infarct volume at 5 to 7 days</td>
<td>93.4 (73.5)</td>
<td>75.6 (75.2)</td>
<td>66.8 (58.7)</td>
<td>78.7 (83.7)</td>
<td>61.9 (71.2)</td>
</tr>
<tr>
<td>mTICI 2b/3</td>
<td>-</td>
<td>80 (64.5%)</td>
<td>19 (61.3%)</td>
<td>16 (40.0%)</td>
<td>-</td>
</tr>
<tr>
<td>No occlusion on CT at 24 hrs</td>
<td>68 (32.9%)</td>
<td>84 (80.8%)</td>
<td>20 (83.3%)</td>
<td>21 (70.0%)</td>
<td>16 (55.1%)</td>
</tr>
</tbody>
</table>

* Mean (SD);